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Summary Of Changes In Patch 7

Section 13.4, added description of new IOR “refresh” feature of the
IORTable.

Section 17.13.54, explain new behavior for explicit
ORBPreferIPV6Interfaces 0.

Sections 18.2.12 and 18.6.15 added description of new resource factory option
for initialization of the IORTable refresh feature.

Section 27.6.2, Reordered and reformatted options list, added new options
SSLCheckHost, SSLPassword, and SSLVersionList.

Sections 27.10.1 through 27.10.15, Freshened the option descriptions and
added missing options.

Section D.1.5 updated the information about generating build files for
supported Visual C++ versions.

Summary Of Changes In Patch 5

Section 3.3.2.1, added parameters to example tao_idl command line.

Section 3.3.6, modified example mpc file.

Summary Of Changes In Patch 4

Section 17.13.32, added ORBIIOPClientPortBase option description.
Section 17.13.33, added ORBIIOPClientPortSpan option description.
Section 22.9.1, added -1 command line parameter description to table.
Section 22.9.3, added paragraph explaining the -1 parameter.

Section 22.9.7, updated text of various examples to show "random" as a
supported strategy along with round-robin.

Section 28.2, provide an overview of new ImR capabilities.

Section 28.3, clarify startup behavior description.
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Section 28.5, added text noting the ping interval and timeout values are
configurable.

Section 28.12.1, added new command line options for ping timeout and
lockout.

Summary Of Changes In Patch 1

?&H

Section 15.3, dynamic thread pool added to the list of ORB threading
strategies.

Sections 15.3.7, 15.3.10, refactored the discussion of dynamic thread pool
usage to include a discussion of applying thread pools to ORBs as well as
POAs.

Section 17.12, add link to ORBId option.

Section 17.13.14, add description of ORBDynamicThreadPoolName option.
Section 17.13.17, add description of ORBForwardDelay option.

Sections 17.13.18 - 17.13.27, make the section names consistent, fix example
Section 17.13.30, add description of ORBId option.

Section 17.13.55, clarified the description and added more examples.
Section 20.2.3, update table to include ORBDefaultSyncScope option.
Section 20.3.3, add description of ORBDefaultSyncScope strategy setting.
Section 28.2, provide an overview of new ImR capabilities.

Section 28.11.1, update command table.

Section 28.11.1.4 add detailed description of kill command

Section 28.11.1.5, add detailed description of link command

Section 28.11.1.6, expand description of list command
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Foreword

Institute for Software Integrated Systems

Department of Electrical Engineering and Computer Science
Vanderbilt University

Nashville, Tennessee

USA

August 2011

For the past two decades I've led many R&D groups and projects on distributed object
computing (DOC), service-oriented architecture (SOA), and publish/subscribe (pub/sub)
middleware in academia, industry, and government. Many middleware technologies have
come and gone during this time. For example, ToolTalk, SOM, DCOM, or proprietary
message-oriented middleware from the 90's have vanished from all but the most stubborn
legacy systems.

An important technology advance over the past two decades has been the evolution and
maturation of DOC, SOA, and pub/sub middleware based on open standards, such as the
OMG Common Object Request Broker Architecture (CORBA) and the OMG Data
Distribution Service (DDS). This middleware resides between applications and the
underlying operating systems, network protocol stacks, and hardware. At the heart of DOC
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and SOA middleware is the object request broker (ORB), whose primary role is to bridge the
gap between application programs and the lower-level hardware and software infrastructure
to

1. extend the scope of portable software via common industry-wide standards,

2. coordinate how parts of applications are connected and how they interoperate across
networked nodes, and

3. ease the integration and interoperability of software artifacts developed by multiple
technology suppliers and application developers..
When developed and deployed properly, DOC, SOA and pub/sub middleware can reduce the
cost and risk of developing distributed applications and systems. The right middleware helps
to simplify the development of distributed applications in several ways, including:

* Providing a consistent set of capabilities that are closer to application design-level
abstractions than to the underlying mechanisms in the computing platforms and
communication networks. These higher-level abstractions shield application developers
from lower-level, tedious, and error-prone platform details (such as socket-level network
programming and multithreading) and help application developers effectively manage
system resources (such as memory, network, and CPU resources).

* Helping application developers amortize software lifecycle costs by (1) leveraging
previous development expertise and capturing implementations of key patterns in
reusable frameworks, rather than rebuilding them manually for each use and (2)
providing a wide range of reusable application-oriented services (such as logging, event
notification, naming, and security) that have proven necessary to operate effectively in
distributed environments.

This documentation set from Object Computing, Inc. (OCI) is the seventh installment of an
ever growing and continually improving body of knowledge describing the capabilities and
effective usage of The ACE ORB (TAO), which is a highly portable, open-source,
high-performance, and real-time implementation of the OMG CORBA specification using
the C++ frameworks and wrapper facade classes provided by the popular ACE open-source
toolkit.

In this seventh release from OCI, the TAO middleware---and the agile open-source
community development process that drives it---show a remarkable ability to evolve steadily
and continue to lead the field in implementing the latest OMG CORBA specifications and
span of supported operating system platforms and C++ compilers. Crucial to the success and
longevity of TAO is its robust design based on the patterns and frameworks in ACE that
substantially improve its efficiency, predictability, and scalability. Much of the R&D
activities over the past several years since the previous OCI release have focused on
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optimizing the time and space overhead of ACE and TAO so they can meet more stringent
application quality-of-service (QoS) requirements in a wider range of domains.

STATIC & DYNAMIC

operation()

out args + return value

-4—O DATA

CoPYING
[— & MEMORY
IDL ALLOCATION

SKELETON
IDL ORB OBJECT — DEMUXING &
STUBS INTERFACE APTER
o ORE

CONCURRENCY
GIOP/1IOP+ O GIOP/IOP+ +—  MODELS
PLUGGABLE PLUGGABLE
PROTOCOLS I_
TRANSPORT

NETWORK

The figure above illustrates where optimizations and enhancements have been applied to the
following TAO components:

* TAO includes a highly optimized CORBA IIOP protocol engine and an IDL compiler
that generates compiled stubs and skeletons that apply a wide range of time and space
optimizations. TAO's IDL compiler supports OMG IDL 2.x and 3.x features, including
CORBA's object-by-value features.

* TAQ's ORB Core supports high-performance and real-time concurrency and dispatching
strategies that minimize context switching, synchronization, dynamic memory allocation,
and data movement.

* TAOQO's Portable Object Adapter (POA) implementation uses active demultiplexing and
perfect hashing optimizations that associate client requests with target objects in constant
time, regardless of the number of objects, operations, or nested POAs.
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e TAO can be configured to use non-multiplexed connections that avoid priority inversion
and behave predictably when used with multi-rate distributed real-time and embedded
applications. It can also be configured to use multiplexed connections, which make it
more scalable when run in large-scale Internet or enterprise application environments.

* TAO's pluggable protocols framework supports a wide range of transport mechanisms,
such as standard TCP/IP protocols, UDP, IP multicast, UNIX-domain sockets, secure
sockets (SSL), and shared memory. This framework also allows users to develop
end-to-end fault tolerant systems, where network reliability may require special purpose
protocols, such as the Stream Control Transmission Protocol (SCTP), which is also
supported by TAO. TAO also supports the HTTP Tunneling Inter-ORB Protocol
(HTIOP) that layers GIOP messages over HTTP packets and allows inter-ORB
communication across firewalls.

* TAO's Real-time Event Service, Notification Service, and Naming Service integrate the
capabilities of the TAO ORB described above to support performance-driven
requirements for many application domains and projects.

The OCI TAO 2.2a release provides all these optimizations within the standard CORBA
object model and API. The OCI TAO 2.2a documentation set contains over 1,300 pages of
text, examples, tables, and figures that explain the strategies and tactics for applying these
and many other TAO features and services to address your middleware and application
needs. The size of the OCI TAO documentation set is testimony to the inherent value of their
product, which will positively impact your project schedule and software development costs.
The OCI TAO documentation set and the OCI's website dedicated to TAO (http://
www.theaceorb.com) are key community repositories of best practices for developing
effective distributed real-time and embedded applications.

We are fortunate that OCI has committed itself to supporting TAO using a truly open-source
business model. Many commercial developers would not have received management support
to use TAO without the assurance of commercial quality products and services. Now that
open-source software has achieved critical mass, commercial users are not just accepting it,
but are recognizing its importance in the mix of software development models. Moreover,
many government agencies and programs are now mandating the use of standards-based
open-source software to avoid proprietary vendor lock-in.

As aresult of these trends, users are no longer restricted to choosing between one-size-fits-all
commercial-off-the-shelf toolkits vs. custom development. There is now a third way in
which users participate heavily in the open-source process and sponsor the fulfillment of their
unmet needs as feature additions. Many of OCI’s contributions to ACE and TAO during the
past two decades have been at their clients’ behest for features or ports in a timely manner.
By adding JacORB (an open-source Java ORB), OpenDDS (an open-source implementation

-
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of OMG DDS), CIAO (an open-source CORBA Component Model implementation), and
JBoss (an open-source J2EE implementation) to its supported products, OCI has met the
needs of many TAO users who require a broad and deep range of open-source middleware to
support their mission-critical applications.

In closing, it is important to recognize the extent to which the success of TAO has benefited
from OCI's open-source development model. I'm proud that so many bright students, staff,
OCI engineers, and members of the ACE+TAO open-source community have worked
together closely over the past two decades. As you work with TAO please feel free to
experiment with, dissect, repair, and improve it. We accept bug reports, appreciate bug fixes/
enhancements, and strive to integrate correct bug fixes quickly using our online problem
tracking system. We look forward to seeing your name in subsequent releases of our
software!

Douglas C. Schmidt

"
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Preface

3\\

What Is TAO?

TAO (The ACE ORB) is an open source, advanced, CORBA-compliant,
real-time Object Request Broker (ORB). Its research-guided and
industry-driven middleware architecture is designed to meet the stringent
Quality of Service (QoS) requirements of real-time applications. This focus on
QoS requirements has resulted in TAO’s superior end-to-end predictability,
efficiency, and scalable performance. TAO has been built with components
from the ACE (ADAPTIVE Communication Environment) framework
allowing for a highly extensible architecture. Although TAO was designed to
meet the demanding requirements of real-time applications, it is also
well-suited for general-purpose CORBA applications that do not have
stringent QoS requirements.

Licensing Terms

TAO is made available under the open source sofiware model. The source
code may be freely downloaded and is open for inspection, review, comment,
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and improvement. Copies may be freely installed across all your systems and
those of your customers. There is no charge for development or run-time
licenses. The source code is designed to be compiled, and used, across a wide
variety of hardware and operating systems architectures. You may modify it
for your own needs, within the terms of the license agreements. You must not
copyright ACE/TAO software. For details of the licensing terms, as specified
by the Center for Distributed Object Computing, please refer to “Detailed
Licensing Terms” on page Xxxvii.

TAO also utilizes, and is distributed with, two other open source software
products; GPERF and MPC. The open source license for MPC is similar to
that of ACE and TAO. GPEREF is under the GNU Public License (GPL),
Version 2. Detailed licensing terms for GPERF are found on page xxxix.
Detailed licensing terms for MPC are found on page page xlii.

TAO utilizes two software products obtained/derived from Sun Microsystems.
The first product implements the OMG’s Internet Inter-ORB Protocol (IIOP).
You may copy, modify, distribute, or sublicense the licensed product without
charge, as part of a product or software program developed by you, so long as
you preserve the interoperability specified by the OMG’s I1OP.

The second Sun Microsystems product implements an OMG Interface
Definition Language (IDL) compiler front-end. You may also include this
product freely in any distribution, and may modify it, as long as you do not
remove functionality.

In both cases, you must not use the Sun Microsystems name, logo, or
copyrighted material in any subsequent distribution or promotion of your
product. In addition, you must include the Sun Microsystems licensing terms,
which can be found in their entirety on page xxxix and page xl.

TAO is open source and the development group welcomes code contributions.
Active participation by users ensures a robust implementation. Before you
send code, please refer to the terms and conditions relating to software
submissions on the DOC group’s TAO web site, accessible via
<http://www.theaceorb.com/references/>. Incorporation of your
code into TAO means that it is now “open.” The ACE/TAO copyright and
terms protect the user community from legal infringement or violation.

XXVi
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About This Guide

This Developer’s Guide is the sixth edition and corresponds to OCI’s
Distribution of TAO Version 2.2a. It extends the previous edition which
corresponded to OCI’s Distribution of TAO Version 2.0a. The publication and
release of this edition does not mean the previous edition is obsolete. Much of
the information in the previous edition still applies to the TAO 2.2a release.
However, some features/options described in the previous edition are
deprecated in TAO 2.2a and are so noted in the text.

This guide focuses on the aspects of TAO that make it unique from other
ORBs. It is not meant to be a comprehensive CORBA developer’s guide.
Please refer to Advanced CORBA Programming with C++ by Michi Henning
and Steve Vinoski or Pure CORBA by Fintan Bolton for a more complete
treatment of general-purpose CORBA programming topics.

Highlights of the TAO 2.2a Release

OCI’s Distribution of TAO Version 2.2a includes new features and
improvements over the previous release. This section highlights some of the
more important and visible changes and describes how they may impact your
existing TAO applications.

Performance Enhancements

*  Dynamic Thread Pooling in POAs—A new Dynamic Thread Pool and
Queuing strategy was created for POA usage. It leverages the existing
Custom Servant Dispatching framework for invocation and activation.
The strategy dynamically adjusts the number of threads using
configuration parameters similar to the ORB Dynamic Thread Pool. Using
a thread pool for request processing is useful for avoiding nested upcalls
and for ensuring efficient request dequeuing. However, static thread pools
made too small may result in request processing back logs, or made too
large waste resources. A dynamic thread pool can grow to accommodate
timely execution of requests when a surge happens, but will taper off
releasing resources when activity is reduced. See 15.3.10 for further
details.
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Reliability Enhancements

*  Fault Tolerant Implementation Repository— The Implementation
Repository Locator now supports a dual-redundant fault tolerant
configuration which provides replication and seamless failover between
the primary and backup locator servers. See 28.12.2 for further details.

*  High performance Implementation Repository— The Implementation
Repository Locator has been re-implemented using AMI/AMH to avoid
the problem of nested upcalls under heavy load.

*  Fault Tolerant Naming Service— A new Fault Tolerant Naming Service
(tao_ft naming), provides dual-redundant fault tolerant servers
which utilize replication and seamless failover between the primary and
backup server. The Fault Tolerant Naming Service can be used to provide
load balancing capabilities through the use object groups. This feature is
supported by a separate utility for managing the object groups
(tao_nsgroup) as well as a programmatic interface via IDL. See 22.9
for further details.

*  Multiple Invocation Retry Support—Extended TAO to support multiple
retries in the presence of COMM FAILURE, INV_OBJREF,
OBJECT NOT EXIST, and TRANSIENT exceptions. This feature is
used to support fault tolerant services (specifically the Fault Tolerant
Naming and Implementation Repository services described earlier). The
new invocation retry support allows configuration on how many times to
try to connect to each server and the delay between tries. See 17.10 for
further details.

Interoperability
*  JacORB—TAQ’s Implementation Repository has been extended to allow
it to manage JacORB application servers. See 28.14 for further details.

Important Bug Fixes

* Many other bug fixes or work-arounds appear in this release. See
SACE_ROOT/OCIReleaseNotes.html for details.
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Structure of the Guide

Part 1, “Introduction to TAO Programming”

This section discusses the design goals, development history, and architecture
of TAO. It also describes TAQO’s support for various aspects of the OMG
CORBA specifications and discusses TAQ’s extensions to these specifications
to improve predictability and performance. It addresses how to obtain, build,
and install the TAO source code distribution. (Detailed instructions for
building in specific environments are presented in the appendices.) This
section will also help you quickly get started writing and building applications
with TAO. Getting started with TAO on different platforms is simpler than in
the past with the help of MPC, which is also described in this section. We also
introduce a simple Messenger example that is used throughout the guide to
illustrate features of TAO as they are discussed.

Part 2, “Features of TAO”

This section describes several features of TAO, including: TAO’s IDL
compiler; dealing with errors and exceptions; TAO’s implementation of the
CORBA Messaging specification, including Asynchronous Method
Invocation (AMI); TAO’s Asynchronous Method Handling (AMH) feature;
Real-Time CORBA; Portable Interceptors, Value Types, and Smart Proxies;
using local objects; using TAO’s IOR Table feature; using Pluggable
Protocols with TAO; and multithreading with TAO.

Part 3, “Run-time Configuration of TAO”

The role of the ACE Service Configurator in configuring TAO at run time is
discussed in detail in this section. This section describes several initialization
options and environment variables for configuring the ORB and fully
describes configuration options for TAO’s internal resource and strategy
factories.

Part 4, “TAO Services”

This section describes the various services that TAO offers to CORBA
applications. These services include some of the standard CORBA services
(e.g., Naming, Events, Notification, Interface Repository, Implementation
Repository, Security), as well as the TAO-specific Real-Time Event Service.
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Part 5, “Appendices”

This section includes appendices describing how to configure, build, test, and
use TAO, including detailed information for specific operating environments.
Also included is an appendix that details TAO’s level of compliance with
particular OMG specifications. Following the appendices is a list of important
references.

Conventions

This guide uses the following conventions:

Indicates example code or information a user

Fixed pitch text would enter using a keyboard.

Indicates example code that has been modified
Bold fixed pitch text from a previous example or text appearing in a
menu or dialog box.

Italic text Indicates a point of emphasis.

A horizontal ellipsis indicates that the statement
is omitting text.

A vertical ellipsis indicates that a segment of code
is omitted from the example.

Coding Examples

Throughout this guide, we illustrate topics with coding examples. The
examples in this guide are intended for illustration purposes and should not be
considered to be “production-ready” code. In particular, error handling is
sometimes kept to a minimum to help the reader focus on the particular feature
or technique that is being presented in the example. The source code for all
these examples is available as part of the ACE and TAO source code
distribution in the $TAO ROOT/DevGuideExamples and
STAO_ROOT/orbsvcs/DevGuideExamples directories. The example files
are arranged in subdirectories by chapter name. MPC files are provided with
all the examples for generating build-tool specific files, such as GNU
Makefiles or Visual C++ project and solution files. See
$STAO_ROOT/DevGuideExamples/readme. txt for instructions on building

XXX
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the examples. A Perl script named run_test.pl is provided with each
example so you can easily run it.

OMG Specification References

Throughout this guide, we refer to various specifications published by the
Object Management Group (OMG). These references take the form
group/number where group represents the OMG working group responsible
for developing the specification, or the keyword formal if the specification
has been formally adopted, and number represents the year, month, and serial
number within the month the specification was released. For example, Part 1
of the OMG CORBA 3.1 specification is referenced as formal/08-01-04.

You can download any referenced OMG specification directly from the OMG
web site by prepending <http://www.omg.org/cgi-bin/doc?> to the
specification’s reference. Thus, the specification formal/08-01-04
becomes <http://www.omg.org/cgi-bin/doc?formal/08-01-04>.
Providing this destination to a web browser should take you to a site from
which you can download the referenced specification document.

Additional Documents

In several places throughout the text, we refer to information found in the
following books:

Michi Henning and Steve Vinoski. 1999. Advanced CORBA
Programming with C++. Reading, MA: Addison-Wesley.

Fintan Bolton. 2002. Pure CORBA: A Code-Intensive Premium
Reference. Sams Publishing.

The above books provide extensive coverage of general-purpose CORBA
programming topics and techniques that are not covered in this book. We
strongly recommend that you obtain copies of these books if you do not
already have access to them.

OCI will continue to produce documentation for TAO. In addition, we will
publish any corrections or errata to the existing documentation on the OCI
web site at <http://www.theaceorb.com/references/> as necessary.
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Note

Finally, be sure to visit the TAO Frequently Asked Questions (FAQ) pages at
<http://www.theaceorb.com/faq/>.

Product Version Numbering Scheme

Version numbers for OCI’s Distribution of TAO are different from those of the
code base maintained by the “DOC group,” even though OCI’s Distribution of
TAO is derived from that code base. For example, TAO 2.2a is based on the
TAO 2.2 micro release kit distributed by the DOC group with patches
carefully applied to fix specific problems.

Also, note that neither distribution’s version has any relationship to OMG
specification version numbers. Neither group could ever hope to keep up with
the other.

See “What's the relationship between OCI's TAO and DOC's TAO?” in the
OCITAO FAQ at <http://www.theaceorb.com/faqg/> for more
information about the relationship between OCI’s Distribution of TAO and the
DOC group’s distribution.

Check <http://www.theaceorb.com/references/> to find source code
patches to OCI’s distributions of TAO.

Mixing OCI patches and DOC group patches is untested and unlikely to work
correctly. Neither group supports this configuration.

Supported Platforms

TAO has been ported to a wide variety of platforms, operating systems, and

C++ compilers. We continually update TAO to support additional platforms.
Please visit <http://www.theaceorb.com> for the most recent platform

support information.
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Customer Support

Enterprises are discovering that it takes considerable experience, knowledge,
and money to design and build a complex distributed application that is robust
and scalable. OCI can help you successfully architect and deliver your
solution by drawing on the experience of seasoned architects who have
extensive experience in today's middleware technologies and who understand
how to leverage the power of CORBA.

Our service areas include systems architecture, large-scale distributed
application architecture, and object oriented design and development. We
excel in technologies such as CORBA (ACE+TAO and JacORB), DDS
(OpenDDS), J2EE, FIX (QuickFIX), and FAST (QuickFAST).

Support offerings for TAO include:

*  Consulting services to aid in the design of extensible, scalable, and robust
CORBA solutions, including the validation of domain-specific
approaches, service selection, ORB customization and extension, and
migrating your applications to TAO or JacORB from other ORBs.

»  24x7 support that guarantees the highest response level for your
production-level systems.

* On-demand service agreement for identification and assessment of minor
bugs and issues that may arise during the development and deployment of
CORBA-based solutions.

Our architects have specific and extensive domain expertise in security,
telecommunications, defense, financial, and other real-time distributed
applications.

We can provide professionals who can assist you on short-term engagements,
such as architecture and design review, rapid prototyping, troubleshooting,
and debugging. Alternatively, for larger engagements, we can provide
mentors, architects, and programmers to work alongside your team, providing
assistance and thought leadership throughout the life cycle of the project.

Contact us at +1.314.579.0066 or <salesQRociweb.com> for more
information.
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Object Technology Training

OCI provides a rich program of more than 50 well-focused courses designed
to give developers a solid foundation in a variety of technical topics, such as
Object Oriented Analysis and Design, C++ Programming, Java Programming,
Distributed Computing Technologies, Patterns, XML, and UNIX/Linux. Our
courses clearly explain major concepts and techniques, and demonstrate,
through hands-on exercises, how they map to real-world applications.

Our training offerings are constantly changing to meet the latest needs of our
clients and to reflect changes in technology. Be sure to check out our web site
at <http://www.ociweb.com> for updates to our Educational Programs.

On-Site Classes

We can provide the following courses at your company’s facility, integrating
them seamlessly with other employee development programs. For more
information about these or other courses in the OCI curriculum, visit our
course catalog on-line at <http://www.ociweb.com/training/>.

Introduction to CORBA

In this one-day course, you will learn the benefits of distributed object
computing; the role CORBA plays in developing distributed applications;
when and where to apply CORBA; and future development trends in CORBA.

CORBA Programming with C++

In this hands-on, four-day course, you will learn: the role CORBA plays in
developing distributed applications; the OMG’s Object Management
Architecture; how to write CORBA clients and servers in C++; how to use
CORBAservices such as Naming and Events; using CORBA exceptions; and
basic and advanced features of the Portable Object Adapter (POA). This
course also covers the specification of interfaces using OMG Interface
Definition Language (IDL) and details of the OMG IDL-to-C++ language
mapping, and provides hands-on practice in developing CORBA clients and
servers in C++ (using TAO).
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Advanced CORBA Programming Using TAO

In this intensive, hands-on, four-day course, you will learn: several advanced
CORBA concepts and techniques and how they are supported by TAO; how to
configure TAO components for performance and space optimizations; and
how to use TAQO’s various concurrency models to meet your application’s
end-to-end QoS guarantees. The course covers recent additions to the CORBA
specifications and to TAO to support real-time CORBA programming,
including Real-Time CORBA. It also covers TAO’s Real-Time Event Service,
Notification Service, and Implementation Repository, and provides extensive
hands-on practice in developing advanced TAO clients and servers in C++.
This course is intended for experienced and serious CORBA/C++
programmers.

Using the ACE C++ Framework

In this hands-on, four-day course, you will learn how to implement
Interprocess Communication (IPC) mechanisms using the ACE (ADAPTIVE
Communication Environment) [PC Service Access Point (SAP) classes and
the Acceptor/Connector pattern. The course will also show you how to use a
Reactor in event demultiplexing and dispatching; how to implement
thread-safe applications using the ACE thread encapsulation class categories;
and how to identify appropriate ACE components to use for your specific
application needs.

Object-Oriented Design Patterns and Frameworks

In this three-day course, you will learn the critical language and terminology
relating to design patterns, gain an understanding of key design patterns, learn
how to select the appropriate pattern to apply in a given situation, and learn
how to apply patterns to construct robust applications and frameworks. The
course is designed for software developers who wish to utilize advanced
object oriented design techniques and managers with a strong programming
background who will be involved in the design and implementation of object
oriented software systems.

OpenDDS Programming with C++

In this three-day course, you will learn to build applications using OpenDDS,
the open source implementation of the OMG’s Data Distribution Service
(DDS) for Real-Time Systems. You will learn how to build data-centric
systems that share data via OpenDDS. You will also learn to configure
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OpenDDS to meet your application’s Quality of Service requirements.This
course if intended for experienced C++ developers.

C++ Programming Using Boost

In this four-day course, you will learn about the most widely used and useful
libraries that make up Boost. Students will learn how to easily apply these
powerful libraries in their own development through detailed expert
instructor-led training and by hands-on exercises. After finishing this course,
class participants will be prepared to apply Boost to their project, enabling
them to more quickly produce powerful, efficient, and platform independent
applications.

For information about training dates, contact us by phone at
+1.314.579.0060, via electronic mail at training@ociweb.com, or visit our
web site at <http://www.ociweb.com> to review the current course
schedule.
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Detailed Licensing Terms
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The ACE ORB source code is copyrighted by Dr. Douglas C. Schmidt and his research group
at Washington University, University of California, Irvine, and Vanderbilt University. The
actual terms are reproduced below. TAO is made available by means of an open source model.
TAO may be used without the payment of development license or run-time fees. The TAO
source may be made available along with any added value products that utilize TAO. The
acknowledgement of the use of TAO should conform to its copyright terms. You may
reference the OCI version number and OCI web site as a location of the source code. OCI is
an authorized distributor of TAO products and services. The use of the ACE, The ACE ORB
and TAO trade or service marks is by permission of Dr. Douglas C. Schmidt.

TAO, under certain circumstances, also uses a software program called GPERF. This software
was also written by Dr. Schmidt and is licensed under the terms of the Free Software
Foundation’s GNU Public License (GPL). Details on this license may be found in this section.

TAO also includes software from Sun Microsystems. This software is related to the IDL
compiler and IIOP. This software may also be freely distributed without fees. The licensing
details are also published in this section.

Please read this section carefully to understand your obligations as a user.

The following are the terms and conditions of The ACE ORB source code:

Copyright and Licensing Information for ACEM™) TA0(™™)
clA0(™), pAnCE(™), and CosmiCc(™)

ACE(TM), TAO(TM), CIAO(TM), DAnCE(TM), and CoSMIC(™) (henceforth referred to as
“DOC software”) are copyrighted by Douglas C. Schmidt and his research group at
Washington University, University of California, Irvine, and Vanderbilt University Copyright
(c) 1993-2013, all rights reserved. Since DOC software is open-source, freely available
software, you are free to use, modify, copy, and distribute--perpetually and irrevocably--the
DOC software source code and object code produced from the source, as well as copy and
distribute modified versions of this software. You must, however, include this copyright
statement along with any code built using DOC software that you release. No copyright
statement needs to be provided if you just ship binary executables of your software products.

Usage

You can use DOC software in commercial and/or binary software releases and are under no
obligation to redistribute any of your source code that is built using DOC software. Note,
however, that you may not do anything to the DOC software code, such as copyrighting it
yourself or claiming authorship of the DOC software code, that will prevent DOC software
from being distributed freely using an open-source development model. You needn't inform
anyone that you're using DOC software in your software, though we encourage you to let
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<doc_group@cs.wustl.edu> us know so we can promote your project in the DOC software
success stories <http://www.cs.wustl.edu/~schmidt/ACE-users.html>.

Warranty

DOC software is provided as is with no warranties of any kind, including the warranties of
design, merchantability, and fitness for a particular purpose, noninfringement, or arising from
a course of dealing, usage or trade practice.

Support

DOC software is provided with no support and without any obligation on the part of
Washington University, UC Irvine, Vanderbilt University, their employees, or students to
assist in its use, correction, modification, or enhancement. A number of companies around the
world provide commercial support for DOC software, however.

Year 2000

DOC software is Y2K-compliant, as long as the underlying OS platform is Y2K-compliant.
Likewise, DOC software is compliant with the new US daylight savings rule passed by
Congress as “The Energy Policy Act of 2005,” which established new daylight savings times
(DST) rules for the United States that expand DST as of March 2007. Since DOC software
obtains time/date and calendaring information from operating systems users will not be
affected by the new DST rules as long as they upgrade their operating systems accordingly.

Liability

Washington University, UC Irvine, Vanderbilt University, their employees, and students shall
have no liability with respect to the infringement of copyrights, trade secrets or any patents by
DOC software or any part thereof. Moreover, in no event will Washington University, UC
Irvine, or Vanderbilt University, their employees, or students be liable for any lost revenue or
profits or other special, indirect and consequential damages.

Submissions

The ACE, TAO, CIAO, DAnCE, and CoSMIC web sites are maintained by the DOC Group at
the Institute for Software Integrated Systems (ISIS) and the Center for Distributed Object
Computing of Washington University, St. Louis for the development of open-source software
as part of the open-source software community. Submissions are provided by the submitter
“as is" with no warranties whatsoever, including any warranty of merchantability,
noninfringement of third party intellectual property, or fitness for any particular purpose. In
no event shall the submitter be liable for any direct, indirect, special, exemplary, punitive, or
consequential damages, including without limitation, lost profits, even if advised of the
possibility of such damages.

Trademarks

The names ACE(TM), TAO(TM), CIAO(TM), DAnCE(TM), COSMIC(TM), Washington
University, UC Irvine, and Vanderbilt University, may not be used to endorse or promote
products or services derived from this source without express written permission from
Washington University, UC Irvine, or Vanderbilt University. This license grants no
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permission to call products or services derived from this source ACE™)_ TAQ(™),
ClAO(TM), DAnCE(TM), or CoSMlC(TM), nor does it grant permission for the name
Washington University, UC Irvine, or Vanderbilt University to appear in their names.

Contact

If you have any suggestions, additions, comments, or questions, please let me
<d.schmidt@isis.vanderbilt.edu> know.

Douglas C. Schmidt <http://www.dre.vanderbilt.edu/~schmidt/>

Copyright and Licensing Information for GPERF

GPERF is a standalone software program. GPERF generates perfect hash functions for
lookups based on a set of key words when the key words are known in advance. They are
called perfect hash functions because only a single access into the data structure is needed to
perform a lookup. When the set of IDL operations is known in advanced TAO uses the perfect
hash functions generated by GPERF to perform the operation lookup in constant time.

GPERF was originally developed by Dr. Douglas C. Schmidt. Dr. Schmidt subsequently
signed the copyright over to the Free Software Foundation, causing gperf to be licensed under
the GPL (GNU General Public License) Version 2. The FSF still maintains that version of
gperf. When perfect hashing was added as an option to TAO, gperf was selected to provide
that function. It was extended and enhanced to meet the more demanding needs of TAO and a
derived version was placed in the ACE application libraries, ace gperf. When using
TAO under certain circumstances you may elect to use that version of ace gperf, which
is part of the ACE distribution of examples and optional programs. Both the current FSF gperf
and ace gperf are based on the original implementation. Since ace gperf is derived
from the o_riginal GPL'ed version, it too is licensed under the GPL Version 2.

The following terms are found in the source files for gperf:

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA, or visit their web site www.gnu.ai.mit.edu.

IDL Compiler Front End

This product is protected by copyright and distributed under the following license restricting
its use.

The Interface Definition Language Compiler Front End (CFE) is made available for your use
provided that you include this license and copyright notice on all media and documentation
and the software program in which this product is incorporated in whole or part. You may
copy and extend functionality (but may not remove functionality) of the Interface Definition

ociweb.com
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Language CFE without charge, but you are not authorized to license or distribute it to anyone
else except as part of a product or program developed by you or with the express written
consent of Sun Microsystems, Inc. (“Sun”).

The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used
in advertising or publicity pertaining to distribution of Interface Definition Language CFE as
permitted herein.

This license is effective until terminated by Sun for failure to comply with this license. Upon
termination, you shall destroy or return all code and documentation for the Interface
Definition Language CFE.

INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS IS WITH NO
WARRANTIES OF ANY KIND INCLUDING THE WARRANTIES OF DESIGN,
MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEALING, USAGE OR
TRADE PRACTICE.

INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED WITH NO SUPPORT AND
WITHOUT ANY OBLIGATION ON THE PART OF Sun OR ANY OF ITS
SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORRECTION,
MODIFICATION OR ENHANCEMENT.

SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO LIABILITY
WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR
ANY PATENTS BY INTERFACE DEFINITION LANGUAGE CFE OR ANY PART
THEREOF.

IN NO EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE
LIABLE FOR ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT
AND CONSEQUENTIAL DAMAGES, EVEN IF SUN HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems and the Sun logo are trademarks or registered trademarks of Oracle
Corporation.

Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065
NOTE:

SunOS, SunSoft, Sun, Solaris, Sun Microsystems or the Sun logo are trademarks or registered
trademarks of Oracle Corporation.

IIOP Engine

This notice applies to all files in this software distribution that were originally derived from
SunSoft IIOP code (these files contain Sun Microsystems copyright notices).

COPYRIGHT AND LICENSING

Copyright 1995 Sun Microsystems, Inc. Printed in the United States of America. All Rights
Reserved.

x1
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This software product (LICENSED PRODUCT), implementing the Object Management
Group’s “Internet Inter-ORB Protocol”, is protected by copyright and is distributed under the
following license restricting its use. Portions of LICENSED PRODUCT may be protected by
one or more U.S. or foreign patents, or pending applications.

LICENSED PRODUCT is made available for your use provided that you include this license
and copyright notice on all media and documentation and the software program in which this
product is incorporated in whole or part.

You may copy, modify, distribute, or sublicense the LICENSED PRODUCT without charge
as part of a product or software program developed by you, so long as you preserve the
functionality of interoperating with the Object Management Group’s “Internet Inter-ORB
Protocol” version one. However, any uses other than the foregoing uses shall require the
express written consent of Sun Microsystems, Inc.

The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used
in advertising or publicity pertaining to distribution of the LICENSED PRODUCT as
permitted herein.

This license is effective until terminated by Sun for failure to comply with this license. Upon
termination, you shall destroy or return all code and documentation for the LICENSED
PRODUCT.

LICENSED PRODUCT IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND
INCLUDING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM A
COURSE OF DEALING, USAGE OR TRADE PRACTICE.

LICENSED PRODUCT IS PROVIDED WITH NO SUPPORT AND WITHOUT ANY
OBLIGATION ON THE PART OF SUN OR ANY OF ITS SUBSIDIARIES OR
AFFILIATES TO ASSIST IN ITS USE, CORRECTION, MODIFICATION OR
ENHANCEMENT.

SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO LIABILITY
WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR
ANY PATENTS BY LICENSED PRODUCT OR ANY PART THEREOF.

IN NO EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE
LIABLE FOR ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT
AND CONSEQUENTIAL DAMAGES, EVEN IF SUN HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 and FAR 52.227-19.

SunOS, SunSoft, Sun, Solaris, Sun Microsystems and the Sun logo are trademarks or
registered trademarks of Oracle Corporation.

Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065
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Make Project Creator (MPC)

ACE and TAO are delivered with an easy to use, open source, freely available, build
environment called MPC. The following are the terms for its usage.

Copyright and Licensing Information for MPC

MPC (Licensed Product) is protected by copyright, and is distributed under the following
terms.

MPC (Make, Project, and Workspace Creator) is an open-source tool developed by OCI and
written in Perl. It is designed to generate a variety of tool-specific project files from a common
baseline. Through the powerful combination of inheritance and defaults, MPC is able to
reduce the maintenance burden normally associated with keeping multiple target platforms,
their unique build tools, and inconsistent feature sets current. It is also easily extensible to
support new build environments. The objective is to solve the prevalent problem of fragile
build environments usually experienced by developer groups by replacing it with a singular,
robust build environment and an active community of users committed to its evolution.

Since MPC is open source and free of licensing fees, you are free to use, modify, and
distribute the source code, as long as you include this copyright statement.

In particular, you can use MPC to build proprietary software and are under no obligation to
redistribute any of your source code that is built using MPC. Note, however, that you may not
do anything to the MPC code, such as copyrighting it yourself or claiming authorship of the
MPC code, that will prevent MPC from being distributed freely using an open-source
development model.

Warranty

LICENSED PRODUCT IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND
INCLUDING THE WARRANTIES OF DESIGN, MERCHANTIBILITY, AND FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM A
COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

Support

LICENSED PRODUCT IS PROVIDED WITH NO SUPPORT AND WITHOUT ANY
OBLIGATION ON THE PART OF OCI OR ANY OF ITS SUBSIDIARIES OR
AFFILIATES TO ASSIST IN ITS USE, CORRECTION, MODIFICATION, OR
ENHANCEMENT.

Support may be available from OCI to users who have agreed to a support contract.
Liability
OCI OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO LIABILITY

WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS, OR
ANY PATENTS BY LICENSED PRODUCT OR ANY PART THEREOF.

IN NO EVENT WILL OCI OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE
LIABLE FOR ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT
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CHAPTER 1

Introduction

?&\

TAO (The ACE ORB) is an open source, advanced, CORBA-compliant,
real-time Object Request Broker (ORB) that has been developed under the
direction of Dr. Douglas C. Schmidt by members of the Distributed Object
Computing (DOC) Group. The DOC Group is a distributed research
consortium lead by Dr. Schmidt and consisting of the DOC group in the
Institute for Software Integrated Systems (ISIS) at Vanderbilt University,
Nashville, the Center for Distributed Object Computing in the Computer
Science department at Washington University, and the Laboratory for
Distributed Object Computing in the Electrical Engineering and Computer
Science department at the University of California, Irvine. The DOC Group
also includes members of several companies and organizations all over the
world, including Object Computing, Inc., Siemens ZT, University of
Maryland, Remedy IT, Riverace Corporation, PrismTech, LMCO-ATL,
Qualcomm, Hewlett-Packard, and Automated Trading Desk.

The purpose of the DOC group is “to support advanced research and
development (R&D) on middleware and modeling tools using an open source
software development model, which allows academics, developers, and
end-users to participate in leading-edge R&D projects driven by the free
market of ideas, requirements, and resources.”
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1.1

In addition to supporting advanced R&D projects, TAO is being used in many
commercial and government distributed applications in the areas of defense,
telecommunications, multimedia, finance, manufacturing, information and
systems management, and many others. Such users benefit from (and
contribute to) ACE and TAO’s open source model, yet demand stable, well
documented, and commercially supported releases of TAO.

OCI meets the needs of this demanding TAO user community through the
publication of this guide, a controlled release cycle, free source code plus
inexpensive binary distributions, commercial support (including 24x7 support
for organizations using TAO in their deployed applications), training for
beginning through advanced users, and participation in the OMG.

To learn more, visit OCI’s web site at <http://www.ociweb.com> or
<http://www.theaceorb.com>, or contact <sales@Qociweb.com>.

Design Goals

The design goals of TAO include the following:
»  Well-suited for real-time environments.

TAQ’s design includes real-time requirements considerations, including
avoiding end-to-end priority inversion, maintaining upper bounds on
latency and jitter, and providing bandwidth guarantees. In particular, TAO
improves the predictability of many intra-ORB functions, such as
endpoint and request demultiplexing, concurrency control, and operation
dispatching. Moreover, TAO enables applications to specify their quality
of service (QoS) requirements to ORB endsystems.

*  Well-suited for conventional environments.

TAO is well-suited for conventional (i.e., non real-time) environments,
and may be used as a general-purpose ORB without leveraging any of its
real-time features. This allows developers already familiar with CORBA
to get up to speed quickly using TAO and later take advantage of its
real-time QoS support as needed.

»  Exhibits high-performance characteristics.

TAO meets the stringent throughput requirements that are necessary to
support performance-sensitive industrial-strength applications. TAO

> .
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1.1 Design Goals
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optimizes many of the key determinants of ORB performance, including
request demultiplexing and operation dispatching, presentation layer
conversions, synchronization, context switching, memory management,
and data copying. As a result, TAO’s performance is very competitive
with lower-level networking APIs, such as sockets.

Complies with open standards.

TAO was designed to be compliant with OMG CORBA specifications. In
general, the current version of TAO is compliant with the CORBA 3.0
specification. Because of its compliance with OMG specifications, TAO
is interoperable with other ORBs, and TAO application code written in
accordance with the OMG’s IDL to C++ language mapping is portable to
other compliant ORBs. See Appendix I for complete information on
TAQ’s level of compliance with various specifications.

Configurable.

When used in special purpose (e.g., embedded) environments, software
must often be tailored to meet the special demands imposed by that
environment. TAQO’s modular architecture and run-time configurability
allow developers to tailor it to meet the specific needs of their
application’s operating environment (e.g., to reduce the run-time memory
footprint or to strategize request demultiplexing for more deterministic
performance). In addition, TAO fully supports the standard CORBA
policy framework that allows developers to control ORB behavior
programmatically. TAO is designed to give the developer a great deal of
control over the run-time environment.

Extensible.

TAO comes with default resource and strategy factories for configuring
clients and servers, and default pluggable protocol factories for choosing
among certain transport protocols. These default factories are designed to
provide enough flexibility to meet the needs of the vast majority of
applications, even for very demanding environments. However, in cases
where the default factories cannot satisfy a project’s special needs, you
can develop custom resource, strategy, and protocol factories that can be
“plugged in” to TAQO’s core framework-based architecture with no impact
on application code.

TAO also supports the OMG Portable Interceptors specification. Portable
Interceptors provide hooks that are invoked at predefined points in the
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request and reply paths of an operation invocation or during the
generation of an IOR. Interceptors are registered with the ORB via ORB
initializers. Developers can define their own code to be executed at each
interception point to perform application-specific tasks such as logging,
debugging, or security and authentication. See Chapter 9 for more
information on Portable Interceptors.

TAO also supports Smart Proxies, which allow developers to replace the
normal proxy implementations, generated by the IDL compiler, with
application-specific proxies for customizing the behavior of client request
invocations. See Chapter 11 for more information on Smart Proxies.

In addition, because TAO is open source, you are free to modify it in
almost any way to meet your project’s unique requirements.

e Portable.

For an ORB to be an effective tool, it must be implemented on all the
platforms on which it is needed. TAO is built on top of the ADAPTIVE
Communication Environment (ACE) framework, which is a C++
framework that provides object-oriented abstractions to operating system,
networking, and interprocess communications facilities, as well as higher
level patterns that encapsulate common communications mechanisms. By
utilizing ACE, the TAO source code is more easily ported to diverse target
platforms than would be the case if specific APIs were utilized. Moreover,
the use of ACE mitigates the least common denominator approach of
typical porting solutions. Thus, TAO can be optimized for any platform.

1.2 Development History

Since the early 1990s, Dr. Schmidt has led teams conducting advanced
research and development on distributed-object computing middleware using
an open source software development model. The open source model is a very
pragmatic way of evolving software in a rapidly changing environment. It
harnesses the collective wisdom, experiences, expertise, and requirements of
its most demanding users to ensure that their needs are rapidly met.

Traditionally, ORBs have implemented only best-effort service models. Many
corporate and government organizations have sponsored the development of
TAO because they need both standards-based middleware and the ability to
meet and enforce QoS for their applications and distributed systems. These

i
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organizations require not just classic hard real-time characteristics, but soft
real-time and best-effort support, as well. A partial list of these industries and
government organizations, and their applications, includes:

*  Telecommunications—switching, network management, software-defined
radio, and mobile/hand-held systems.

*  Medical—imaging, integrated patient monitoring, and tele-medicine.

*  Aerospace and Defense—avionics, signal processing, simulation,
command and control, and training.

»  Financial Services—trading services, portfolio analysis, real-time risk
analysis, and simulation.

*  Manufacturing—machine tools, robotics, and process control.

* Information and Systems Management—storage management, systems
and data recovery, customer information management, asset management,
capacity management, and infrastructure and application control.

In addition to requirements for real-time and high-performance systems,
TAO’s sponsors require close conformance to the OMG specifications to
ensure that their developers can design compliance into their baseline systems
architecture. Moreover, there are often specific customer-application-
generated requirements that ensure a pragmatic set of extensions to the OMG
specifications. These extensions must meet the needs of real-time developers
who typically demand complete control of all the system resources to
guarantee success.

Original contributors to TAO’s technical architecture, strategies and
techniques include senior developers from sponsoring organizations who have
extensive experience with first generation ORBs, understand real-time issues,
and come from diverse industry backgrounds. The result of such wide-ranging
inputs is an ORB with a highly adaptable architecture, well-suited for a
diverse and demanding customer base. When combined with the thousands of
contributors from the ACE and TAO open source community, it is fair to say
that no other ORB has had such a signficant degree of participation from its
users and sponsors.

Note You can see a full list of contributors to ACE/TAO (over 2000 individuals) at
<http://www.cs.wustl.edu/~schmidt/ACE-members.html>. This list

a
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indicates the size and diversity of the open source community that has grown
around these products.

1.3 Architecture of TAO

In this section, we describe the architecture of TAO. If you are new to
CORBA, you should read Advanced CORBA Programming with C++,
Chapter 2 (especially sections 2.4 and 2.5) before reading this section.

- A
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Figure 1-1 shows the relationships among TAO’s ORB endsystem
components. An ORB endsystem is an endsystem (e.g., PC, workstation,

CLIENT SERVER
: > CORBA Object
Y !
H [ 1
Client % E’ : Servant
Stub Skeleton
Portable Object
Adapter
ORB Core ORB Core
Strateqgy Factories Strateqgy Factories
GIOP GIOP
Protocol Factories Protocol Factories
ACE ACE
0s 0s
Metwork

Figure 1-1: TAO Architecture

embedded processor board) that contains one or more network interfaces, an
I/O subsystem (e.g., containing the operating system’s protocol stacks like
TCP/IP), an ORB, and possibly various standard services (e.g., Naming and
Event). As a developer, you will typically write the client and servant (shaded
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components in Figure 1-1). Components of the TAO architecture are
described below.

1.3.1 Client

A CORBA client has two responsibilities: (1) obtain object references to
CORBA objects and (2) invoke operations on them. The client is unaware of
where or how the CORBA object is implemented. The only operations the
client is able to invoke are those defined in the object’s interface, expressed in
OMG Interface Definition Language (IDL).

1.3.2 CORBA Object

CORBA objects are abstract entities. Each CORBA object has a unique
identity and an interface, defined in IDL. A CORBA object is associated with
a concrete implementation of the interface at run time by an Object Adapter.

1.3.3 Servant

A servant provides a concrete implementation for a CORBA object. In
object-oriented programming languages such as C++, servants are
implemented as objects and live within a server process or task. Normally, you
will create an implementation class for each IDL interface and your servant
objects will be instances of this class. The client is completely unaware of how
an interface is implemented and has no knowledge of servants. A servant is
associated with a CORBA object at run time via an Object Adapter.

1.3.4 IDL Stubs and Skeletons
The TAO IDL compiler generates C++ stubs and skeletons from IDL interface
definitions. Stubs are used on the client side to provide a strongly typed, static
invocation interface (SII) that converts C++ function calls into CORBA
requests, including marshaling operation parameters into a common binary
representation. The generated stubs can also optimize operation invocations
when the target object is collocated with (i.e., in the same address space as)
the client. Skeletons provide a static skeleton interface (SSI) that demarshals
the binary data back into C++ types that are meaningful to servant
implementations. You will normally compile and link the generated stubs and
skeletons into your application code. See Chapter 4 for more information on
TAQO’s IDL compiler.

i
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1.3.5

In addition to the SII and SSI model described above, TAO also supports the
Dynamic Invocation Interface (DII) and Dynamic Skeleton Interface (DSI),
defined by the CORBA specification.

Portable Object Adapter

The Portable Object Adapter (POA) specification, introduced in CORBA 2.2,
replaces the Basic Object Adapter (BOA) defined in earlier versions of the
CORBA specification. An Object Adapter associates servants with CORBA
object references, demultiplexes incoming requests, and dispatches these
requests to servants.

TAO fully implements the POA specification, including support for multiple
nested POAs per ORB, applying policies to POAs at creation time, and
portability of server implementation code. In addition, TAO's POA, by
default, optimizes request demultiplexing and operation dispatching, using
active demultiplexing and perfect hashing. These optimizations improve the
predictability of CORBA applications by ensuring constant O(1) time
operation dispatches, regardless of the number of active client connections,
the number of activated servants, and the number of operations defined in an
IDL interface. Alternative lookup strategies are configurable, such as linear
search, binary search, and dynamic hashing.

The RTPortableServer extension to the POA interface, which is part of the
real-time CORBA specification, adds operations that permit the application to
associate priorities with object activations and to define thread pools for
operation dispatching. The RT CORBA specification also defines a system of
portable priorities that can be mapped to native operating system priorities.
Thus, RT CORBA provides a single, “global” priority model that simplifies
system design and improves code portability and extensibility. RT CORBA
provides a standard mechanism for servers to allocate, partition, and manage
thread resources and control dispatching of requests onto threads according to
priority, thereby helping to ensure end-to-end predictability. In addition, RT
CORBA gives the developer control over the allocation and selection of
communication resources via explicit binding, protocol configuration, and
protocol selection. See Chapter 8 for more information on TAQO’s
implementation of real-time CORBA.
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1.3.6 ORB Core

A client ORB communicates with a server ORB to deliver client request
messages and return responses, if any, to the client. On the server side, the
ORB Core delivers the request to the appropriate Object Adapter and returns a
reply message to the client-side ORB. ORBs also actively manage the
transport-level connections that are used to transmit these request and reply
messages.

The OMG defines the General Inter-ORB Protocol (GIOP) for enabling
interoperable communications among disparate ORB implementations.
TAQO’s ORB Core supports GIOP version 1.2 (and its realization atop the TCP
transport protocol, known as the Internet Inter-ORB Protocol or IIOP). In
addition, TAO’s pluggable protocols framework allows GIOP messaging to
operate over a wide range of transport protocols, including user-defined
transports. In addition to IIOP, TAO provides alternate pluggable transport
protocols, such as: UIOP, for inter-ORB communications over local IPC (or
UNIX domain sockets); SHMIOP, for inter-ORB communications via shared
memory; DIOP, for limited but highly-efficient inter-ORB communications
using UDP; SSLIOP, for secure inter-ORB communications using Secure
Sockets Layer (SSL); MIOP, for inter-ORB communications over unreliable
multicast protocol; SCIOP, for inter-ORB communications over the Stream
Control Transmission Protocol (SCTP); and HTIOP, which tunnels inter-ORB
communications over Hypertext Transfer Protocol (HTTP). Each pluggable
transport protocol must provide a protocol factory that is loaded and
configured at run time. See Chapter 14 for more information on using TAQO’s
pluggable protocols.

In addition to the pluggable protocols framework, TAO’s ORB Core employs
various strategies to configure certain aspects of the ORB’s behavior for both
the client and server sides. For example, on the client side, strategies are used
to affect concurrency, to determine if multiple requests are allowed to share a
communication channel, to control connection management by the ORB core,
and various other behaviors. On the server side, strategies are used to control
how the object adapter demultiplexes requests and to control concurrency. To
obtain these strategies, the ORB core uses strategy factories that are loaded
and configured at run time via the ACE Service Configurator framework. See
Part 3, “Run-time Configuration of TAO,” for more information on
configuring the ORB’s strategy factories.

i
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1.3.7 ACE

TAO is implemented atop ACE, which is infrastructure middleware that
implements the core concurrency and distribution patterns for communication
software. ACE provides reusable C++ wrapper fagades and framework
components that support the QoS requirements of high-performance, real-time
applications. ACE is a highly portable, multiplatform framework that spans
both real-time and general-purpose operating systems.

1.4 CORBA Compliance

It is not necessary to use TAO as a real-time ORB. In fact, TAO provides
out-of-the-box standard CORBA conformance. TAO was designed to be
compliant with OMG CORBA specifications, as summarized below and as
detailed in Appendix I.

* TAO is mainly compliant with the OMG CORBA 3.1 specifications
(OMG Documents formal/08-01-04, formal/08-01-06, and
formal/08-01-08).

*  TAO implements the CORBA for embedded specification (OMG
Document formal/08-11-06).

*  TAO implements the real-time CORBA 1.2 specification (OMG
Document formal/05-01-04).

*  TAO is compliant with the CORBA C++ Language Mapping
specification, version 1.2 (OMG Document formal/08-01-09).

*  TAO complies with the Internet Inter-ORB Protocol (IIOP) specification,
version 1.2, including support for bi-directional communications over a
single connection. Therefore, TAO can interoperate seamlessly with other
ORBs that use the standard IIOP (including ORBs that use I[IOP versions
1.0 and 1.1). TAO does not technically support IIOP 1.3 or 1.4, but does
support many of the component-related and IPv6 features of these
versions through its [IOP 1.2 implementation.

*  TAO supports the static invocation interface (SII) and static skeleton
interface (SSI), as well as the dynamic invocation interface (DII) and
dynamic skeleton interface (DSI) models.

=
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TAO fully implements the Portable Object Adapter (POA) specification,
including advanced POA features, such as servant managers and adapter
activators.

TAO provides many of the standard CORBA services, as follows:

Audio/Video Streaming Service—implements the Control and
Management of Audio/Video Streams specification.

Concurrency Control Service—allows objects in a distributed
system to acquire and release locks.

Event Service—decouples communication between objects by
providing an asynchronous supplier/consumer style of event
propagation among objects.

Interface Repository—maintains a repository of information about
IDL interfaces and types and provides lookup capabilities to clients.

Life Cycle Service—provides a standard means to locate, move,
copy, and remove objects.

Load Balancing Service—provides random, round-robin, and
least-loaded load balancing strategies to forward requests to
registered replica services.

Logging Service—provides event-based logging and log-record
query capabilities.

Naming Service—maps names to object references, organized in a
hierarchy.

Notification Service—extends the CORBA Event Service with the
addition of features such as event filtering and structured events.

Property Service—allows applications to associate properties with
objects dynamically.

Security Service—provides a comprehensive treatment of security
as it relates to distributed object systems and applications.

Time Service—provides globally-synchronized time to distributed
objects.

Trading Service—maps properties to object references and
provides constraint-based object lookup capabilities to clients.

14
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1.5

In addition, TAO provides the following additional service that demonstrates
TAO's capabilities in various real-time environments:

*  TAO Real-Time Event Service—augments the standard CORBA Event
Service model by providing source- and type-based event filtering, event
correlation, priority-based dispatching, and event channel federation.

See Part 4, “TAO Services,” for more information on the various services
implemented by TAO.

High Performance and Real-Time Support

Historically, CORBA has supported only “best-effort” quality of service to
applications. Developers with stringent QoS or performance requirements
could not rely on CORBA to provide the level of performance or predictability
they needed.

TAO was designed from the beginning with support for real-time and other
demanding applications in mind. Because this kind of support was lacking
from the CORBA specifications, TAO supplied extensions to the CORBA
specifications to support applications that required higher performance,
real-time determinism, and end-to-end priority propagation.

Because the CORBA specification now supports more demanding
applications, ORB implementations can now provide much greater QoS and
performance guarantees without sacrificing CORBA compliance. TAO is in
the forefront of support for these latest aspects of the CORBA specification as
follows:

*  TAO implements the CORBA policy framework as defined by the
CORBA Messaging specification and supports the creation of policies for
controlling request/reply timeouts, synchronization scope for oneway
requests, support for bi-directional GIOP communications, and other
aspects of inter-ORB communications.

* TAO implements the real-time CORBA specification, including the
real-time ORB and real-time PortableServer features, such as portable
priorities, client-propagated and server-declared priority models, RT
CORBA threadpools, and priority-banded connections. In addition, TAO
provides an implementation of RT CORBA dynamic scheduling.
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TAO also provides the following extensions to the CORBA specifications to
support specific application needs:

«  TAO’s ORB Core provides an efficient and predictable communication
infrastructure for high-performance and real-time applications. It provides
a range of client and server concurrency models.

*  TAO’s ORB Core supports nested upcalls with several of its concurrency
models.

* TAOQO’s implementation of RT CORBA thread pools with lanes provides a
reactor-per-lane configuration that requires no context switches
throughout the life of an upcall, thereby greatly decreasing the likelihood
of priority inversions.

*  TAQO’s ORB Core allows custom transport protocols to be plugged into
the ORB without affecting standard CORBA application programming
interfaces.

*  Some custom transport protocols supported by TAO improve request
transmission performance relative to the standard IIOP protocol under
certain conditions.

* TAO’s implementation of the POA and generated skeletons are designed
using patterns that provide an extensible and highly optimized set of
request demultiplexing and operation dispatching strategies, such as
perfect hashing and active demultiplexing. These strategies allow for
constant-time lookup of nested POAs and servants, based on object keys,
and operation names contained in CORBA requests.

1.6 Relationship Between ACE and TAO

Many components in TAO, such as its ORB Core, POA, and generated stubs
and skeletons, are based on patterns and components provided by the ACE
framework. Key patterns used in TAO include the Acceptor, Connector,
Reactor, Active Object, Half-Sync/Half-Async, Service Configurator,
Thread-Specific Storage, Strategy, Proxy, Adapter, Bridge, and Abstract
Factory.

To improve portability, TAO uses ACE’s high-performance, small-footprint
operating system adaptation layer for all operating system access, rather than

i
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invoking non-portable system calls directly. Because ACE supports numerous
operating systems, porting TAO to a new platform is simplified considerably.

For more on these patterns and concepts, see the following references, found
in the References section near the end of this guide.

*  Design Patterns: Elements of Reusable Object-Oriented Software, by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (GoF).

*  Pattern-Oriented Software Architecture: Patterns for Concurrent and
Networked Objects (POSA2), by Doug Schmidt, Michael Stal, Hans
Rohnert, and Frank Buschmann.

o C++ Network Programming, Volume 1: Mastering Complexity with ACE
and Patterns (C++NPv1), by Doug Schmidt and Steve Huston.

*  C++ Network Programming, Volume 2: Systematic Reuse with ACE and
Frameworks (C++NPv2), by Doug Schmidt and Steve Huston.

*  The ACE Programmer’s Guide: Practical Design Patterns for Network
and Systems Programming, by Steve Huston, James CE Johnson, and
Umar Syyid.

Also, for more information on ACE, visit the ACE home page via
<http://www.theaceorb.com/references/>.
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CHAPTER 2

Building ACE and TAO

2.1

Introduction

.-'!"’_
i

This chapter walks you through the steps to build ACE and TAO for two
common system/compiler combinations: Linux with GNU C++ and Windows
Visual C++. Although TAO supports a variety of operating systems and
platforms, in this chapter we will walk through a build using these common
system/compilers using the default build options. This will allow you to
quickly build the necessary libraries and executables so that you try the
examples provided in this book.

Note Appendix A discusses the full details on configuring ACE/TAQO builds and
some of the options available via each mechanism.The detailed instructions

for building ACE and TAO for various operating systems and compilers are
provided in other appendices.

19
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2.2

Where to Get ACE and TAO

2.3

Note

Note

The source code for ACE and TAO that this book is based on can be
downloaded from <http://download.ociweb.com/TAO-2.2a/>.
There you will find both the zip file ACE+TAO-2.2a.zip and compressed
tar file ACE+TAO-2.2a.tar.gz. These archives contain the GNU
makefiles and Visual Studio projects files that we will use to build ACE and
TAO in this chapter.

Also in these archives you will find the source to the examples in this book.
The examples using core TAO are in directory

$TAO ROOT/DevGuideExamples and examples using TAO’s ORB
services are in directory STAO ROOT/orbsvcs/DevGuideExamples.

For other OCI releases of ACE and TAO, and additional information about
OCI’s support of ACE and TAO, visit OCI’s TAO web site:
<http://www.theaceorb.com>.

The link to the DOC group ACE and TAO source code repository, which

OCI’s version of ACE and TAO is based on, can be found at
<http://www.theaceorb.com/references/>.

System Requirements

You should have at least 512 MB of memory, but more memory will improve
build times. You’ll want to have several GB of free space on your drive to
hold the build results. For both Windows and Linux, TAO can be built on 32
and 64 bit Intel and AMD processors.

For building under Windows, you will need Visual C++ 7.1 or later (TAO
2.2a has been tested using up to Visual C++ 10).

For building using Linux, you will need GNU C++ 3.3.x or later, although
version 4.2 is the recommended version. You will also need to have the GNU
Make program installed.

For either compiler, you will want to have perl installed to run example and

20
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2.4 Steps to Build ACE and TAO

2.4

Further details about system requirements can be found in A.1.

Steps to Build ACE and TAO

241

&

Building on Windows using Visual Studio

Extract the ACE+TAO archive to a path that does not contain spaces. For the
discussion that follows we will assume the zip file was extracted to C:\, which
places the files under C: \ACE wrappers.

In C:\ACE wrappers\ace, create the file config.h and add the
following line to it:

#include "ace/config-win32.h"

Now open the solution file corresponding to the version of Visual Studio you
are using as given in Table 2-1.
Table 2-1 Visual Studio Solution Files

Visual Studio Version Solution File
7.1 TAO ACE.sln

8 TAO_ACE vc8.sln
9 TAO_ACE vc9.sln
10 TAO ACE_vcl0.sln

In Visual Studio build the Naming Service project. This will build all
dependent projects as needed.

Note Building the Naming Service project ensures that the essential libraries
and executables that we need will be built. However, to save compile time and
storage space, the tests and examples are not built.

In Chapter 3 you will learn how to set up your environment to run the
examples in this book.
For information on generating custom solution files and building with various
compiler options, see Appendix D.
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24.2

Building on Linux using GNU C++
For the discussion that follows we will assume the distribution archive was
extracted to /opt/ACE_wrappers.

In /opt/ACE_wrappers/ace, create the file config.h and add the following line
to it:

#include "ace/config-linux.h"

The ACE and TAO GNU makefiles requires the presence of certain
environment variables to work properly. These are shown in the following
table.

Table 2-2 TAO Environment Variables

Environment Variable | Definition

ACE_ROOT The root directory of the ACE files

TAO ROOT The root directory of the TAO files.

List of directories to search for executables

FATH that should include sace rooT/bin.

List of directories for the executable to find

LD _LIBRARY PATH P .
- - libraries that should include sace _root/1ib.

For our case, if using the bash shell we can set them as follows:

export ACE ROOT=/opt/ACE wrappers

export TAO ROOT=$ACE_ROOT/TAO

export PATH=$PATH:S$ACE ROOT/bin

export LD LTIBRARY PATH=SLD LIBRARY PATH:S$SACE ROOT/lib

Now we need to specify certain GNU Make variables needed for building on
Linux. This is done by creating the file
$ACE_ROOT/include/makeinclude/platform macros.GNU and adding the
following:

debug=1
optimize=0
include $(ACE_ROOT)/include/makeinclude/platform linux.GNU

This will give us a build that we can use for debugging code under Linux that
uses TAO.

You should now be able to start a build as follows:
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cd $TAO_ROOT
make

For information on generating custom makefiles and building with various
compiler options, see Appendix C.
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CHAPTER 3

Getting Started

3.1

Introduction

3.1.1

.-'!"’_
i

This chapter guides you through the process of building and running a simple
client/server application using TAO. You should already have TAO installed
(from binaries supplied by OCI or another vendor) or built (from source code)
on your system. If not, see Chapter 2. If you are new to CORBA, you may find
it helpful to read Chapter 3 of Advanced CORBA Programming with C++
before proceeding.

TAO uses a tool that makes using TAO essentially identical on all platforms.
MakeProjectCreator (MPC) is capable of generating build files for each
platform from simple text data files. So, whether you are getting started with
TAO on Linux, Windows, Solaris, or one of the other many platforms
supported by TAO, the steps are essentially the same.

Road Map

In this chapter, you will learn how to:

»  Set up your environment for using TAO (see 3.2).
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* Develop a simple server and client using TAO (see 3.3).

Full source code for the example presented in this chapter can be found in the
TAO 2.2a source code distribution in the directory
$TAO_ROOT/DevGuideExamples/GettingStarted.

3.2 Setting Up Your Environment

Certain environment variables are required during the compilation and
run-time phases of TAO applications. These environment variables are
presented here. If you built TAO yourself, these variables are probably already
set and you may skip this section. The environment variables are shown first
using UNIX syntax, with Windows syntax shown in parentheses.

+ ACE_ROOT
The base directory where you installed ACE and TAO, such as
/usr/local/ACE wrappers (C:\ACE wrappers).

+ TAO ROOT
The base path for all TAO-related code, normally SACE_ROOT/TAO
(¥ACE_ROOT$\TAO).

e PATH
Scripts and executables for TAO will be installed in SACE_ROOT/bin

($ACE_ROOT%\bin). You should add this location to your PATH
environment variable.

* Library path

All required libraries will be installed in $ACE _ROOT/1ib

($ACE ROOT%\1ib). You should add this location to your

LD LIBRARY PATH environment variable or its equivalent. (On
Windows, add this directory to your PATH so DLLs can be located at run
time.)

-
e
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3.3

A Simple Example

3.3.1

3.3.2

In this section, we guide you step-by-step through the creation of a simple
TAO example. We create our IDL files, implement our servants, create client
and server applications, generate build files, build, and run the application.

Our example consists of a server called MessengerServer that implements a
simple Messenger interface, plus a client called MessengerClient that
accesses and uses a Messenger CORBA object that the MessengerServer
provides. Imagine that a full implementation of the MessengerServer might
send e-mail, access a pager, or even make a phone call using voice synthesizer
technology. To keep our example simple, we just write the client’s message to
standard output. In later chapters, we will expand on this example to illustrate
various TAO and CORBA features.

Full source code for this example is in the TAO source code distribution in the
directory STAO_ROOT/DevGuideExamples/GettingStarted.

Create a Workspace

First, create a working directory for our example. We will place all of our code
in a single directory for this example, but in larger projects you may use a
different directory structure. For example, you may wish to separate code for
libraries, servers, and clients into separate subdirectories.

mkdir Messenger
cd Messenger

Messenger Interface Definition Language (IDL) File
Create a new file called Messenger. id1 to contain the interface definition
for our simple Messenger. This interface simply defines an operation that we
will use to send text messages between a client and server. A reply may be
returned in the last parameter, and the return value indicates whether the
message was accepted.

interface Messenger
{
boolean send message(in string user name,
in string subject,
inout string message);
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3.3.21

3.3.3

3.3.3.1

Run the IDL Compiler

The IDL compiler (tao_idl) generates stub and skeleton code from the IDL
interface definitions contained in Messenger. id1. Details about using the
IDL compiler are found in Chapter 4. We use the -GI option to cause
tao_1idl to generate starter implementation (servant) files. We then modify
the generated starter code for our actual implementation. Using the -GI option
to automatically generate starter code is a convenient way to make sure our
implementation class function signatures are correct.

tao_idl -Sa -St -GI Messenger.idl

After running the IDL compiler as shown, our starter implementation class for
the Messenger interface will be in files named MessengerI.*. Client-side
stubs will be in files named MessengerC. * and server-side skeletons will be
in files named MessengerS. *. Other files may also be generated, but they do
not concern us for this simple example.

Create the Messenger_i Implementation Class
Normally, you will want to rename the generated starter implementation files
MessengerI.h and MessengerI.cpp to Messenger i.hand

Messenger 1i.cpp. That way, you will not inadvertently overwrite existing
files if you run the IDL compiler with the -GI option again.

UNIX

mv MessengerI.h Messenger i.h
mv Messengerl.cpp Messenger i.cpp

Windows

ren MessengerI.h Messenger i.h
ren MessengerI.cpp Messenger i.cpp

C++ Header for the Messenger_i Class

Our Messenger i implementation class inherits from the POA Messenger
skeleton class found in MessengerS.h. We have removed some comments
and an unneeded constructor and destructor from the generated starter
implementation files.

#include "MessengerS.h"

28

> .
. -~
ociweb.com %



3.3 A Simple Example

class Messenger i : public virtual POA Messenger
{
public:
virtual CORBA::Boolean send message (
const char* user name,
const char* subject,
char*& message) ;

}i

3.3.3.2 C++ Implementation of the Messenger_i Class
The file Messenger i.cpp already contains much of the code we need for
implementing the Messenger i class. Here is the file with our additions and
changes shown in bold text. Once again, we have removed the unneeded
constructor, destructor, and some generated comments.

#include "Messenger i.h" // renamed from MessengerI.h
#include <iostream>

CORBA::Boolean Messenger i::send message (
const char* user name,
const char* subject,
char*& message)

std::cout << "Message from: " << user_name << std::endl;
std::cout << "Subject: " << subject << std::endl;
std::cout << "Message: " << message << std::endl;
CORBA: :string free (message) ;

message = CORBA::string_dup ("Thanks for the message.");
return true;

3.34 C++ Implementation of the MessengerServer
We next create a MessengerServer to give our Messenger object a place to
live. Inmain (), we create an instance of our Messenger i implementation
class, activate it in the Root POA, and wait for requests from clients.

Create MessengerServer. cpp with the following contents:

#include "Messenger i.h"
#include <iostream>
#include <fstream>

int main(int argc, char* argvl[])

{

a
e
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try |

// Initialize the ORB.
CORBA::0RB var orb = CORBA::ORB init (argc, argv);

//Get a reference to the RootPOA.
CORBA: :Object var obj = orb->resolve initial references ("RootPOA");
PortableServer::POA var poa = PortableServer::POA:: narrow(obj.in());

// Activate the POAManager.
PortableServer::POAManager var mgr = poa->the POAManager();
mgr->activate () ;

// Create a servant.
PortableServer::Servant var<Messenger i> servant = new Messenger i();

// Register the servant with the RootPOA, obtain its object

// reference, stringify it, and write it to a file.
PortableServer::0bjectId var oid = poa->activate object(servant.in());
obj = poa->id to reference(oid.in());

CORBA::String var str = orb->object to string(obj.in());

ofstream iorFile("Messenger.ior");

iorFile << str.in() << std::endl;

iorFile.close();

std::cout << "IOR written to file Messenger.ior" << std::endl;

// Accept requests from clients.
orb->run() ;
orb->destroy() ;

return 0;

}
catch (CORBA::Exception& ex) {

std::cerr << "MessengerServer CORBA exception: " << ex << std::endl;
}
return 1;
3.3.5 C++ Implementation of the MessengerClient

We complete our example by creating a MessengerClient, which obtains
an object reference to the Messenger object and sends it a message via its
send message () operation.

Create MessengerClient.cpp with the following contents:

#include "MessengerC.h"
#include <iostream>
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3.3.6
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int main(int argc, char* argvl[])
{
try {
// Initialize the ORB.
CORBA: :0RB _var orb = CORBA::ORB_init(argc, argv);

// Read and destringify the Messenger object's IOR.
CORBA: :Object var obj = orb->string to object("file://Messenger.ior");

if ( CORBA::is nil(obj.in())) {
std::cerr << "Could not get Messenger IOR." << std::endl;
return 1;

}

// Narrow the IOR to a Messenger object reference.

Messenger var messenger = Messenger:: narrow(obj.in());

if ( CORBA::is nil (messenger.in())) {
std::cerr << "IOR was not a Messenger object reference." << std::endl;
return 1;

// Send a message the the Messenger object.
CORBA: :String var msg = CORBA::string dup ("Hello!");
messenger->send message ("TAO User", "Test", msg.inout());

// Print the Messenger's reply.
std::cout << "Reply: " << msg.in() << std::endl;

return 0;

}
catch (CORBA::Exception& ex) {
std::cerr << "MessengerClient CORBA exception: " << ex << std::endl;

}

return 1;

Create Build Files for the Example

Originally, creating the necessary files for building TAO projects involved
manually creating separate build tool files for each platform. For example, to
build the above example on UNIX using GNU Make and on Windows using
Visual C++ required building and maintaining both Makefiles and Visual C++
project/solution files. In such cross-platform environments, creating and
maintaining different build files for different build tools was tedious and
error-prone. This process has been greatly simplified with the introduction of
a tool called MakeProjectCreator (MPC). With MPC, multiple build
environments can now be supported very simply. All we have to do is create a
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simple mpc file with the information that is unique to our project. We then run
MPC to generate build files for use with GNU Make (gmake), Microsoft
Visual Studio (V7.1, V8, V9, V10), Microsoft nmake, Borland make and
others. For more information on MPC see
<http://www.ociweb.com/products/MPC>.

To support builds of our Messenger example, we create a file called
GettingStarted.mpc with the following contents:

project (*idl): taoidldefaults {
IDL Files {
Messenger.idl
}
custom only = 1

}

project (*Server) : taoserver {
exename = MessengerServer

after += *idl

Source Files {

Messenger i.cpp
MessengerServer.cpp

}

Source_Files {
MessengerC.cpp
MessengerS.cpp

}

IDL Files {

}

}

project (*Client) : taoclient {

exename = MessengerClient

after += *idl

Source Files {
MessengerClient.cpp

}

Source Files {
MessengerC.cpp

}

IDL Files {

}

The GettingStarted.mpc defines three projects: one for the IDL
processing, one for the server, and one for the client. This mpc file relies on
various settings (such as include paths and link libraries) inherited from base

- A
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Note

projects. The IDL processing project inherits from taoidldefaults which
supplies the necessary defaults to process the IDL file for this example. This is
broken into a separate project as it is required by both the client and server.
Our server project inherits from taoserver which provides all the necessary
project attributes to build a TAO server executable. In a similar manner, the
client project inherits from taoclient which enables it to be a pure TAO
client (with no server-side CORBA functionality). The projects will be named
GettingStarted Idl, GettingStarted Client and
GettingStarted Server, because we used the **’ wild card character in
our project name declarations. The output files will be named
MessengerClient and MessengerServer, because these are the names of
the source files in each project that contain main (). To prevent MPC from
automatically detects the existence of our IDL files and implicitly adding
these to our source files, we keep the IDL_Files group empty in the client
and server projects. In our client project we explicitly add MessengerC. cpp
to the list of source files to prevent MPC from implicitly adding
Messenger$S. cpp, which we do not want to build into our client.

To use MPC, you must have Perl version 5.6.1 or greater.

The next step depends upon your development environment:

¢ UNIX with GNU Make
On UNIX or UNIX-like systems, run mwc . pl in the project directory to
generate GNU makefiles for use with the ACE+TAO make system:

mwc.pl -type gnuace
The above command will generate the following files for use with GNU
Make:
- GNUmakefile
- GNUmakefile.GettingStarted Idl
- GNUmakefile.GettingStarted Client
- GNUmakefile.GettingStarted Server
*  Windows with Visual Studio (2003 and later)
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3.3.7

3.3.8

On Windows, using Visual Studio, run mwc.pl in the project directory to
generate solution and project files:

mwc.pl -type vcl0

Replace vc10 with ve71, ve8, or vc9 for targeting VC++ 7.1,
VC++ 8, or VC++ 9 respectively.

The above command will generate the following files:
GettingStarted.sln, GettingStarted Idl.vcproj,
GettingStarted Client.vcproj, and

GettingStarted Server.vcproj for use with Visual Studio.

Visual C++ 7.0 and older are not recommended for use with ACE and TAO.

Build the MessengerServer and MessengerClient

Once the build files are generated, you can build the test applications.

Using GNU Make:

gmake (or make)
Using Visual Studio:

devenv GettingStarted.sln /build debug
Using Visual C++ Express Editions:

msbuild /p:Configuration=Debug GettingStarted.sln

Running the Application
You are now ready to run the MessengerServer and MessengerClient.
The server must be running before the client is started.

Run the MessengerServer in one terminal window with the following
command:

. /MessengerServer
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3.4

Wait for the message “IOR written to file Messenger.ior”, thenrun
the MessengerClient from a different terminal window in the same
directory with the following command:

./MessengerClient

You should see the following messages from the MessengerServer:

Message from: TAO User
Subject: Test
Message: Hello!

In the MessengerClient’s terminal, you should see:

Reply: Thanks for the message.

indicating that the client has received a reply from the server. The client then
exits and your normal command prompt reappears.

Note that the MessengerServer will still be running, waiting for more client
requests. You can run the client again if you like. To kill the
MessengerServer, just type Ctr1-C in its terminal window or use the
kill (1) command to terminate it.

Summary

In this chapter, you have seen how to develop a simple server and client using
TAO. Topics covered included: how to set up your environment for building
applications that use TAO; how to set up a working directory for a simple
example and the files to create therein; creating and using a simple mpc file
for building the example; and running the example.

You are now ready to explore other chapters of this guide that expand on this
simple example to illustrate various features of TAO and various services that
can be used by TAO applications. Have fun!
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Features of TAO
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CHAPTER 4

TAO IDL Compiler

4.1

Introduction

&

Note

To use IDL interfaces with the static invocation approach, you must generate
skeleton and stub C++ code so requests can traverse from a client to a servant.
TAO includes an IDL compiler, tao idl, that generates C++ skeletons and
stubs from your IDL file.

The generated code is only usable by TAO. The output from IDL-to-C++
compilers cannot be interchanged among CORBA implementations. However,
the code generated by TAO'’s IDL compiler is platform-independent, making it
possible to use TAO in cross-compilation environments

TAQO’s IDL compiler maps IDL files to C++ according to the CORBA C++
mapping specification (OMG Document formal/08-01-09). The basic C++
mapping uses C++ exceptions to report system and user exceptions. An
alternate mapping for environments that do not use native C++ exceptions is
defined in the specification but is no longer supported by the TAO IDL
compiler.
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4.2

The IDL compiler is modularized into a top-level executable, plus libraries for
the front- and back-ends. This modular design allows the front-end lexing and
parsing engine to be reused and different back-ends to be “plugged in” to
produce different outputs (e.g., to populate the Interface Repository).

Executables

4.3

UNIX and UNIX-like Systems

The IDL compiler executable is STAO ROOT/TAO IDL/tao_idl, witha
symbolic link in SACE_ROOT/bin.

Windows Systems
The IDL compiler executable is $ACE ROOT%\bin\tao idl.exe.

General Usage
The general usage of the TAO IDL compiler is as follows:

tao_idl <options> IDL-file(s)

IDL file names must be listed after the options. The options will apply to all of
the IDL files. For example:

tao _idl -GI hello.idl Messenger.idl

Output Files Generated

By default, six files are generated for every IDL file the tao_idl compiler
processes. Three of these files provide the stub code used by the client, and
three files provide the skeleton code used by the server. The generation of
these files ensures that the generated code is portable and optimized for a wide
variety of C++ compilers. However, your client and server applications only
need to include two header files directly.

For an IDL file named Messenger.id1, running the command

tao_idl Messenger.idl
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4.3 Output Files Generated

generates the following files (we show how to customize these names later):
Table 4-1 C++ Files Generated

File Name Contents

MessengerC.h Stub class definitions.

MessengerC.inl Inline stub member function definitions.
MessengerC.cpp Stub member function definitions.
MessengerS.h Skeleton class definitions.

MessengerS.inl Inline skeleton member function definitions.
MessengersS.cpp Skeleton member function definitions.

4.3.1 Tips for Working with the Output Files

The client includes MessengerC.h and links to MessengerC.o. The
server includes MessengerS.h and links to both MessengerC.o and
MessengerS.o.

The stubs and skeletons are decoupled. The client implementation need
not include the *S.h file or link with *S. o. However, the server requires
knowledge of the stub classes and IDL types found in the *C.h files.
Therefore, the generated *S . h files that you include in your server code
include the corresponding *C . h files. In addition, your server
implementation needs to link with the object code produced from both the
*C.cpp and *S. cpp files.

The compiler interprets the functions in the *.in1 files as inline code
only if the build defines the preprocessor macro ACE INLINE . This
makes it possible to build applications with inlining disabled (e.g., to
facilitate debugging) or with inlining enabled (e.g., to improve
performance). You can find the definition of this preprocessor option by
looking for the ACE INLINE  macro in
$SACE_ROOT/ace/config.h.

a
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4.4 Using TAO IDL Compiler Options

We discuss command line options available with the IDL compiler in 4.5
through 4.14. To see a complete list of the IDL compiler’s options, enter the
following:

tao_idl -u

The file STAO ROOT/docs/compiler.html also contains information on
IDL compiler options.

You can specify IDL compiler options directly on the command line, or you
can specify them in an MPC file by adding your IDL compiler options to the
idlflags keyword. For example:

idlflags += -IS$(TAO ROOT)/orbsvcs -GI

4.5 Preprocessing Options

As required by the CORBA specification, IDL files can contain directives
defined by the C++ preprocessor. This means, for example, that one IDL file
can include another IDL file by using the #include directive. Likewise,
conditional compilation can be done by using the #ifdef or #1f defined
directives. TAO’s IDL compiler does not include a preprocessor, rather it
invokes an external preprocessor. By default, the preprocessor is specified by
the TAO IDL PREPROCESSOR environment variable. This variable is defined
when tao idl is built. The C++ compiler’s preprocessor is used if this
variable is not defined. See 4.5.1 for information on how to override the
default and specify the preprocessor during IDL compilation.

Some common preprocessor options can be passed to the IDL compiler, which
will then pass them through to the preprocessor. The IDL compiler also

i
e
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supports the passing of any option to the preprocessor via its —Wp option.

Table 4-2 provides details of the options related to preprocessing.

Table 4-2 Preprocessing Options

Option

Definition

Example

Run the preprocessor on
the IDL file, but do not
generate any C++ code.

tao_idl -E Messenger.idl

-D macro-def

Defines a macro.

tao_idl -D CORBA IMPL=tao
Messenger.idl

-U macro-def

Undefines a macro.

tao idl -U unix Messenger.idl

-I include-path

Add include-path to
the list of paths searched
for include files.

tao_idl -I /idl/exceptions -I
$TAO_ROOT/orbsvcs/orbsves
Messenger.idl

-A assertion

Make an assertion.

-A system(gnu)

-Yp, preproc-loc

Tells the TAO IDL
compiler to use a
specific preprocessor.

tao_idl -Yp,/usr/bin/cpp
Messenger.idl

-Wp,argl,arg2, ...

Passes arguments to the
preprocessor.

-Wp, -undef

The -D, -U, -1, and -A options are all passed directly through to the
preprocessor. If the preprocessor you are using is the same as your C++
preprocessor (the likely case), then you should see your C++ compiler
documentation for details about these options. The -Wp option will only pass

the text between the commas to the preprocessor (stripping off the leading

“~Wp” and all commas).

In addition to accepting preprocessor directives such as #define, #include,
and #1f, TAO’s IDL compiler recognizes and handles the following
preprocessor directives:

Table 4-3 Additional Preprocessor Directives

Directive

Definition

Example

#file "file name"

ignores them.

Identifies the name of the
file being preprocessed.
These directives are inserted
by some preprocessors. The
IDL compiler simply

#file "Messenger.idl"

ociweb.com
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4.5.1

Table 4-3 Additional Preprocessor Directives

Directive

Definition

Example

#pragma ident "id string"

Provides an identification
string for source code
control or other purposes.
The IDL compiler simply
copies the entire line,
unmodified, to the top of
each output file.

#pragma ident "$IdS"

#pragma prefix "prefix
string"

Provides a prefix string used
in generating Repositorylds.
The typeprefix keyword
can also be used to set the
prefix (as described in the
CORBA specification).

#pragma prefix
"omg.org"

#pragma version name
major.minor

Provides major and minor
version numbers used in
generating Repositorylds.

#pragma version
Messenger 1.1

#pragma ID name id

Assigns a user-specified
repository ID to the IDL
type with the given name.
The typeid keyword can
also be used to set the prefix
(as described in the CORBA
specification).

#pragma ID Messenger
“IDL:Messenger:1l.1”

Environment Variables Affecting Preprocessing
Environment variables that impact the preprocessing stage of the IDL
compiler are described in Table 4-4.

Table 4-4 Preprocessing Environment Variables

Environment Variable

Description

Default Behavior

TAO IDL PREPROCESSOR

Specifies the command to
access the C++ preprocessor.

Uses the preprocessor
used to build the IDL
compiler itself.

TAO IDL PREPROCESSOR ARGS

Provides additional options
for the IDL compiler to pass
to the preprocessor.

Always passes -DIDL
and -1, in addition to
any specified options.

INCLUDE

If set, append its contents to
the include path.

Not passed.

TAO ROOT

If set, passes
~I$ (TAO ROOT) /tao.

Not passed.
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Table 4-4 Preprocessing Environment Variables

Environment Variable | Description Default Behavior

If set, passes

ACE_ROOT -I$(ACE ROOT) /TAO/tao.

Not passed.

Either ACE_ROOT or TAO_ROOT must be defined for tao idl to find the file
orb.idl when it is included by another IDL file (e.g., #include
<orb.idl>). If neither ACE_ROOT nor TAO ROOT is defined, the IDL
compiler will display a warning message.

Output File Options

The TAO IDL compiler has an option that allows you to specify a target
directory for the output files. In addition, there are options to control the file
names of the C++ source code generated. These file names always start with
the base name of the IDL file being processed. You can change the suffix of
the file names that are generated by using the options listed in Table 4-5.

Table 4-5 Output File Options
Option Description Default

“o output-directory Directory in which to place the generated stub | Current

and skeleton files. directory
Current
08 output-directory Directory in which to place the generated *S.* | directory
files. or value of
-0 option
Current
B output-directory Directory in which to place the generated *A.* | directory
files. or value of
-0 option
Sic path Overrides the default include path for *C.h files | stao root/
P included in generated *A.h files tao
-hc filename-ending Stub header suffix. C.h
-ci filename-ending | Stub inline functions suffix. C.inl
-cs filename-ending Stub non-inline functions suffix. C.cpp
-hs filename-ending Skeleton header file name suffix. S.h
-si filename-ending Skeleton inline functions file name suffix. S.inl

-ss filename-ending Skeleton non-inline functions file name suffix. | s.cpp

D\H
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Table 4-5 Output File Options

Option Description Default
-hT filename-ending | Skeleton template header file name suffix. S T.h
. , Skeleton template non-inline functions file
-sT filename-ending S T.cpp
name suffix. -
“hI filename-ending (Sl;[aslétssigll_)g:gentanon header file name suffix I
"o filename-endin Starter implementation file name suffix (use I
7| with -GI). -PP

As an example of these options, suppose you are migrating from a different
CORBA implementation to TAO. When processing an IDL file named
Messenger.idl, this implementation generates files named Messenger.hh
and Messenger.cc for the stub code, and files named MessengerS.hh and
MessengerS. cc for the skeleton code.

For TAO to emulate these naming conventions, invoke the IDL compiler as:

tao_idl -hc .hh -ci .i -cs .cc -hs S.hh -si S.i1 -ss S.cc Messenger.idl

This will produce header and source file names consistent with the other
CORBA implementation.

4.7 Starter Implementation Files

To help you start writing implementation code, tao_1id1l optionally generates
starter servant implementation files. The starter files contain empty C++
member function definitions that you must fill in with your implementation
code. If you are new to CORBA or have a lot of operations to implement, this
can be a great time saver. Table 4-6 lists the options related to this feature.

Note Running the IDL compiler with the starter implementation options overwrites
any existing implementation files of the same names. Any modifications will be
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Note

lost unless you rename the starter implementation files after they are
generated (recommended)!

Table 4-6 Starter Inplementation Generation Options

Option Description Default
o1 Generate starter implementation Do not generate starter
code. implementation code.

Sets the starter implementation

“GIh filezending | peader file suffix to £ile-ending.

I.h

Sets the starter implementation

-GIs file-endi . .
S HHEETEndg | source file suffix to file-ending.

I.cpp

Prefix with which to begin the
starter implementation class names.

Suffix with which to end the starter

-GIb class-prefix No default prefix.

-Gle class-prefix |. . i
implementation class names. -
No copy constructor
- I .
GIc Create an empty copy constructor defined.
ca Create an empty assignment No assignment operator
operator. defined.

Generate debug information (source
-GId file name and line number) in the
starter implementation.

No debug information
generated.

The -GIh and -G1s options have the same effect as the -h1 and -s1T options
presented in Table 4-5.

For example, consider the following:

// Messenger.idl
interface Messenger {
boolean send message (in string user name,
in string subject,
inout string message );

}i

Suppose the convention you use includes implementation files that end with
~i.hand 1i.cpp. Then invoking the IDL compiler with:

tao_idl -GIh _i.h -GIs _i.cpp Messenger.idl
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creates the Messenger 1i.h and Messenger i.cpp starter files.

Note The -GI option was not needed in this case since using -GIh and -GIs
implies -GI.

The generated starter implementations of operations and attributes contain no
code, only comments of the form "//Add your implementation here."
For example:

CORBA: :Boolean Messenger 1i::send message (
const char* user name,
const char* subject,
char*& message
)
{

//Add your implementation here

}

To implement the interface, search for these comments and replace them with
your own code. However, the IDL compiler does not generate comments for
constructors and destructors; do not forget to fill in these functions as well.

4.8 Additional Code Generation Options

In addition to generating starter implementation classes, the TAO IDL
compiler provides options for generating reply handler classes for use with the
Asynchronous Method Invocation (AMI) callback model, servant and
response handler classes for use with Asynchronous Method Handling
(AMH), smart proxy factory and default smart proxy classes, optimized
TypeCodes, servant tie classes, and explicit template instantiations. Options
for using the above features are shown in Table 4-7. For more information on

-
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AMI callbacks, see 6.2. For more information on AMH, see Chapter 7. For
more information on smart proxies, see Chapter 11.

Table 4-7 Additional Code Generation Options

Option

Description

Default

-GC

Generate AMI callback reply-handler
classes.

AMI callback classes not
generated.

-GH

Generate AMH servant and
response-handler classes.

AMH classes not
generated.

-Gsp

Generate smart proxy factory and default
smart proxy classes.

Smart-proxy-related
classes not generated.

-Gt

Generate optimized TypeCodes.

TypeCodes not optimized.

-GA

Generate any operators and TypeCodes into
a separate *A. cpp stub file.

Generate any operators
and TypeCodes into
the*C. cpp stub file

-GT

Generate the TIE classes, and the *S_T.h
and *S_T.cpp files that contain them. Use
this option only if your application uses the
“tie” class to implement servants.

TIE classes are not
generated.

-Guc

If an IDL constant is declared at module
scope, assign its value in the stub’s . cpp
file rather than inline in the stub’s header
file.

A constant with module
scope is assigned its value
inline in the stub’s header
file.

-Gos

Generates iostream-style insertion operators
(operator<K) for IDL-defined types. If
your IDL-defined types depend on types
included via orb.id1l, TAO must also be
built with the gen ostream MPC feature
enabled. N

No operators are
generated.

-Gse

Generates an explicit export of any
sequence's template base class. This is
sometimes required as a workaround for
bugs in certain versions of Visual Studio
(.Net 2002, .Net 2003, 2005).

Do not generate explicit
exports for sequence base
classes.

-Gce

Limit the code generated to that specified
by the CORBA/e (CORBA for embedded)
configuration.

Generate the normal
CORBA-specified code.

-Gme

Limit the code generated to that specified
for the minimum CORBA configuration.

Generate the normal
CORBA-specified code.

-in

Generate #includes within “<>"

Uses "" by default.

-ic

330}

Generate #includes within

Uses "" by default.

"
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Table 4-7 Additional Code Generation Options

Option | Description Default
Generates code to allow cloning of
arguments on oneway calls. This greatly Arguments and return
speeds up some scenarios when using values are marshalled and

Custom Servant Dispatching (CSD). There | demarshalled when using
is a small cost of increased footprint when | CSD.
using this option.

4.9 OpenDDS-related Options

OpenDDS uses ACE, TAO, and the TAO IDL compiler as part of its
underlying architecture. The TAO IDL compiler has two options related to
OpenDDS which are listed in Table 4-8. For normal TAO users, these options
can be ignored. For further information related to OpenDDS see
<http://www.opendds.org/>.

Table 4-8 Additional Code Generation Options

Option | Description

ca Generate appropriate marshaling and instance key support code for
cps OpenDDS DCPS-enabled types.

Only generate DCPS-related code for OpenDDS (for internal OpenDDS
use).

-Gdcpsonly

4.10 Operation Lookup Strategy Options

When a server receives a request from a client, the POA needs to find the
skeleton function associated with the operation name in the request. This step
involves looking up an operation, based on a string contained in the client
request. There are many ways to do this; each has its strengths and
weaknesses. Table 4-9 shows the operation lookup strategies for which the
IDL compiler can generate code. For most cases we recommend that you use

- A
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the default strategy, perfect hashing, which is usually optimal in both time and
space.

Table 4-9 Operation Lookup Strategies

Option Type Lookup time
-H perfect hash (default) E;}ﬁencltg Constant. Suitable for hard real-time systems.
Linear Proportional to the number of operations.
-H linear search search Represents a worst-case strategy for
comparison purposes.
Bina Proportional to the log of the number of
-H binary search searcrﬁ/ operations. Adding more operations has
minimal impact on lookup time.
Dvynamic Constant for the average case. Worst case
-H dynamic_hash haysh similar to linear search. Inappropriate for hard
real-time systems.

To support the perfect hashing operation lookup strategy, the TAO IDL
compiler relies on ace gperf, a general purpose perfect hashing function
generator that is a separate application program distributed in source code
form with ACE and TAO. It is invoked by the TAO IDL compiler when the
perfect hashing operation lookup strategy is selected. The default path for
ACE’s ace _gperf is $ACE ROOT/bin/ace gperf. To override this value,
use the -g option and specify the full path to the location of the ace gperf
executable. For example, if ace gperf is installed in /usr/local/bin
instead of SACE_ROOT/bin, you should invoke the IDL compiler as follows:

$TAO_ROOT/TAO IDL/tao idl -g /usr/local/bin/ace gperf Messenger.idl

Collocation Strategy Options

&

The use of collocated stubs allows requests on collocated servants to be
dispatched more directly by permitting requests to bypass several layers of
marshaling, networking, demultiplexing, demarshaling, and dispatching logic.

TAO provides two strategies for generating and using collocated stubs.

* The thru poa collocation strategy delivers the request through the
servant’s POA and is considered the standard collocated stub.
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Note

* The direct collocation strategy delivers the request directly from the
stub to the servant as a normal C++ virtual function call, thereby
bypassing the POA completely.

Collocation strategy options are shown in Table 4-10. For more details on
using these collocation strategies at run time, see 17.13.5.

Table 4-10 Collocation Strategy Options

Option Description
-Gp (default) Generate collocated stubs that use thru_poa collocation strategy.
-Gd Generate collocated stubs that use direct collocation strategy.

The run-time ORB initialization options that affect collocation must be
compatible with the types of generated collocated stubs. For example, using
the -Gd option at compile time, then using the -ORBCollocationStrategy
thru poa option at run time, is inconsistent and results in a run-time
exception.

Back End Options

The -Wb option can be used to pass options to the TAO-IDL-compiler back
end that generates the C++ code. The general format for these options is as
follows:

-Wb,option list

The option list is a comma-separated list that may contain any of the options
shown in Table 4-11. These options mainly control platform-specific behavior
of the back end.

Currently, the majority of the supported back end options are related to export
macros. Export macros help control what symbols are visible external to
libraries. These macros are required on Windows platforms and are also used
by default in GCC versions 4.0 and later.

When defining your own libraries, header files that define export macros can
be generated using the $ACE_ROOT\bin\generate export file.pl
script. IDL code that will be included in your library needs to use the export
macros that you generate for that library. The back-end options that end in
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export include are used to identify the export macro header file to use for
a given generated file type. The actual macro to use is identified by the
corresponding back-end option that ends in export macro. For example:

generate export file.pl Messenger > MessengerExport.h

The header file is used by export include as follows:

tao_idl -Wb,export macro=Messenger Export
-Wb, export include=MessengerExport.h Messenger.idl

The export macro triggers the inclusion of these macros in the class
definition, which is necessary on platforms that control visibility. These
macros allow the export of symbols from the library.

Table 4-11 Back End Options for -Wb

Option

Description

export_macro:ma cro

IDL compiler will emit the macro after each class or
extern keyword (both stub and skeleton).

export_include=path

IDL compiler will include the file specified by path at
the top of the client header.

skel export macro=macro

IDL compiler will emit the macro after each class or
extern keyword in the skeleton code.

skel export include=path

IDL compiler will include the file specified by path at
the top of the server headers.

stub_export macro=macro

IDL compiler will emit the macro after each class or
extern keyword in the stub code.

stub_export include=path

IDL compiler will include the file specified by path at
the top of the client header.

pch_include=path

IDL compiler will include the file specified by path
in all generated files (used to support pre-compiled
header mechanisms).

pre_include=file

IDL compiler will include the file specified by £ile at
the beginning of the generated header file.

post_include=file

IDL compiler will include the file specified by £ile at
the end of the generated header file.

obv_opt_accessor

IDL compiler will generate code to optimize access to
base class data for valuetypes.

anyop_export macro=macro

IDL compiler will emit the macro before each Any
operator or extern typecode declaration in the
generated stub code.

ociweb.com
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Table 4-11 Back End Options for -Wb

Option Description

When using the -GA option to generate separate files
for any operators, the use of this option causes the IDL
compiler to include the file specified by path at the
top of the any such headers.

anyop_export include=path

Only for internal TAO use. This option causes the IDL
include guard=path compiler to add code to the headers that prevent users
from including the generated files.

Only for internal TAO use. This option causes the IDL
safe_include=file compiler to use the specified file in place of the
normal generated file (*C.h).

Only for internal TAO use. Include this file in the *C.h
file instead of the normal TAO includes.

unique_include=file

Here is an example showing how to use the back end options export macro
and export include. This example shows how the IDL compiler is invoked
when building the TAO CosNaming shared library:

tao_idl -Wb,pch include=CosNaming pch.h -Wb,export macro=TAO Naming Export
-Wb, export include=Naming/naming export.h -I../.. -I../../orbsvcs
-Wb,pre_include=ace/pre.h -Wb,post include=ace/post.h CosNaming.idl

Suppression Options

Table 4-12 shows options you can use to suppress the generation of code that
corresponds to certain CORBA features particular applications may not need.
Suppressing some of the code normally generated for these features may
produce smaller skeletons and stubs, which is important for
memory-constrained systems.

Table 4-12 Suppression Options

Option| Description Restrictions

sa Suppress generation of the any | The application cannot use the any data
operators. type in operation parameter lists.
Suppress generation of the any The application cannot store local

-sal operators for local interfaces

objects ina CORBA: :Any

only.
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Note

Table 4-12 Suppression Options

Option| Description Restrictions
Suppress generation of The application can neither use the any
TypeCodes for IDL-defined data type in operation parameter lists
-st ; A
types. Automatically implies nor use a TypeCode for any type
-Sa. declared in the IDL file.
. Collocation must be disabled or the
-Sp Suppress generation of direct collocation strategy must be
thru poa collocated stubs.
— used (see 17.5).
. . Collocation must be disabled or the
-sd Suppress generation of direct thru poa collocation strategy must be
collocation stubs. ~
used (see 17.5).
. . IDL interfaces cannot use IDL3
-Sm Disable processing of IDL3 constructs (See Chapter 32, the CORBA
constructs.
Component Model).
Suppresses use of custom header
extension for TAO’s IDL files.
This allows applications to
s specify their custom header
© extensions via -hc and -hs while
existing TAO IDL files can be
included and keep their existing
extension.

The run-time ORB initialization options that affect collocation must be
compatible with the types of generated collocated stubs. For example, using
the -Sp option at compile time, then using the -ORBCollocationStrategy
thru poa option at run time, is inconsistent and results in a run-time

exception.

Options Used Internally by TAO

&

Table 4-13 lists options used internally by TAO. These are documented and
described for the sake of completeness but should not generally be used by

applications.

Table 4-13 Output Used Internally by TAO

Option | Description

-Sorb

Suppress generation of the ORB. h include in generated files.
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Table 4-13 Output Used Internally by TAO

Option | Description

-Sci Suppress generation of the client inline file (*C.1inl).

-Sce Suppress generation of the client stub file (*C. cpp).

-Ssi Suppress generation of the server inline file (*S.inl).

-Ssc Suppress generation of the server stub file (*S. cpp).

_ss Suppresses generation of skeleton (server) files. Only an empty *S.h
file is generated.

-GX Causes generation of empty *A.h files.

Output and Reporting Options

Table 4-14 lists options you can use to control the output of various warning,
error, and informational messages, as well as the location of temporary files

generated by the IDL compiler.

Table 4-14 Output and Reporting Options

Option | Description Default
In UNIX, uses the value of the TMPDIR
environment variable, if set, or /tmp
b odir Directory used by the IDL by default. In Windows, uses the value
compiler for temporary files. of the TMP environment variable, if set,
or the TEMP environment variable, if
set, or the WINNT directory (on NT).
Verbose flag. IDL compiler will
-v print progress messages after No progress messages displayed.
completing major phases.
Print the Abstract Syntax Tree . .
-d (AST) to stdout. AST is not displayed.
- Suppress warnings. All warnings displayed.
Print version information for Lo . .
-V front end and back end. No version information displayed.
Output a warning if two
-Cw identifiers in the same scope Error output is default.
differ in spelling only by case.
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Table 4-14 Output and Reporting Options

Option | Description Default
Output an error if two

-Ce indentifiers in the same scope | Error output is default.
differ in spelling only by case.
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CHAPTER 5

Error Handling

5.1

Introduction

The inherent complexity of distributed applications increases the opportunity
for errors to occur. To handle errors, distributed computing middleware needs
a mechanism to communicate errors between components. Likewise, clients

must be able to handle the error conditions communicated to them by servers.

Distributing an application across several processes and/or several hosts
creates more opportunities for errors to occur. Figure 5-1 illustrates a
distributed application with several objects distributed across three processes
on two hosts. Possible errors include a hardware failure on one of the hosts,
the loss of a network connection between the hosts, and a software failure in
one of the server processes.
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host1 host2

processi1a) (processib process2a

network %Q

\

| operating system | | operating system |

Figure 5-1 Sample Distributed Application

Before getting into TAO specifics, we first summarize the error-handling
mechanisms common to all CORBA ORBs. There are two types of errors that
may occur in a distributed system:

* System-level errors: These error conditions can happen in any distributed
system. For example, a server can exit unexpectedly, thereby causing a
loss of communication. Likewise, a client may send a request to an object
that does not exist.

*  User-level errors: These are application- and domain-specific error
conditions defined by the architects and designers of a distributed system
during application design and development. For example, a bank
customer may attempt to withdraw more money from her bank account
than is in the account.

By default, C++ exceptions are used by the CORBA IDL-to-C++ mapping to
communicate error conditions between the client and server components. For
more details on error handling in CORBA, see Advanced CORBA
Programming with C++, 7.15.

Sometimes C++ exceptions are not available or desired. For instance, some
platforms and compilers do not support C++ exceptions. Moreover, some
applications cannot tolerate the performance impact or increase in code size
that using C++ exceptions causes. The OMG defines an alternate mapping for
such systems that passes error information through a CORBA: : Environment
parameter with each invocation. Older versions of TAO supported the
alternate mapping, but TAO 2.2a no longer does. If your application requires
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the alternate mapping you will need to use an older release of TAO, such as
TAO 1.4a.

5.2 CORBA System Exceptions

By default, CORBA uses C++ exceptions to communicate error conditions
between clients and servers. System-level errors automatically communicate
with clients through a set of standard CORBA system exceptions. A system
exception can be raised during any remote invocation. Table 5-1 lists some
common system exceptions. For a complete list of system exceptions, please
see Advanced CORBA Programming with C++,7.15.

Table 5-1 Common System Exceptions

Name

Description

CORBA: :

COMM_FAILURE

The client’s request was accepted, but a failure occurred
(e.g., unexpected server termination) while processing
the request.

CORBA:

: INV_OBJREF

The client attempted to invoke an operation on an invalid
object reference.

CORBA:

:OBJECT NOT EXIST

The client attempted to invoke an operation on a
non-existent object (e.g., not activated in the POA).

The request was not able to reach its destination because

CORBA: : TRANSIENT a critical resource needed to carry out the request (e.g.,
the POA, the server, a connection) was not available.
A request could not be completed within the specified
CORBA: : TIMEOUT time-to-live period as defined by the effective messaging

quality of service (QoS) policies.

In C++, all CORBA exceptions derive from the class CORBA: :Exception.
All system exceptions derive from CORBA: : SystemException, as shown in
Figure 5-2.

"
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CORBA: :Exception

z&

[

CORBA: : SystemException

INV_OBJREF

COMM_FAILURE

NO_ PERMISSION

Figure 5-2 System Exception Hierarchy

A client must catch system exceptions raised by remote operations. CORBA
system exceptions contain information that can aid in debugging.

Table 5-2 lists several operations you can use to get information from a

CORBA exception.

Table 5-2 CORBA::Exception Operations

Operation

Description

const char* rep id()

Returns the Interface Repository ID of the
exception.

const char* name()

Returns the name of the exception.

void raise()

Throws the exception.

static CORBA::Exception*
_downcast (CORBA: :Exception*)

“Downcast” an exception to a more-derived
type. (Similar to _narrow () for object
references.)

TAO Extensions

CORBA: :TypeCode ptr type()

Returns the typecode of the exception.

int is a (const char* rep id)

Returns non-zero if Repository ID of exception
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Table 5-2 CORBA::Exception Operations

Operation Description

void tao print exception (const | Print helpful debugging information about the
char *info, FILE *f = stdout) exception to f, prepended by info.

Returns information printed by

ACE_CStri inf . . .
_CString _infol) _tao _print exception() asa string.

CORBA::SystemException Operations

Returns an ORB-specific error code that
CORBA: :ULong minor () conveys additional information about the error.
See 5.4 for the TAO minor codes.

Returns an enumerated value that indicates
CORBA: : CompletionStatus whether the operation completed or not before
completed () the exception was raised. Valid values are YES,
NO, and MAYBE.

The following examples illustrate the use of system exceptions in client code.
Both of these examples are based on a simple interface of a hotel with guest
rooms. In these examples, the client makes the following remote invocations:

*  Getting the object reference from the Naming Service.

*  Obtaining the hotel name with hotel->name ().

* Acquiring a reference to a guest room via hotel->checkIn ().

*  Obtaining the room number using room->roomNumber ().

Any one of these invocations has the potential to raise a system exception.

Here is the IDL for our simple hotel:

interface GuestRoom

{
readonly attribute short roomNumber;
readonly attribute float balance;

void checkOut () ;
}i

interface Hotel

{

readonly attribute string name;

GuestRoom checkIn (in short numNights);

}i
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Example

Here is an example of a client that catches system exceptions generically.
Note that the catch code is highlighted.

#include <corba.h>
#include <iostream>

int main(int argv, char* argcl[])
{
try {
// Initialize the ORB.
CORBA::0RB var orb = CORBA::ORB_init (argc, argv);

Hotel var hotel = // get a Hotel proxy, possibly through the Naming Service

CORBA::String var name = hotel->name();
std::cout << "The name of the hotel is " << name << std::endl;

CORBA::Short numNights = 5;
GuestRoom var room = hotel->checkIn (numNights);

std::cout << "The room number is " << room->roomNumber () << std::endl;
orb->destroy();
}
catch (CORBA::SystemException& ex) {
std::cerr << "A CORBA System Exception was caught: ";
std::cerr << "ID = " << ex._rep id()
<< "; minor code = " << ex.minor() << std::endl;
}
// catch all CORBA non-system exceptions
catch (CORBA::Exception& ex) {
std::cerr << "A CORBA Exception was caught: ";
std::cerr << "ID = " << ex._rep id() << std::endl;
}

In addition to printing specific fields of the exception with the rep id()
and minor () member functions, it is possible to simply insert the entire
exception into an output stream, such as std: : cerr. For instance, the catch
clauses of the above example can be rewritten as follows:

catch (CORBA::SystemException& ex) {
std::cerr << "A CORBA System Exception was caught: " << ex << std::endl;
}
// catch all CORBA non-system exceptions
catch (CORBA::Exception& ex) {
std::cerr << "A CORBA Exception was caught: " << ex << std::endl;
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Example

In TAO, the output stream insertion operator << () has been overloaded for

CORBA exceptions to print some details of the exception, such as its

unqualified type name and its interface repository id. Here is what is printed

by the first catch clause above if a CORBA: TRANSIENT exception is raised:

A CORBA System Exception was caught: TRANSIENT (IDL:omg.org/CORBA/TRANSIENT:1.0)

Here is an example of a client performing the same remote invocations but
catching specific system exceptions.

#include <corba.h>
#include <iostream>

int main(int argv, char* argcl])
{
try {
// Initialize the ORB.
CORBA::0RB var orb = CORBA::ORB init(argc, argv);

Hotel var hotel = // get a Hotel proxy, possibly through the Naming Service

CORBA::String var name = hotel->name();
std::cout << "The name of the hotel is " << name << std::endl;

CORBA: :Short numNights = 5;
GuestRoom var room = hotel->checkIn (numNights);

std::cout << "The room number is " << room->roomNumber () << std::endl;
orb->destroy () ;
}
catch (CORBA::COMM FAILURE& ex) {
std::cerr << "A communication failure occurred: "
<< "; minor code = " << ex.minor() << std::endl;
}
catch (CORBA: :TRANSIENT& ex) {
std::cerr << "A transient failure occurred: "
<< "; minor code = " << ex.minor() << std::endl;
}
// catch all other system exceptions
catch (CORBA::SystemException& ex) {
std::cerr << "A CORBA System Exception was caught: ";
std::cerr << "ID = " << ex. rep 1id()
<< "; minor code = " << ex.minor() << std::endl;
}
// catch all CORBA non-system exceptions
catch (CORBA::Exception& ex) {
std::cerr << "A CORBA Exception was caught: ";
std::cerr << "ID = " << ex. rep id() << std::endl;
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5.3 CORBA User Exceptions

Distributed system designers can use exceptions to communicate
application-defined error conditions by specifying IDL modules and interfaces
that contain CORBA User Exceptions. As shown in Figure 5-3, in C++, all
user exceptions derive from CORBA: : UserException, which itself derives
from CORBA: :Exception.

CORBA: :Exception

A

[ |
CORBA: : SystemException CORBA: :UserException

|

Hotel::Occupied

GuestRoom: : Unoccupied

Figure 5-3 User Exceptions

A user exception is similar to an IDL struct in that it can contain data
members. For example, you can extend the GuestRoom interface as follows:

interface GuestRoom

{

exception Unoccupied

{
short daysEmpty;
string lastOccupant;

}i

readonly attribute short roomNumber;
readonly attribute float balance;

- A
66 ociweb.com %




5.3 CORBA User Exceptions

void checkOut () raises (Unoccupied);
}i

The client can catch the Unoccupied exception whenever
GuestRoom: : checkOut () is called:

GuestRoom var room = // get a proxy to a GuestRoom;
try {
room->checkOut () ;
}
catch (GuestRoom::Unoccupied& ex) {
std::cerr << "Cannot check out. Room "
<< room->roomNumber () << " has been empty for "
<< ex.daysEmpty << " days. The last occupant was "
<< ex.lastOccupant << std::endl;
}
// catch all other user-defined CORBA exceptions
catch (CORBA::UserException& ex) {
std::cerr << "A CORBA User Exception was caught: ";
std::cerr << "ID = " << ex. rep id() << std::endl;
}
catch (CORBA::SystemException& ex) {
std::cerr << "A CORBA System Exception was caught: ";
std::icerr << "ID = " << ex. rep id()
<< "; minor code = " << ex.minor() << std::endl;
}
// should never be reached, because all CORBA exceptions are
// either system exceptions or user exceptions.
catch (CORBA::Exception& ex) {
std::cerr << "A CORBA Exception was caught: ";
std::cerr << "ID = " << ex. rep id() << std::endl;
}

On the server side, the server’s implementation of the checkOut () operation
throws an Unoccupied exception if a checkOut () is attempted on an empty
room. For example, suppose GuestRoom 1 is the name of the server-side
class that implements the GuestRoom interface:

void GuestRoom i::checkOut ()
{
if ( /* the room is occupied */ ) {
// check the guest out of the room
}
else { // the room is unoccupied; ERROR
CORBA: :Short daysEmpty = // # of days room is empty
CORBA::String var lastOccupant = // name of last occupant

throw GuestRoom: :Unoccupied (daysEmpty,lastOccupant);
}
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5.4

Conceptually, the exception is thrown “across the wire” to the client. Actually,
what happens is a little more complicated. First, the exception thrown by the
implementation is caught by the CORBA infrastructure (skeleton or ORB) on
the server side, marshalled, and returned to the client in the reply message.
The client-side CORBA infrastructure (ORB and stub) unmarshals the reply
body into a C++ exception, then throws it. Finally, the client code can catch
the exception and handle it in an application-specific manner. Conceptually,
therefore, the exception appears to be thrown directly from the server to the
client.

TAO Minor Codes

A CORBA system exception includes information about the problem that
occurred. You can obtain this information by calling

CORBA: :Exception: :minor (). The value returned from minor () isa
32-bit value known as the minor code value. The minor code value contains
several pieces of information about the exception in the following groups of
bits:

*  The high order 20 bits of the minor code value define the particular ORB
implementation that is transmitting the exception. The OMG assigns this
value to the ORB vendor or other responsible party to ensure it is unique
for all ORB implementations. TAO’s unique identifier is the hexadecimal
value 0x54410 (represented by ASCII "TA" followed by 0x0).

*  The low order 12 bits are assigned no special significance by the OMG.
These bits comprise the implementation-specific minor code. For TAO,
the low order 12 bits are further divided as follows:

- The first 5 bits comprise the location code that identifies the location
in TAO where the exception was raised.

- The remaining 7 bits encode an error number (errno) associated
with the exception.

TAO’s location codes are described in 5.4.1 and the meanings of various error
numbers are described in 5.4.2.
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5.4.1

&

Note

Location Codes

Each location code is assigned a preprocessor macro definition for improved
source code readability. The file STAO ROOT/tao/ORB Constants.h
contains the definitions of these macros. To determine why an exception is
being thrown, you can step through the TAO source code in a debugger.
However, that can be time consuming. Instead, you can search the TAO
source code for these macro definitions and examine the code that detected the
failure. Doing so often leads to insights as to the exact cause of the error.

0x01U TAO_INVOCATION LOCATION FORWARD MINOR CODE
If a client attempts to connect to a server and receives a LOCATION FORWARD

reply, it retries the connection at the address contained in the reply. If the retry
fails, the client ORB raises a CORBA: : TRANSIENT exception with the minor
code set to TAO_INVOCATION LOCATION FORWARD MINOR CODE.

0x02U TAO_INVOCATION SEND REQUEST MINOR CODE
If a client attempts to send a request to a server for the current profile and fails,

the client ORB raises a CORBA: : TRANSTENT exception with the minor code
set to TAO INVOCATION SEND REQUEST MINOR CODE.

0x03U TAO_POA DISCARDING
A POAManager in the PortableServer: : POAManager: : DISCARDING

state causes the associated POAs to discard all incoming requests. Requests
for which processing has already begun are allowed to continue. When a
request is discarded, the POA will raise a CORBA: : TRANSIENT exception to
indicate that the client should retry the request. The POA will set the minor
code to TAO_ POA DISCARDING.

0x04U TAO_POA HOLDING
A POAManager in the PortableServer: : POAManager: : HOLDING state

may cause the POAs associated with it to queue incoming requests, up to an
implementation-defined limit. If this limit is exceeded, the POA may discard
requests and raise the CORBA: : TRANSIENT exception with minor code of
TAO POA HOLDING to indicate to the client that it should retry the request.

TAO'’s implementation of the POA does not support queuing of requests, so
requests are immediately rejected with a CORBA : : TRANSIENT exception if the
POAManager is in the HOLDING state.
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0x05U TAO_UNHANDLED SERVER CXX EXCEPTION
If a servant implementation throws a native C++ exception that is not handled

within the application code, the server ORB cannot propagate the exception to
the client. Because the CORBA specification provides no standards for
marshaling or demarshaling native C++ exceptions, the server ORB raises a
CORBA: : UNKNOWN exception with the minor code set to
TAO_UNHANDLED SERVER CXX EXCEPTION.

0x06U TAO_INVOCATION RECV_REQUEST MINOR CODE
If a client sends a request to a server and detects an error (other than a timeout)

while waiting for a reply, the client ORB raises a CORBA: : COMM _FAILURE
exception with a TAO INVOCATION RECV_REQUEST MINOR CODE minor
code.

0x07U TAO_CONNECTOR REGISTRY NO USABLE PROTOCOL
If none of the connector objects in the ORB’s Connector Registry are

able to parse a particular URL-style stringified IOR (e.g., it may not be
formatted properly or it may specify an unrecognized protocol), the ORB
raises a CORBA: : INV_OBJREF exception with the minor code set to

TAO CONNECTOR REGISTRY NO USABLE PROTOCOL. See Chapter 14 for
more information on using TAO’s pluggable protocols and 17.13.43 for more
information on specifying URL-style object references.

0x08U TAO MPROFILE CREATION ERROR

If the ORB, 1n attempting to parse a string (e.g., a stringified IOR), encounters
an error creating the MProfile (the list of profiles contained within the object
reference), it raises a CORBA: : INV_OBJREF exception with the minor code
set to TAO MPROFILE CREATION ERROR.

0x09U TAO TIMEOUT CONNECT MINOR CODE

If a client fails to connect to a server within a specified timeout period, the
client ORB raises a CORBA: : TIMEOUT exception with the minor code set to
TAO_TIMEOUT CONNECT MINOR CODE.

0x0AU TAO TIMEOUT SEND MINOR CODE

If a client attempts to invoke an operation on a CORBA object, but the
invocation can not be completed within a specified timeout period, the client
ORB raises a CORBA: : TIMEOUT exception with the minor code set to
TAO_TIMEOUT SEND MINOR CODE.

0x0BU TAO_TIMEOUT RECV_MINOR CODE
If a client sends a request to a server but Tails to receive a reply within a

specified timeout period, the client ORB raises a CORBA: : TIMEOUT exception
with the minor code set to TAO_ TIMEOUT RECV_MINOR CODE.
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0x0CU TAO_IMPLREPO MINOR CODE

General-purpose code indicating an error related to the TAO Implementation
Repository (IMR). For example, a server could not notify the IMR of its start
up, the IMR could not forward a client request to a server, or a server is not
running and the server’s activation mode does not allow the IMR to
automatically start it. In all cases, a CORBA: : TRANSIENT exception is raised
with the minor code set to TAO IMPLREPO MINOR CODE.

0x0DU TAO_ACCEPTOR REGISTRY OPEN LOCATION CODE
A server ORB opens an acceptor to allow it to accept client connections on

one or more endpoints. Endpoints can be specified when the ORB is
initialized (e.g., via the ~-ORBListenEndpoints option). If no endpoints are
specified, the ORB will attempt to open acceptors on default endpoints for the
loaded transports protocols. Opening an acceptor can fail for a variety of
reasons, including: The ORB is unable to create or open an acceptor, the ORB
is unable to add an acceptor to its acceptor registry, an invalid endpoint was
specified, no usable transport protocol has been loaded, or a specified
endpoint is already in use by another service. Such errors usually result in a
CORBA: :BAD PARAM exception being raised with the minor code set to

TAO ACCEPTOR REGISTRY OPEN LOCATION CODE, usually during POA
activation.

O0x0EU TAO_ORB_CORE INIT LOCATION CODE

An error can occur during ORB core initialization for a variety of reasons,
including: An invalid argument was supplied to an ~-ORBInitRef option, an
unrecognized argument starting with "-ORB" was passed to

CORBA: :ORB init (), or an invalid endpoint was specified. In these cases,
the ORB will raise CORBA: : BAD PARAM. Other reasons ORB initialization
can fail include internal errors in TAO’s configuration causing the ORB to fail
to load a resource factory or server strategy factory. In these cases, the ORB
will raise CORBA: : INTERNAL. Other errors during ORB initialization, such as
failure to initialize a codeset manager, reactor, pluggable protocol factories, or
default policies, will result in a CORBA: : INITIALIZE exception. In all these
cases, the exception’s minor code will be set to

TAO ORB CORE_INIT LOCATION CODE.

0x0FU TAO POLI CY_NARROW_CODE
Not applicable.

0x10U TAO_GUARD FAILURE
TAO’s POA and Real-Time POA maintain internal locks using the scoped

locking idiom, commonly known as a guard or lock monitor. If the POA or
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the RT CORBA thread pool mechanism fails to acquire its internal lock via
the guard, a CORBA: : INTERNAL exception will be raised with the minor code
set to TAO GUARD FAILURE.

0x11U TAO_POA BEING DESTROYED
An attempt to use the POA after it has been destroyed or as it is being

destroyed can result in a CORBA: : BAD INV ORDER exception with the minor
code set to TAO POA BEING DESTROYED

0x12U TAO_POA INACTIVE
An attempt to use the POA after it as been deactivated via its POA manager

will result in a CORBA: : OBJ ADAPTER exception with the minor code set to
TAO_POA INACTIVE.

0x13U TAO_CONNECTOR REGISTRY INIT LOCATION CODE
If an invocation (such as the first invocation on an object reference) requires a

new connection, but initialization of the ORB core’s connector registry fails, a
CORBA: : INITIALIZE exception will be raised with the minor code set to
TAO_CONNECTOR REGISTRY INIT LOCATION CODE.

0x14U TAO AMH REPLY LOCATION CODE
In an application using TAO’s Asynchronous Method Handling (AMH)

feature, if the response handler is deleted before a reply as been sent to the
client, a CORBA: :NO_RESPONSE exception will be generated and sent to the
client. In other cases, if the application attempts to use a response handler
incorrectly, a CORBA: :BAD INV ORDER exception will be raised. In both
cases, the minor code will be set to TAO AMH REPLY LOCATION CODE.

0x15U TAO_RTCORBA THREAD CREATION LOCATION CODE
If an error occurs during thread creation in an RT CORBA thread pool, a

CORBA: : INTERNAL exception will be raised with the minor code set to
TAO _RTCORBA THREAD CREATION LOCATION CODE.

5.4.2 Error Number Codes
Many system exceptions are the result of a failure when accessing a system
function. Most system functions set a global error number, known as errno,
that identifies the reason for the failure. Table 5-3 gives the TAO preprocessor
72
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macro definition and a short description associated with each possible error
number value included in the minor code.

Table 5-3 Minor Code Error Numbers

Hex
Value

Macro Definition

Description

0x0U

TAO UNSPECIFIED MINOR CODE

No error number associated with the
exception.

0x1U

TAO ETIMEDOUT MINOR CODE

Connection timed out.

0x20

TAO ENFILE MINOR CODE

System file table is full.

0x30

TAO EMFILE MINOR CODE

Process has too many open files.

0x4U

TAO EPIPE MINOR CODE

No process to read the data from a pipe.

0x5U

TAO ECONNREFUSED MINOR CODE

Target machine refused a connection.

0x6U

TAO ENOENT MINOR CODE

A file or directory does not exist.

0x7U

TAO EBADF MINOR CODE

A file descriptor refers to a file that is not
open, or trying to read from a file opened
only for writing.

0x8U

TAO_ENOSYS_MINOR_CODE

Operation not applicable.

0x9U0

TAO EPERM MINOR CODE

Not the super user.

0xAU

TAO EAFNOSUPPORT MINOR CODE

Address not compatible with requested
protocol.

0xBU

TAO EAGAIN MINOR CODE

System process table is full.

0xCU

TAO ENOMEM MINOR CODE

Not enough memory.

0xDU

TAO EACCES MINOR CODE

File access denied.

0xEU

TAO_EFAULT MINOR_CODE

Attempting to access a bad address.

0xFU

TAO EBUSY MINOR CODE

Device busy or lock is held.

0x10U

TAO EEXIST MINOR CODE

File not expected to exist.

0x11U0

TAO EINVAL MINOR CODE

An invalid argument was used.

0x120

TAO ECOMM MINOR CODE

Communication error on send.

0x130

TAO ECONNRESET MINOR CODE

Connection reset by peer.

0x14U0

TAO ENOTSUP MINOR CODE

Function not implemented.
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5.5

Summary

»  Exceptions provide a mechanism to communicate error information
between CORBA clients and servers. Exceptions are mapped to native
C++ exceptions.

e Asetof CORBA: : SystemException exceptions is defined for
system-level errors.

* Domain- or application-specific exceptions are defined in IDL. The
generated C++ exception classes inherit from CORBA: : UserException.

*  When a CORBA system exception is thrown, a minor code is provided to

help identify the reason for the failure. Decoding this minor code can help
in identifying the cause of the failure.

74

> .
. -~
ociweb.com ﬁ'



CHAPTER 6

CORBA Messaging

6.1

Introduction

The OMG introduced a CORBA Messaging specification to facilitate the
development of portable CORBA code that efficiently supports the following:

*  Making requests that do not require a client to block while waiting for a
reply from a server. This is referred to as Asynchronous Method
Invocation (AMI).

* Handling replies that are returned after the client process that submitted
the associated request has terminated. This is referred to as Time
Independent Invocation (TII).

*  Allowing Quality of Service (QoS) to be specified for method invocations
at the application level.

This functionality is now part of the CORBA specification (OMG Document
formal/08-01-04, Chapter 17).

TAO supports the callback model of AMI and a subset of the Messaging
specification’s QoS policies. TAO does not support Time-Independent
Invocation of requests. The AMI callback model is described in 6.2. The QoS
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6.2

policies are described in 6.3. A Bi-Directional GIOP policy is described in 6.4.
Bi-Directional GIOP is defined in Part 2 of the CORBA Core specification
(OMG Document formal/08-01-06) sections 9.8 and 9.9.

AMI Callback Model

The Problem

When a synchronous CORBA operation is invoked, the invoking client is
blocked until it receives the reply to the operation request. A client cannot,
however, always afford to spend its time exclusively waiting for the reply.
Consider the following situations:

*  During time-consuming invocations to distributed objects, the user is not
confident that the client is running properly. While waiting for a reply, it
may be desirable for the client application to provide periodic feedback to
the user, verifying that the program is still waiting for a reply from the
server.

* A client wishes to make concurrent, rather than consecutive, requests to
numerous servers. Suppose that to obtain the total inventory count for a
particular auto part, a number of warehouses must be queried. Whereas a
single query may not be very time consuming, the cumulative waiting
time for consecutive requests could be excessive. If all the queries are
made concurrently, the total inventory count will be less time consuming.

o The reply represents an event. A client may want to be informed when
some external event occurs, but does not want to block all other activities
while waiting for such an event.

Prior to the communication models defined in the Messaging specification,
the only models provided by CORBA for asynchronous communication were
the deferred synchronous and oneway models.

Because the deferred synchronous model requires the use of the Dynamic
Invocation Interface (DII), much more code is required for its implementation
than for the synchronous model. In addition, the DII is tedious to use, not
type-safe, and inefficient.

The oneway model requires the creation of a reply-handler object on the client
side for handling replies to oneway operations that the client invokes on the
server. An object reference to the reply handler is passed to the server in a
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oneway operation. To reply to a oneway request, the server must invoke an
operation on this reply handler. There are several disadvantages to this
approach:

*  The callback interface adds to the complexity of the IDL code.

» The interface for the server object must be altered to include the oneway
definition and the callback object reference parameter.

*  The server code needs to be written to also play the role of a client, so that
it can invoke an operation on the callback object.

*  Only the oneway operation is implemented. If the client application also
needs a synchronous version of this operation, it must be defined
separately.

» Traditional oneways guarantee neither non-blocking semantics nor
reliable delivery.

The AMI Callback Solution

The Asynchronous Method Invocation (AMI) callback! model, defined by the
Messaging specification and fully implemented in TAO 1.6a, addresses the
above concerns by providing asynchronous operations that are not oneway
operations and do not use the DII. These operations are referred to as sendc
operations throughout this chapter. A sendc_ operation is provided to the
client in addition to, rather than instead of, the corresponding synchronous
operation, so the client may invoke either one at any time.

A sendc_ operation has two purposes:

1. To cause the client ORB to send a request message to the server.

2. To provide the client ORB with an object reference to a reply handler.
AMI is a client-side language mapping issue, so enabling AMI does not alter
the CORBA interface, and changes to server implementations are normally
not required®. Thus, from the server’s perspective, a request message initiated
by a sendc_ operation invocation is identical to a request message initiated by
the corresponding synchronous operation invocation.

The client ORB is the workhorse of the AMI callback model. It transforms the
sendc_ operation invocations into request messages and internally maps the

1. An AMI polling model is also defined by the specification, but is not supported by TAO.
2. Servers may require changes to handle transactional asynchronous requests.
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request ID to the reply-handler object reference. When it receives a reply to a
request message, it uses this internal mapping to invoke an operation on the
designated reply handler. A reply-handler skeleton class is implicitly
generated as part of the AMI callback model, so no explicit reply-handler
interface need be defined. The application developer simply writes a reply
handler that derives from this skeleton.

The AMI callback model is enabled by invoking the TAO IDL complier with
the -GC option. This produces the following additions to the resultant code for
each IDL interface:

1. A setof sendc_ member functions.
2. A reply-handler skeleton class.

These components are described in 6.2.1 through 6.2.3. The process of writing
a reply handler is covered in 6.2.4. The chain of events that is set in motion by
invoking a sendc_ operation is illustrated in Figure 6-1 and described in
detail in 6.2.5.

The Messaging specification makes use of a concept called implied-IDL to
define the implementation of these components in a language-independent
manner. To distinguish it from actual IDL code, all implied-IDL code in this
chapter is displayed in italic type.

Drawbacks to using AMI
There are some drawbacks to using AMI that are worth noting:

* Additional stub code is generated for every operation and attribute in an
interface. If only a small percentage of the operations and attributes are
accessed using asynchronous invocations, and executable size is an issue,
then it may make more sense to use alternative asynchronous techniques.

*  Support for AMI callback is just beginning to appear in ORBs, so if client
application portability among different ORB implementations is desired,
it may be premature to deploy AMI-based application code. Since the use
of AMI callback does not alter the CORBA interface, this is a client-side
issue only. AMI callback clients are fully interoperable with non-AMI-
callback servers.

*  Client programmers have to write more code to support the AMI callback
model than the normal synchronous invocation model. In particular, you
must implement the reply-handler class, and you must supply an event
loop on the client side to handle asynchronous replies. Also, exception
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6.2.1

handling is considerably more complicated with the AMI callback model
than with normal synchronous invocations.

Asynchronous sendc_ Operations

When invoked with the -GC option, the TAO IDL complier generates sendc
member functions for the proxy> (stub) class in addition to the synchronous
member functions. These additional member functions can be thought of as
being generated from implied-IDL operations4 that are added to the IDL
interface. All sendc_ operations have a return type of void and are defined
as follows:

For each synchronous IDL operation opName, an implied-IDL operation
named sendc_opName is defined according to the following rules:

*  The first parameter is an in parameter named ami_handler, a reference to
the designated reply handler.

* Each in and inout parameter in opName becomes an in parameter in
sendc_opName.

* If opName has a context expression (specifying which elements of the
client’s context may affect the performance of a request by the object),
then sendc_opName will have an identical context expression.

The return value and out parameters of opName are ignored because they are
handled by the reply handler.

For each IDL attribute attrName, an implied-IDL operation named
sendc_get_attrName is defined. Its only parameter is an in parameter named
ami_handler, a reference to its reply handler.

For each non-readonly IDL attribute attrName, an additional implied-IDL
operation named sendc_set_attrName is defined according to the following
rules:

*  The first parameter is an in parameter named ami_handler, a reference to its
reply handler.

* There is a second in parameter named attrName that has the same type as

3. See Advanced CORBA Programming with C++, 7.3 for more information about proxy classes.

4. These new operations are not considered to be real IDL because they do not correspond to entries
in the Interface Repository.

&
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6.2.2

If a sendc_ operation is invoked with a nil ami_handler value, no response
will be returned for that invocation.

Suppose we have the following IDL definition for MyInterface:

exception UserExcep {string usr_exc;};

interface MyInterface ({
boolean opName (in short a short,
inout long a long,
out float a float)
raises (UserExcep) ;
attribute short attribl;
readonly attribute short attrib2;

Y

The implied-IDL sendc operations for MyInterface are:

void sendc opName (in AMI MyInterfaceHandler ami_handler
in short a short,
in long a long);

void sendc get attribl (in AMI MyInterfaceHandler ami handler);
void sendc set attribl(in AMI MyInterfaceHandler ami handler,

in short attribl);

void sendc get attrib2(in AMI MyInterfaceHandler ami handler);

The sendc  member functions of the C++ proxy (stub) class are:

virtual void sendc_opName (AMI MyInterfaceHandler ptr ami handler,
CORBA::Short a_short,
CORBA::Long a long);

virtual void sendc_get attribl (AMI MyInterfaceHandler ptr ami_ handler);

virtual void sendc_set attribl (AMI MylInterfaceHandler ptr ami handler,
CORBA: :Short attribl);

virtual void sendc_get attrib2 (AMI MylInterfaceHandler ptr ami handler);

The ExceptionHolder
When a sendc_ operation is invoked, the client ORB attempts to send a
request message to the server. If this attempt fails, the sendc_ operation raises
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a system exception with a completion status of COMPLETED NO. Otherwise, the
sendc_ operation returns normally and the client application continues.

If an exception occurs during the processing of a sendc_ request, the server
returns this exception to the client ORB in the reply message, just as in the
case of a synchronous operation. Unlike the synchronous case, however, the
sendc_ operation cannot raise an exception because it returns before the reply
is received.

When a reply to a sendc_ operation contains an exception, the client ORB
receiving the reply must deliver this exception to the designated reply handler.
Because CORBA exceptions cannot be passed as arguments in an [DL
interface, the exception is inserted into an ExceptionHolder for delivery to
the designated reply handler.

The CORBA specification defines the Messaging: :ExceptionHolder
valuetype:

module Messaging
{
typedef CORBA::OctetSeq MarshaledException;
native UserExceptionBase;
valuetype ExceptionHolder ({
vold raise_exception() raises (UserExceptionBase);
void raise exception with list(in CORBA::ExceptionList exc list)
raises (UserExceptionBase);
private boolean is_system exception;
private boolean byte order;
private MarshaledException marshaled exception;
i
}i

TAO implements this valuetype with the Messaging::ExceptionHolder C++
class. When called back with an exception, AMI applications will typically
call the raise exception() operation, which throws the corresponding
C++ exception. Applications then catch this exception like any C++

exception. The following section shows this behavior in the Reply Handler.

Note Earlier versions of TAO generate type-specific Exception Holder classes for
each interface that supports AMI as prescribed by the CORBA 2.6
specification (OMG Document formal/01-12-35).
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6.2.3 Reply Handler Operations
When the TAO IDL compiler is invoked with the —GC option, it generates a
C++ reply-handler skeleton class for each interface on which it is invoked.
This class can be thought of as having been compiled from an implied-IDL
reply-handler interface. For an interface named MyInterface, the name of
the implied-IDL interface is AMI MyInterfaceHandler and the name of the
generated skeleton class is POA AMI MyInterfaceHandler. The
application developer writes a reply-handler class that inherits from the
skeleton class and that is usually instantiated as a servant within the client.

However, the reply-handler servant does not have to be located within the
client application. It can be located in another process. For example, if
multiple instances of a client are instantiated, it may be desirable to handle all
replies in only one of the instances. It is important to understand, however,
that the client ORB that sends a request message will always receive the reply
to this message. It is the client ORB that then invokes the reply-handler
operation.

Reply-handler operations are invoked only by an ORB. They do not raise
exceptions because they are never invoked by a client and thus have no client
to respond to the exceptions. All reply-handler operations have a return type
of void because their only purpose is to pass information to the reply handler.

An implied-IDL reply-handler interface contains two reply-handler operations
for each sendc_ operation, one to handle normal (non-exception) replies and
another to handle exception replies. Thus there are two types of reply-handler
operations:

*  Non-exception: Delivers sendc_ operation results.

»  Exception: Delivers exceptions that occur during a sendc_ operation.

Non-Exception Replies
Non-exception reply-handler operations are defined as follows:

For each IDL operation opName, an implied-IDL reply-handler operation
named opName is defined according to the following rules:

» If the operation has a return value, then the first parameter is an in
parameter named ami_return_val which is the return value of the IDL
operation.

-
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* Each inout and out parameter in opName (the IDL operation) becomes
an in parameter in opName (the reply-handler operation).

The in parameters of the IDL operation are ignored in the reply-handler
operation because they are not part of the reply.

For an IDL attribute attrName, the implied-IDL operation get attrName is
defined. It has a single in parameter named ami_return_val of the same type as
the attribute.

For a non-readonly IDL attribute attrName, an additional implied-IDL
operation named set_attrName with no parameters is defined.

There are two cases where the above rules will result in a reply-handler
operation with no parameters:

* An IDL operation that has a return type of void and no inout or out
parameters.

* A non-readonly attribute (the set operation does not return a value).

In these cases, the reply-handler operation simply acknowledges a successful
completion of the IDL operation.

Exception Replies

When an exception occurs during the processing of a sendc_ operation, the
exception is returned to the client ORB in the reply message, just as it is in the
case of a synchronous operation. In the case of the sendc_ operation,
however, the client ORB inserts the exception into an ExceptionHolder
value and then invokes the designated reply-handler operation with this
ExceptionHolder as its parameter.

Reply-handler operations that deliver exceptions have a single in parameter
named excep holder and are defined as follows:

For each IDL operation opName, an implied-IDL reply-handler operation
named opName_excep is defined.

For an IDL attribute attrName, an implied-IDL reply-handler operation
named get_attrName_excep is defined.

For a non-readonly IDL attribute attrName, an additional reply-handler
implied-IDL operation named set_attrName_excep is defined.

Applying the above rules to MyInterface from 6.2.1 yields
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// Reply-handler implied-IDL
interface AMI MyInterfaceHandler {

void opName (in boolean ami_return val,
in long a long,
in float a float);

void opName excep(in Messaging::ExceptionHolder excep holder);

void get attribl(in short ami return val);
void get attribl excep(in Messaging::ExceptionHolder excep holder);

void set attribl();
void set attribl excep(in Messaging::ExceptionHolder excep holder);

void get attrib2(in short ami return val);
void get attrib2 excep(in Messaging::ExceptionHolder excep holder);

r;
The generated C++ reply-handler skeleton class for MyInterface is:

class POA AMI MyInterfaceHandler: public virtual POA Messaging::ReplyHandler
{
public:
// BMI callback exception support and TAO implementation code not shown.
virtual void op(CORBA::Boolean ami return val,
CORBA::Long a long,
CORBA::Float a float) = 0;
virtual void opName excep (Messaging::ExceptionHolder* excep holder) = 0;

virtual void get attribl (CORBA::Short ami_ return val) = 0;
virtual void get attribl excep (Messaging::ExceptionHolder* excep holder)

]
o

virtual void set attribl() = 0;
virtual void set attribl excep (Messaging::ExceptionHolder* excep holder) = 0;

virtual void get attrib2(CORBA::Short ami_ return val) = 0;
virtual void get attrib2 excep (Messaging::ExceptionHolder* excep holder) =

}i

|
o

Creating a Reply-Handler Class

Generate Starter Code

When the options -GC (generate stub code for AMI callback support) and -GI
(see 4.7) are simultaneously passed to the TAO IDL compiler, reply-handler
class starter code is automatically generated for each interface in an IDL file.
The two files generated are suffixed with I.h and I.cpp. For MyInterface,
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the generated files are MyInterfaceI.h and MyInterfacel.cpp. Since
these files also contain servant starter code that is only relevant to the server
side, the reply-handler code should be extracted and placed in separate files.
The following reply-handler code was extracted from MyInterfaceI.cpp
and inserted into the file MyReplyHandler. cpp.

// ACE exception code is not shown
void AMI MyInterfaceHandler i::opName (
CORBA: :Boolean ami_return val,

CORBA: :Long a long,
CORBA: :Float a float)

//Add your implementation here

void AMI MyInterfaceHandler i::opName excep (
Messaging: :ExceptionHolder* excep holder)

{

//Add your implementation here

void AMI MyInterfaceHandler i::get attribl (
CORBA: :Short ami_return val)
{

//Add your implementation here

void AMI MyInterfaceHandler i::get attribl excep (
Messaging::ExceptionHolder* excep holder)

{

//Add your implementation here

void AMI MyInterfaceHandler i::set attribl ()
{

//Add your implementation here

void AMI MyInterfaceHandler i::set attribl excep (
Messaging: :ExceptionHolder* excep holder)

{

//Add your implementation here

vold AMI MyInterfaceHandler i::get attrib2 (
CORBA: :Short ami_ return val)
{

//Add your implementation here
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}

void AMI MyInterfaceHandler i::get attrib2 excep (
Messaging: :ExceptionHolder* excep holder
)
{

//Add your implementation here

}

The AMI MyInterfaceHandler i reply-handler class inherits from the
POA AMI MyInterfaceHandler class shownin 6.2.3. To complete the
reply-handler class, the application developer needs to replace “Add your
implementation here” with the desired functionality in each member
function.

The type of functionality that is added to the starter code depends, first of all,
on where the reply handler is to reside. Remember that the reply handler is not
restricted to residing in the client process from which the sendc_ operation is
invoked. It may reside in any process. The only restrictions are that the client
must be able to obtain an object reference to the reply-handler object (to pass
it in the sendc_ invocation) and the client process from which the operation
was invoked must still be running when the reply is returned. (Remember that
even if the reply handler is not part of the client application, the client ORB
that invoked the request must receive the reply and invoke the reply-handler
operation.)

In 6.2.4.2 and 6.2.4.3, we describe how to add the needed functionality to the
reply-handler starter code.

Non-Exception Reply-Handler Functions

In general, if the reply handler resides within the client that invoked the
sendc_ function, the reply handler copies the return value and other out
parameters into appropriate variables and/or outputs a message. A common
way to store the return values and out parameters is to declare these variables
as private members of the reply-handler class.

First, we show an example using non-AMI invocations. Using the
MyInterface example again, the following client application makes use of
the synchronous form of opName (assume that the IOR of the MyInterface
object is stored inmy interface.ior):

#include "MyInterfaceC.h"

86

> .
. -~
ociweb.com %



6.2 AMI Callback Model

int main(int argc, char* argvl[])
{
try |
CORBA: :Boolean my return_value;
CORBA: :Long my_long;
CORBA: :Float my float;

// Get an object reference to MyInterface object.

CORBA::0RB var orb = CORBA::ORB init(argc, argv);

CORBA: :Object var obj = orb->string to object("file://my interface.ior");
MyInterface var myInterface = MyInterface:: narrow(obj.in());

my_return value = myInterface->opName (10, my long, my float);
// do other stuff...

orb->destroy () ;
}
catch (CORBA::Exceptioné&) {
// Handle CORBA exceptions...

In the above code segment:

* The return value of opName is stored inmy return value.

* opName’s second variable, an inout variable, is stored in my long.
* opName’s third variable, an out variable, is stored inmy float.

To achieve the same result using sendc opName, first add the above three
variables to MyReplyHandler.h as private data members of the

AMI MyInterfaceHandler_iclass and add an accessor method for each.
You may also need to add a mutual exclusion (mutex) lock to ensure thread-
safe access to these private data members.

class AMI MyInterfaceHandler i : public virtual POA AMI MyInterfaceHandler
{
public:
AMI MyInterfaceHandler i (void);
virtual ~AMI MyInterfaceHandler i (void);
virtual void opName (CORBA::Boolean ami return val,
CORBA::Long a_long,
CORBA::Float a float);
virtual void opName excep (Messaging::ExceptionHolder* excep holder);
virtual void get attribl (CORBA::Short ami return val);
virtual void get attribl excep(Messaging::ExceptionHolder* excep holder);
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virtual void set attribl ();

virtual void set attribl excep(Messaging::ExceptionHolder* excep holder);
virtual void get attrib2 (CORBA::Short ami return val);

virtual void get attrib2 excep(Messaging::ExceptionHolder* excep holder);

CORBA: :Boolean get my return value (void);
CORBA: :Long get my long (void);
CORBA: :Float get_my float (void);

private:
CORBA: :Boolean my return value ;
CORBA: :Long my_long ;
CORBA: :Float my float ;

ACE_Thread Mutex lock ;
}i

Now define the reply handler for opName () so that the reply variables are
loaded into these private data members:

ACE_Thread Mutex AMI MyInterfaceHandler i::lock_;

void AMI MyInterfaceHandler i::opName (CORBA::Boolean ami_return val,
CORBA: :Long a_long,
CORBA: :Float a float)

ACE_Guard<ACE_Thread Mutex> guard(lock );
my return value = ami return val;

my long = a long;

my float = a float;

These data members can be accessed within the client application as follows:

#include "MyReplyHandler.h"
#include "MyInterfaceC.h"

// Assume that -1 is not an allowable return value for my long
// Initialize my long to -1 so we can check later to see if it has changed
CORBA::Long AMI MyInterfaceHandler i::my long = -1;

int main (int argc, char* argv[])
{
try |
// Get an object reference to MyInterface object.
CORBA::0RB var orb = CORBA::ORB init (argc, argv);
CORBA: :Object var obj = orb->string to object("file://my interface.ior");
MyInterface var myInterface = MyInterface:: narrow(obj.in());
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CORBA: :Object var obj = orb->resolve initial references ("RootPOA");
PortableServer::POA var poa = PortableServer::POA:: narrow(obj.in());
PortableServer::POAManager var mgr = poa->the POAManager () ;
mgr->activate () ;

// Create a reply-handler servant.
PortableServer::Servant var<AMI MyInterfaceHandler_ i>
replyHandler servant = new AMI MyInterfaceHandler i();
PortableServer::0ObjectId var oid =
poa->activate object (replyHandler servant.in());
CORBA: :0Object var handler obj = poa->id to_reference(oid.in());
AMI MyInterfaceHandler var replyHandler =
AMI MyInterfaceHandler:: narrow(handler obj.in());

// Invoke the operation asynchronously.
myInterface obj->sendc_opName (replyHandler.in(), 10);

// do other stuff...

while (1) {
// Check to see if reply has been returned.
if (orb->work pending()) {
orb->perform work(); // Client ORB will invoke reply handler here
// If the value of my long has been changed, break out of while loop.
if (replyHandler_ servant->get my long() !'= -1) {
break;

}

orb->destroy () ;

}
catch (CORBA::Exceptioné&) {
// Handle CORBA exceptions...

In the above client application, the ORB invokes the reply-handler function
opName () on the client after the orb->perform work () call is made from
the client application. The result of this asynchronous client application differs
from the synchronous one only in that the variables are private members of the
reply-handler class. The variables will receive the same values in both cases.
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Exception Reply-Handler Functions

We handle exceptions by adding try and catch blocks to each reply-handler
exception function. Using MyInterface again in the example below, we add
a try block and two catch blocks to the opName exception reply-handler:

void AMI MyInterfaceHandler i::opName excep (

{

Messaging: :ExceptionHolder* excep holder)

try {
excep holder->raise_exception() ;
}
catch (CORBA::SystemException& e) {
std::cout << "opName System Exception " << e << std::endl;
}
catch (CORBA::UserException& e) {
std::cout << "opName user exception " << e.usr exc << std::endl;

The client ORB calls the opName excep () reply handler when an exception
is thrown during the processing of opName () . This exception is inserted into
the Messaging: :ExceptionHolder object and passed to the

opName excep () reply-handler operation. The only way to gain access to
this exception is to call the Messaging: :ExceptionHolder member
function raise exception (). This function demarshals the exception and
throws it just as synchronous opName () does.

Calling the synchronous opName () from within a try block would have the
same effect, as shown below:

#include "MyInterfaceC.h"
#include <iostream>

int main (int argc, char* argvl[])

{

CORBA: :Boolean return value;
CORBA: :short a_short;
CORBA::long a long;
// Get object reference to MylInterface object.
try {
return_value = myInterface obj->opName (10, a_short, a long);
}
catch (CORBA::SystemException& e) {
std::cout << "opName System Exception exception " << e << std::endl;

catch (CORBA::UserException& e) {
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std::cout << "opName user exception " << e.usr exc << std::endl;

}
// do other stuff

}

In the above code, the same exception is thrown and the same exception
message is printed as in the asynchronous example.

Associating Replies with Requests

Before invoking a sendc_ operation, a client must generate an object
reference for the reply handler. In most cases, this object reference is
generated once, then used repeatedly by the client application. However, there
are situations where a client application needs to associate a unique identifier
with each invocation of a sendc_ operation so that it can distinguish between
these requests at a later time. Also, there may be situations in which the client
side needs to instantiate more than one instance of a reply handler.

Using one reply-handler instance to handle all replies coming from multiple
server objects of the same type is technically correct, but not necessarily
useful, since there is no way to distinguish callbacks resulting from AMI calls
to different server objects. Here are some common strategies for addressing
this problem:

* Servant-per-AMI-call strategy: This strategy involves the instantiation
and activation of a separate reply-handler instance for each AMI call. The
drawback, of course, is that if there are many simultaneous asynchronous
calls, the memory footprint of the client will increase. This strategy is
simpler to implement programmatically than the activation-per-AMI
strategy and results in less data being marshaled/demarshaled and sent
over the wire than the server-differentiated-reply strategy.

* Activation-per-AMI-call strategy: One way to distinguish separate AMI
calls without using a separate reply-handler instance for each invocation is
to explicitly activate the same servant multiple times in the client’s POA.
Using the PortableServer: :IdAssignmentPolicy of MULTIPLE ID
with a non-root POA, you can activate a servant multiple times, each time
with a different user-chosen object id. The reply-handler callback methods
examine this object id to determine which request caused the reply.

Before making AMI calls, the application creates a POA with the
MULTIPLE ID and USER ID policies. For each AMI call, the application
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creates a special object id and maps the object id to the reply-handler
servant using the PortableServer: :activate object with id()
operation. After the client makes the AMI call, the reply arrives at the
reply handler. The reply-handler uses the PortableServer: :Current
interface to obtain the object id and associate the reply with the correct
request. See Advanced CORBA Programming with C++ 11.4.2 and 11.4.3
for more information on the USER_ID and MULTIPLE ID policies and
Advanced CORBA Programming with C++ 11.7.4 for more information
on the PortableServer: :Current.

Although this approach is more complex to implement, it is more scalable
than the Servant-per-AMI-call strategy because it uses a single servant for
all asynchronous calls. However, both strategies require an entry-per-
AMI-call in the client POA’s active object map. One way to reduce this
overhead is to use a Servant Locator that activates the client’s reply
handler on demand, thereby minimizing memory utilization. The
activation-per-AMI-call has the advantage over the Server-differentiated-
reply strategy of reduced marshaling/demarshaling and less data traveling
over the wire.

Server-differentiated-reply strategy: This strategy provides an
alternative for differentiating multiple AMI calls, but requires a small
modification to the IDL interface. An out parameter is added to the
function signature for use by the server side to add information that will
assist the client-side reply handler in distinguishing which reply goes with
which request. Thus, just one servant is needed for distinguishing between
all AMI callbacks, and it only needs to be activated once in the client’s
POA.

However, compared to allocating a different servant for each AMI call,
the use of an out parameter is obtrusive and incurs more network
overhead to pass the added parameter back to the client. The network
overhead can be limited by using the Asynchronous Completion Token
(ACT) pattern of adding a small, fixed-size inout parameter to the
function call. The ACT is first initialized by the client to indicate a
particular AMI call and then passed to the server. The server subsequently
returns the ACT unchanged as a parameter to the reply handler callback.
The reply handler maps the ACT to the associated actions and states
necessary to complete the reply processing. If the size of the ACT is
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smaller than the out parameter described in the earlier part of this
strategy, the network bandwidth consumption is reduced somewhat.

The above strategies are further described, with examples, in
<http://www.cs.wustl.edu/~schmidt/PDF/amil.pdf>.

The Processing of an AMI sendc_ Operation
When an AMI sendc_ operation is invoked, the following sequence of steps
is initiated (See Figure 6-1):
1. The client invokes an AMI sendc_ operation on its server object
reference.
. The object reference passes the request to the client ORB.
3. The client ORB:
- Assigns a unique ID number to the request.

- Creates a mapping between the ID and the reply-handler object
reference.

- Packages the request message and hands it off to the OS.

The client OS sends the request message to the server.
5. The server OS stores the request in the server ORB’s message buffer.
The server ORB:
- Gets the request from the message buffer.

- Unpacks the message.
- Invokes the synchronous operation on the servant.

The servant processes the operation and returns the reply to the ORB.
8. The server ORB packages the reply message and hands it off to the OS.
The server OS sends the reply message to the client.
10. The client OS stores the reply in the client ORB’s message buffer.

Because the sendc  operation is asynchronous, the client is able to
process other tasks while steps 2 through 10 are taking place. At some
point after invoking the sendc_ operation (unless the client is
multithreaded and the ORB is running in its own thread, or the reply
handler is not located in the client application), the client must invoke
either perform work () or run () on the ORB to retrieve the reply. The
following sequence of steps is then initiated:
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11. The client invokes either run () or perform work () on the client ORB.

12. The client

ORB:

- Gets the reply from the message buffer.

- Unpacks the reply message and extracts the ID number.

- Uses the ID number to locate the designated reply-handler object
reference.

- Invokes the appropriate reply-handler operation on the reply-handler
object reference.

13. The client processes the reply-handler operation.

Client Client ORB Client OS
Invoke sendc @ Assign .ID to request.
request opera?ion. 0 Server MaP this ID to the Send request
Pass reply- Prox designated reply- | [Tequest message to |
handler reference Y| handler operation. message the server.
Create request
message and hand it
Do other stuff. off to the OS.
@ Get reply message b|When
Tell ORB to run ~ from message buffer. u reply is
look for reply. or Use request ID received,
Y perform_work to idenctlify the fstore it in
designated reply- @ f |client
Process the @ handler operation. ORB
:)?Z:Irya_tkils;ldler g reply—hapdler_ Invoke this operation ¢ message
’ operation on the client. T | puffer.
Sorvant @ Server ORB Server OS ©)
| | operation Create reply message | Send reply reply
Proc;ss the return and hand it off to OS. | to client. message
synchronous
0>];eration. @ Get request from buffer. @ Store request @
invocation. - operation| | Invoke the synchronous | in server ORB | <———| request
invocation| | operation on the servant.| message buffer. messagd

Figure 6-1 AMI Sequence of Steps
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6.2.6.1

AMI Callback Example

Now that you know how to use a sendc_ operation and write a reply handler,
we show a complete example that uses the AMI callback feature of TAO.

The example shown here is based on the Messenger example, first introduced
in Chapter 3. Full source code for this example is in the TAO source code
distribution in the directory

$TAO ROOT/DevGuideExamples/Messaging/AMIcallback.

IDL Definitions
The IDL file used for the Messenger is shown below:

// Messenger.idl

exception MessengerUnableToSendMessage
{
}i

interface Messenger

{

boolean send message (in string user name,
in string subject,
inout string message,
out long time sent)
raises (MessengerUnableToSendMessage);

}i

In the above code, the string message parameter is an inout parameter since
only part of the message may get displayed (on a pager, for example). The
returned value in this case is the partial message sent to the user.

The implied-IDL for the reply handler for the Messenger interface is:

interface AMI MessengerHandler
{
void send message (in boolean ami_ return val,
in string message,
in long time sent);

void send message excep(in Messaging::ExceptionHolder excep holder);

b
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6.2.6.2

The Messenger interface with the implied-IDL sendc_ operations included is
as follows:

interface Messenger

{

boolean send message(in string user name,
in string subject,
inout string message,
out long time sent)
raises (MessengerUnableToSendMessage);

void sendc send message (in AMI MessengerHandler ami_ handler,
in string user name,
in string subject,
in string message);

Generating Starter Implementation Code

To minimize the code generated by the IDL compiler, AMI callback stub code
is not generated by default. Therefore, we need to inform the IDL compiler to
generate this code by passing the -GC option. To minimize the amount of code
we need to write, we tell the compiler to generate starter implementation code
by using the -GIh and -GIs options. The resulting command line appears as
follows:

tao_idl -GC -GIh _i.h -GIs _i.cpp Messenger.idl

After this command is run, the starter code for the Messenger servant and
AMI reply-handler implementations can be found in the files

Messenger i.handMessenger i.cpp.Invoke the IDL compiler
manually (instead of through a Makefile) to avoid overwriting implementation
code that you have added to the generated starter code.

Since the AMI reply-handler code is for the client side only, we remove the
reply-handler starter code from Messenger i.h and Messenger 1i.cpp,
then place it into files named MessengerHandler.h and
MessengerHandler.cpp, respectively.
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6.2.6.3 The Messenger Servant Code

To help illustrate the usage of AMI, we add a private data member called
seconds_to wait totheMessenger i classdefinedinMessenger i.h.
By having the server artificially wait seconds _to wait seconds before it
sends the reply, we can mimic the effects of an actual server that may take a
while to send a reply.

In addition, Messenger i has a CORBA: :Boolean data member called
throw exception_thatthe send message () implementation uses to
force an exception to be thrown, thus allowing the client-side exception
handling code to be exercised.

The constructor for Messenger i accepts arguments to initialize
seconds_to wait and throw exception . These arguments are set
based on command-line arguments passed to the server executable (see
STAO ROOT/DevGuideExamples/Messaging/AMIcallback/Messenge
rServer.cpp in the TAO source code distribution to see how this is done).

The send_message () member function is shown below (the code in bold has
been added to the IDL-compiler-generated starter code):

CORBA::Boolean Messenger i::send message (
const char * user name,
const char * subject,
char *& message,
CORBA::Long_out time sent
)

if (throw_exception )

{
std: :cout << "Throwing MessengerUnableToSendMessage exception." << std::endl;
throw MessengerUnableToSendMessage () ;

}

std::cout << "Write a letter to " << user_name << " as follows:" << std::endl;
std::cout << "Subject: " << subject << std::endl;

std::cout << "Dear " << user_name << ',’ << std::endl;

std::cout << message << std::endl;

if (seconds_to_wait_ > 0)

{
std::cout << "Waiting for " << seconds_to_wait_ << " seconds..." << std::flush;
ACE_OS: :sleep(seconds_to_wait );
std::cout << " Done waiting" << std::endl;

}
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// Record the time the message was sent
time_sent = ACE_OS::gettimeofday () .sec();

// We will assume the message has been sent, so return true
return true;

6.2.6.4 The Reply-Handler Class Definition

For this example, the MessengerHandler reply-handler echoes the server’s
response to standard output, including the time the message was sent. It shuts
down the ORB after one message.

The reply-handler functions related to the send message () operation are
shown below:

void MessengerHandler::send message (
CORBA::Boolean ami_return val,
const char * message,
CORBA::Long time
)

if (ami_return_val)
{
time = time;
time t t = time_;
const char * time str = ACE_OS::ctime(&t);
if (time_str != 0) {
std::cout << std::endl << "Message sent at " << time str << std::endl;
}
std::cout << "Content of message: " << message << std::endl;
}
else
{
std::cerr << "Error: Message was not sent." << std::endl;
}
// Our simple test just shuts down after sending one message.
orb_->shutdown (0) ;

void MessengerHandler::send message excep (
Messaging::ExceptionHolder* excep holder
)
{
// We'll print an error message and shut down the orb
try
{
excep_holder->raise exception();

}
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catch (CORBA::Exceptioné& ex)

{
std::cerr << "A CORBA Exception was thrown: " << ex << std::endl;

}
orb_->shutdown (0) ;

}

The Client Code

Since the reply handler will be called back by the ORB when the reply arrives
from the server, it needs to be registered with the POA as a servant just like
servants are registered in server code. The client code is:

#include "MessengerC.h"
#include "MessengerHandler.h"

int
main(int argc, char * argvl[])
{

try {

// assume any command line parameter means we want an automated test.
bool automated = argc > 1;

// Initialize orb
CORBA::0RB var orb = CORBA::ORB_init(argc, argv);

CORBA: :Object var obj = orb->string to object("file://MessengerServer.ior");

if (CORBA::is nil(obj.in())) {
std::cerr << "Nil Messenger reference" << std::endl;
return 1;
}
// Narrow
Messenger var messenger = Messenger:: narrow(obj.in());
if (CORBA::is nil(messenger.in())) {

std::cerr << "Argument is not a Messenger reference" << std::endl;
return 1;

// Get reference to Root POA.
obj = orb->resolve initial references ("RootPOA");
PortableServer::POA var poa = PortableServer::POA:: narrow(obj.in());

// Activate POA manager
PortableServer::POAManager var mgr = poa->the POAManager () ;

mgr->activate();

// Register an AMI handler for the Messenger interface
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Note

PortableServer::Servant var<MessengerHandler> servant =
new MessengerHandler (orb.in());
PortableServer::0ObjectId var oid = poa->activate object (servant.in());
obj = poa->id to reference(oid.in());
AMI MessengerHandler var handler = AMI MessengerHandler:: narrow(obj.in());

For our example, we will get the necessary information needed to send a
message to a particular user from standard input.

CORBA::String var user = CORBA::string alloc(81);
CORBA::String var subject = CORBA::string alloc(81);
CORBA::String var message = CORBA::string alloc(81);

if (! automated) {
std::cout << "Enter user name -->";
std::cin.getline (user, 81);

std::cout << "Enter subject -->";
std::cin.getline (subject, 81);

std::cout << "Enter message -->";
std::cin.getline (message, 81);

} else {
user = CORBA::string dup ("TestUser");
subject = CORBA::string dup ("TestSubject");
message = CORBA::string dup("Have a nice day.");

// Record the time the request was made.
ACE Time Value time sent = ACE_0S::gettimeofday();

messenger->sendc_send message (handler.in(),
user.in(),
subject.in(),
message.in());

Now we will run an event loop that runs the ORB in a non-blocking fashion.
Doing so allows us to provide feedback to the user when control is handed
back to the main thread.

See Advanced CORBA Programming with C++, 11.11.2, for details on
performing non-blocking event handling with CORBA.

// Do some work to prove that we can send the message asynchronously, then come
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for (int i = 0; i < 10; ++i) |
ACE_OS::printf(".");
ACE 0S::sleep(ACE Time Value (0, 10 * 1000));
}

// Our simple servant will exit as soon as it receives the results.
orb->run{() ;

if (servant->message was_sent())

{

// Note : We cannot use the time sent by the server to compare with
// the time value here in the client because the server machine's
// clock may not be synchronized with the client's clock.

ACE Time Value delay = ACE 0S::gettimeofday() - time sent;
std::cout << std::endl << "Reply Delay ="
<< delay.msec() << "ms" << std::endl;

orb->destroy () ;

}
catch (CORBA::Exception& ex) {
std::cerr << "Caught a CORBA::Exception: " << ex << std::endl;

return 1;

return 0;

6.2.6.6 Building Applications that use AMI
TAO’s support of AMI is implemented in the TAO Messaging library. Thus,
applications that use AMI must link with this library. MPC projects for
applications that use AMI can simply inherit from the messaging and ami
base projects. For example, below is the MPC file for the AMI callback
example in $TAO_ROOT/DevGuideExamples/Messaging/AMIcallback:

project (*Server): messaging, taoexe, portableserver, ami {
Source Files {
Messenger 1i.cpp
MessengerServer.cpp

}

project (*Client): messaging, taoexe, portableserver, ami {
Source Files {
MessengerHandler.cpp
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MessengerClient.cpp
}
}

For more information on MPC, see
<http://www.ociweb.com/products/MPC>.

Controlling the Delivery of AMI-based Requests
TAO’s implementation of AMI permits the Messaging SyncScope policy to
be applied to the delivery of requests that use AMI. This feature allows fine-
grained control over the ORB’s return of control back to the client application
code. See 6.3.4 for more information on the Messaging SyncScope policy. In
addition, the TAO-specific buffering constraint policy can be applied to
specify the conditions under which a queue of requests should be buffered and
transmitted. See 6.3.5 for more information on TAO’s buffering constraint
policy.

Quality of Service Policies

Quality of Service (QoS) is a general concept that is used to specify the
behavior of a service. Programming service behavior by means of QoS
settings offers the advantage that application developers only need to specify
what they want rather than Aow it should be achieved.

Generally speaking, quality of service comprises several QoS policies. Each
policy is an independent description that associates a name with a value.
Describing QoS by means of a list of independent QoS policies gives rise to
greater flexibility in application design.

The CORBA Messaging specification defines mechanisms by which clients
and servers can set required and supported qualities of service with respect to
requests. It describes a standard QoS framework within which CORBA
services can define their service-specific qualities. In this framework, all QoS
settings are local interfaces derived from CORBA: : Policy. Many of these
QoS policies are defined in the Messaging module in IDL. TAO defines
some additional QoS policies, also derived from CORBA: : Policy, that fit
within the CORBA Messaging QoS framework.

The following sections describe the messaging QoS policies supported by
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Policy Management

Creating Policies

As stated above, all CORBA Messaging QoS policies inherit from

CORBA: : Policy (the same base interface used to specify POA policies).
CORBA: : ORB has a generic factory operation, create policy (), that canbe
used to create new policy objects. This operation is defined in the following
IDL:

module CORBA {
typedef unsigned long PolicyType;
interface Policy {};

typedef short PolicyErrorCode;

const PolicyErrorCode BAD POLICY = 0;

const PolicyErrorCode UNSUPPORTED POLICY = 1;

const PolicyErrorCode BAD POLICY TYPE = 2;

const PolicyErrorCode BAD POLICY VALUE = 3;

const PolicyErrorCode UNSUPPORTED POLICY VALUE = 4;
exception PolicyError {PolicyErrorCode reason;};

interface ORB {
Policy create policy(in PolicyType type, in any val) raises(PolicyError);
i
}i

Each messaging QoS policy is assigned a unique PolicyType. For example,
the policy type for the relative round-trip timeout policy, described in 6.3.2, is
defined as:

module Messaging {
const CORBA::PolicyType RELATIVE RT TIMEOUT POLICY TYPE =32;

i

The val parameter passed to create policy() isa CORBA: :Any that
contains the desired value for the policy. If the CORBA: : Any does not contain
an acceptable value or if the CORBA: : PolicyType is not supported by the
ORB, a CORBA: : PolicyError exception is raised.

Before policies can be applied, they must be added to a
CORBA: :PolicyList. For example:

// Create a policy and add it to a CORBA::PolicyList.
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CORBA: :Any policy value as any;
// initialize "policy value_as_any" with a value
CORBA::PolicyList policy list;
policy list.length(l);
policy list[0] =
orb->create policy (SOME_POLICY TYPE, policy value as_any);

On the client side, policies are applied to various objects, such as the ORB, the
current thread of execution, or a specific object reference. On the server side,
policies are applied to the POA.

6.3.1.2 Client Side Policy Management
Messaging QoS policies can be applied on the client side at three different
scoping levels. This permits you to work with a level of granularity that is
appropriate for your application. These levels are as follows:

1. The ORB level. Policies applied at the ORB level will apply to all
requests delivered by the specified ORB. The CORBA: : PolicyManager
is used to set policies at this level. For example:

CORBA: :Object var obj = orb->resolve initial references ("ORBPolicyManager");
CORBA::PolicyManager var policy manager =

CORBA::PolicyManager:: narrow(obj.in());
policy manager->set policy overrides (policy list, CORBA::ADD OVERRIDE) ;

2. The thread level. Using thread-level policies allows quality-of-service
values to be applied to operations invoked from a certain thread. The
CORBA: :PolicyCurrent object is used to set policies at this level. For
example:

CORBA::Object var obj = orb->resolve initial references("PolicyCurrent");
CORBA::PolicyCurrent var policy current =

CORBA::PolicyCurrent:: narrow (obj.in());
policy current->set policy overrides (policy list, CORBA::ADD OVERRIDE) ;

3. The object reference level. For the most fine-grained level of control,
quality-of-service policies can be set on a per-object-reference basis.
Assuming we have some object reference obj, we can apply policies to
the object reference as follows:

CORBA: :Object var new obj =
obj-> set policy overrides (policy list, CORBA::SET OVERRIDE);
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Note that CORBA: :Object:: set policy overrides () returns an
object reference that you must narrow to a specific interface type before
invoking operations on it. It does not modify the object reference upon
which it is called. In the above example, the new obj object reference
contains the new policy list policies.

Policy overrides applied at the object-reference level take precedence over
those applied at the thread or ORB level. Likewise, policy overrides applied at
the thread level take precedence over those applied at the ORB level.

Whether new policy settings are added to or replace existing policy settings is
controlled by the second parameter in set policy overrides (). Ifthe
second parameter is CORBA: : SET OVERRIDE, the policies in the policy list
completely replace the existing policies set at the relevant level of granularity.
If the second parameter is CORBA: :ADD OVERRIDE, the new policies are
added to the existing policies, unless a given policy in effect has the same
PolicyType as one of the policies in the list, in which case the new policy
replaces the existing policy.

Server Side Policy Management

On the server side, messaging policies are associated with a POA. Policies that
are applicable to server-side behavior can be passed via a
CORBA::PolicyList to the POA: :create POA () operation. Request
processing through a POA is subject to the policies applied to that POA at its
creation. Some policies applied to a POA are exported to clients via object
references created through that POA.

For more information on POA creation and POA policies, see Advanced
CORBA Programming with C++, Chapter 11.

Destroying Policies

Once the policies have been applied at either the client side or the server side,
the policy objects themselves should be destroyed using the

CORBA: :Policy: :destroy () operation. For example:

// Destroy the Policy objects.

for (CORBA::ULong i = 0; i < policy list.length(); ++i) {
policy list[i]->destroy ();

}

policy list.length(0);
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Alternately, you can also use the TAO: :Utils::PolicyList Destroyer.
This TAO-specific class is used in place of CORBA: : PolicyList to hold
your policies. Upon destruction, it automatically calls destroy () on each
policy in it. To use it, include tao/Utils/PolicyList Destroyer.hin
the files where you are using policies, change your policy list types, and
inherit your MPC projects from the utils base project.

Request and Reply Timeouts

The CORBA Messaging specification defines a relative round-trip timeout
policy. Relative round-trip timeouts are used to limit the total amount of time
spent completing the following steps:

1. The client attempts to make a connection with a server.
2. The client passes a request to the server.
3. The client waits for a reply from the server.

At each step, the time spent since the start of the request is checked against a
user-specified timeout value. If the time exceeds this timeout value a

CORBA: : TIMEOUT exception is raised. Specifying a relative round-trip
timeout value is useful in real-time and fault-tolerant systems, since the client
can take appropriate action if the server becomes unresponsive or cannot
complete a request within a specified time interval.

Only clients are impacted by the use of the relative round-trip timeout policy;
no timing requirements are passed to the server. If a CORBA: : TIMEOUT
exception is raised and a server reply arrives sometime afterward, the reply is
simply ignored.

The PolicyType for the relative round-trip timeout policy is

Messaging: :RELATIVE RT TIMEOUT POLICY TYPE. Its value is a
CORBA: :Any containing a TimeBase: : TimeT as defined in the CORBA
Time Service specification. The timeout value is a 64-bit value interpreted as
hundreds of nanoseconds. If either the CORBA: : Any reference does not
contain a TimeBase: : TimeT or the CORBA: : PolicyType is not supported,
then a CORBA: : PolicyError exception is raised.

The following code shows how to create a relative round-trip timeout policy
with a timeout value of one millisecond, and apply it at the ORB level. A
complete example showing how to use this policy is included in the TAO
source code distribution in the directory
$TAO_ROOT/DevGuideExamples/Messaging/RelativeRoundtripTimeout.
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// Initialize the ORB.
CORBA::ORB var orb = CORBA::ORB init(argc, argv);

// Set the policy value to 1 millisecond (10 * 1000 msec/usec).
TimeBase::TimeT relative rt timeout = 10000; // 1 millisecond
CORBA::Any relative rt timeout as any;
relative rt timeout as any <<= relative rt timeout;

// Create the policy and add it to a CORBA::PolicyList.
CORBA::PolicyList policy list;
policy list.length(1);
policy list[0] =
orb->create policy (Messaging::RELATIVE RT TIMEOUT POLICY TYPE,
relative rt timeout as_any);

// Rpply the policy at the ORB level.
CORBA::Object var obj = orb->resolve initial references ("ORBPolicyManager");
CORBA::PolicyManager var policy manager =
CORBA: :PolicyManager:: narrow(obj.in());
policy manager->set policy overrides (policy list, CORBA::ADD OVERRIDE);

// Destroy the Policy objects.

for (CORBA::ULong i = 0; i < policy list.length(); ++i) {
policy list[i]->destroy ();

}

policy list.length(0);

A client that invokes a request on a server while a relative timeout policy is in
effect may receive an exception of type CORBA: : TIMEOUT. This exception is
generated by the underlying invocation implementation upon expiration of the
specified time limit. Prior to the exception being thrown, the request is
cancelled if a response has not yet been received from the server.

In addition to relative round-trip timeouts, five additional timeout policies are
defined in the CORBA Messaging specification. These additional timeout
policies apply to request start time, request end time, reply start time, reply
end time, and relative request delivery time. None of these is available in
TAO 1.6a. However, TAO 1.6a does provide a TAO-specific connection
timeout policy, described in 6.3.3.

Connection Timeouts
In addition to the relative round-trip timeout policy described in 6.3.2, TAO
provides a policy to control connection timeouts. The connection timeout
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policy is used to limit the total amount of time a client spends establishing a
connection with a server. If the connection time exceeds the value specified in
the policy, a CORBA: : TIMEOUT exception is raised. Specifying a connection
timeout value is useful in real-time and fault-tolerant systems, since the client
can take appropriate action if the server becomes unresponsive or if a network
interruption occurs.

The TAO connection-timeout-policy local interface is defined in
STAO ROOT/tao/Messaging/TAO Ext.pidl as follows:

#pragma prefix "tao"

module TAO

{
const CORBA::PolicyType CONNECTION TIMEOUT POLICY TYPE = 0x54410008;

local interface ConnectionTimeoutPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT relative expiry;
i
i

The following example shows how to set the ConnectionTimeoutPolicy
to 200 milliseconds on an object reference. The example uses the CORBA
Messaging validate connection () operation to explicitly open the
connection and verify that the connection can be made within the specified
timeout.

try {

// Initialize the ORB.
CORBA::0RB var orb = CORBA::ORB init(argc, argv);

// Set the policy value (1.0e-3 * 1.0e7 is 1 millisecond).
TimeBase::TimeT connection timeout = 1.0e-3 * 1.0e7 * 200;
CORBA: :Any connection timeout as any;

connection timeout as_any <<= connection timeout;

// Create the policy and add it to a CORBA::PolicyList.
CORBA::PolicyList policy list;
policy list.length(l);
policy list[0] =
orb—>create_policy (TAO: : CONNECTION_TIMEOUT POLICY TYPE,
connection timeout as_any);

// Obtain an object reference.
CORBA: :Object var obj = orb->string to object("file://MessengerServer.ior");
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// Rpply the policy to the object reference; returns a new object reference.
CORBA::Object var new obj =
obj-> set policy overrides (policy list, CORBA::ADD OVERRIDE);

// Destroy the Policy objects.

for (CORBA::ULong i = 0; i < policy list.length(); ++i) {
policy list[i]->destroy ();

}

policy list.length(0);

// Explicitly bind a connection to the server (may timeout).
CORBA::PolicyList var inconsistent policies;
CORBA::Boolean status =

new_obj-> validate connection (inconsistent policies.out());

// _narrow() and use the new obj object reference as usual...

}
catch (CORBA::TIMEOUT&) {
// The connection attempt timed out.
}
catch (CORBA::Exceptioné&) {
// Some other CORBA exception was raised.

}

You can see another example of using the connection timeout policy in
$TAO ROOT/tests/Connection Timeout. See the READVME file in that
directory for more information.

The connection timeout policy is specific to TAO. It is not part of the CORBA
Messaging specification.

Reliable Oneway calls using the SyncScope Policy
The CORBA Messaging specification defines a policy called SyncScope.
This policy permits clients to specify at what stage during a oneway message
invocation control is returned back to the client application code. The
specification defines four possible values that can be used for the SyncScope
policy.

*+  SYNC_NONE Using this policy value causes the client ORB to return
control to the client application before the request is passed to the
transport protocol. For this case the client is guaranteed not to block

ociweb.com 109



CORBA Messaging

during a request invocation. This policy value provides the lowest
guarantee of delivery.

*  SYNC_WITH_TRANSPORT Setting the SyncScope policy to this
value causes control to return to the client application code after the
transport has accepted the request. Use of this policy value does not
guarantee that the request has been delivered to the server. For example, if
IIOP is being used, then limited TCP buffer space may cause unbounded
delays in transmission. SYNC WITH TRANSPORT is the default
SyncScope policy value in TAO.

*  SYNC_WITH_SERVER When the SyncScope policy is set to this
value, the server sends its reply before invoking the target servant. This
setting is useful if the reliability of the network is of concern and the time
spent executing the servant code dominates the time involved in waiting
for a reply. The stage at which the server sends back an acknowledgement
is right after the use of any servant manager, but before the target servant
is invoked.

*  SYNC_WITH_TARGET This policy value has the same effect as
turning a oneway call into a synchronous call by removing the oneway
qualifier in the operation signature. Control is returned to a client
application only after the reply has been received from the target servant.
Use this policy value if you need complete confidence that a reply has
been received from the server and only if it is appropriate for the client
application to block while the target servant is preparing a reply.

In addition, TAO defines a TAO-specific value for this policy:

* SYNC _DELAYED BUFFERING This policy value is a variant of
SYNC_NONE. See 6.3.5, for discussion of the BufferingConstraint
policy and its interaction with this value.

Both the SYNC_NONE and SYNC_WITH_TRANSPORT policy values
are valid interpretations of the original oneway semantics defined by the
CORBA specification.

The following example shows how to set the SyncScope policy such that
oneway invocations do not return control to the client until the client has
received an acknowledgement from the server that the message has been
delivered to the servant. In this example, we apply the policy at the ORB level:

// Initialize the ORB.
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CORBA::0RB var orb = CORBA::ORB init(argc, argv);

// Set the policy value.

Messaging::SyncScope sync with target = Messaging::SYNC WITH TARGET;
CORBA: :Any sync_with target any;

sync_with target any <<= sync_with target;

// Create the policy and add it to a CORBA::PolicyList.
CORBA::PolicyList policy list;

policy list.length(1l);

policy 1list[0] =

orb->create policy (Messaging::SYNC SCOPE POLICY TYPE, sync_with target any);

// Rpply the policy at the ORB level.

CORBA: :0Object var obj = orb->resolve initial references ("ORBPolicyManager");

CORBA: :PolicyManager var policy manager =
CORBA: :PolicyManager:: narrow(obj.in());
policy manager->set policy overrides (policy list, CORBA::ADD OVERRIDE);

// Destroy the Policy objects.

for (CORBA::ULong i = 0; i < policy list.length(); ++i) {
policy list[i]->destroy ();

}

policy list.length(0);

// ... rest of application
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Figure 6-2 shows the effects of the various settings of the SyncScope policy

on oneway invocations.
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Figure 6-2 Effect of SyncScope Policy on Oneway Invocations

Buffered Oneway and Asynchronous Requests

TAO provides a Buf feringConstraint policy to control the dispatching of
oneway and asynchronous requests from a client. This policy is not part of the
CORBA Messaging specification, but uses the same QoS policy framework as
the other policies described in this chapter. Using the

BufferingConstraint policy, it is possible to specify that oneway and

asynchronous requests should be buffered in the client’s ORB and dispatched
only when one or more of the following conditions, controllable via the policy

value, has been met:

* A specified timeout value has expired.

* A specified maximum message byte count has been reached.

* A specified maximum message count has been reached.

*  An explicit buffer flush has been issued.
e The ORB has been shut down.
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By default, oneway and asynchronous requests are not buffered. To set the
BufferingConstraint policy, you create and initialize a structure of type
TAO: :BufferingConstraint to describe how request buffering is to be
performed. When specifying this policy, applications are also required to set
the SyncScope policy, described in 6.3.4, to either

Messaging::SYNC NONE or TAO: :SYNC DELAYED BUFFERING. The only
difference between these two values is that when the buffer is empty, the
SYNC_DELAYED BUFFERING value will attempt a send before queueing. The
SYNC_NONE value will always queue the message in the buffer.

The BufferingConstraintPolicy interface, BufferingConstraint
structure, and related constants are defined in STAO_ROOT/tao/TAO.pidl as
follows:

#pragma prefix "tao"
module TAO {

typedef unsigned short BufferingConstraintMode;
const BufferingConstraintMode BUFFER FLUSH = 0x00;

// Note that timeout, message count, and message bytes can be or’d.
const BufferingConstraintMode BUFFER TIMEOUT = 0x01;
const BufferingConstraintMode BUFFER MESSAGE COUNT = 0x02;
const BufferingConstraintMode BUFFER MESSAGE BYTES = 0x04;

struct BufferingConstraint

{
BufferingConstraintMode mode;
TimeBase::TimeT timeout;
unsigned long message count;
unsigned long message bytes;

}i

const CORBA::PolicyType BUFFERING_CONSTRAINT POLICY TYPE = 0x54410001;
local interface BufferingConstraintPolicy : CORBA::Policy
{
readonly attribute BufferingConstraint buffering constraint;
}i
bi

To initialize the mode data member of the BufferingConstraint structure,

compute the bitwise OR of one or more TAO: :BufferingConstraintMode
constants (e.g., TAO: : BUFFER TIMEOUT|TAO: :BUFFER MESSAGE COUNT).
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Depending upon the value of mode, one or more of the t imeout,
message count, or message bytes data members should also be set.

The following example shows how to set the BufferingConstraint policy
such that oneway and asynchronous invocations are buffered in the client
ORB until a particular message count or total buffer size has been reached. In
this example, we apply the policy at the ORB level:

// Initialize the ORB.
CORBA::0RB _var orb = CORBA::ORB_init(argc, argv);

// Set the SyncScope policy for oneways to SYNC NONE.
Messaging::SyncScope sync none = Messaging::SYNC NONE;
CORBA::Any sync none any;

sync_none_any <<= sync_none;

// Set the BufferingConstraint policy to buffer up to 5 requests
// or until a total of 4K bytes have been buffered.
TAO::BufferingConstraint buffering constraint;
buffering constraint.mode =

TAO: :BUFFER MESSAGE COUNT | TAO::BUFFER MESSAGE BYTES;
buffering constraint.message count = 5;
buffering constraint.message bytes = 4096;
buffering constraint.timeout = 0;
CORBA: :Any buffering constraint any;
buffering constraint any <<= buffering constraint;

// Create the policies and add them to a CORBA::PolicyList.
CORBA::PolicyList policy list;
policy list.length(2);
policy list[0] =
orb->create policy (Messaging::SYNC_SCOPE_POLICY TYPE, sync none_any);
policy list[1l] = orb->create policy (TAO::BUFFERING CONSTRAINT POLICY TYPE,
buffering constraint any);

// Bpply the policies at the ORB level.
CORBA::Object var obj = orb->resolve initial references ("ORBPolicyManager");
CORBA::PolicyManager var policy manager =
CORBA::PolicyManager:: narrow(obj.in());
policy manager->set policy overrides (policy list, CORBA::ADD OVERRIDE);

You can see another example using the BufferingConstraint policy with
oneway requests in STAO ROOT/tests/Oneway Buffering. You can see

an example of using the BufferingConstraint policy with asynchronous

(AMI) requests in STAO ROOT/tests/AMI Buffering. See the README
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The buffering constraint policy is specific to TAO. It is not part of the CORBA
Messaging specification.

Building Applications that use Messaging QoS

TAOQO’s support of Messaging QoS is implemented in the TAO Messaging
library. Thus, applications that use these features must link with this library.
MPC projects for applications that use Messaging QoS can simply inherit
from the messaging base project. For example, below is the MPC file for the
Timeout test in STAO_ROOT/tests/Timeout that uses the relative round-trip
timeout policy:

project (*Server): taoexe, portableserver ({
Source Files {
test i.cpp
server.cpp
}
}

project (*Client): messaging, taoexe, portableserver ({
requires += corba messaging

Source Files {
testC.cpp
client.cpp

}

}

For more information on MPC, see Chapter 4.

Bi-Directional GIOP

Bi-directional GIOP provides a solution to the problem of invoking callback
operations on clients behind a firewall. Imagine you have a client application
that resides on hosts that are inside firewalls. That client contacts a server
outside of the firewall and provides a callback object for the server. When the
server invokes upon the client callback object, the server attempts to open a
new connection back to the client application. Unless the firewall at every
installation of the client is configured to allow access by the server, the
callback invocation fails. Configuring the firewall to allow the server to open
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a callback connection may impose a significant installation cost and/or violate
site security policies.

Bi-directional GIOP solves this problem by allowing the callback invocation
to use the connection that already exists between the client and the server,
which is the connection that was used to transmit the client’s initial request to
the server. The server’s callback invocation doesn’t need to open a new
connection to the client; thus, a firewall does not block the callback.

Connection management restrictions imposed in GIOP versions 1.0 and 1.1
state that only clients can send requests, and only servers can respond to
requests. (By definition, an application or process that initiates a connection is
a client, and an application or process that accepts connections is a server.
Connection management, however, is orthogonal to the sending of requests
and replies.) This restriction can be overcome in GIOP v1.2 by specifying a
bi-directional policy of BOTH. This policy allows the server to invoke the
client’s callback operations, and the client to respond to these invocations, on
the same connection that the client established initially. The client and server
use only one connection instead of two.

The code in $TAO ROOT/DevGuideExamples/BiDirectionalGIOP
provides an example of a bi-directional connection between a client and
server. The client creates a callback object and passes its object reference to
the server so that the server may invoke an operation on the callback object.
Bi-directional GIOP allows the server to invoke a callback operation on the
client without creating another connection to the client. There is also a test
case in $STAO ROOT/tests/BiDirectional that behaves in a similar
fashion.

To create a bi-directional connection, both the client and server must specify a
BidirectionalPolicyValue of BOTH when creating their POAs. The default
policy is NORMAL.

Bi-Directional GIOP Example
The following example shows how to set the bi-directional GIOP policy on a
new POA:

// Initialize the ORB.
CORBA::0RB var orb = CORBA::ORB_init (argc, argv);

// Get the RootPOA and its POAManager.
CORBA: :Object var poa obj = orb->resolve initial references ("RootPOA");
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PortableServer::POA var root poa = PortableServer::POA:: narrow (poa obj.in());
PortableServer::POAManager var poa manager = root poa->the POAManager ();

// Create policies for the child POA to be created.
CORBA::PolicyList policy list;
policy list.length(1);

CORBA::Any bi dir policy as_any;

bi dir policy as_any <<= BiDirPolicy::BOTH;

policy list[0] =
orb->create policy (BiDirPolicy::BIDIRECTIONAL POLICY TYPE,
bi dir policy as_any);

// Create a POA as a child of RootPOA with the above policies. This POA
// will receive requests on the same connection on which it sent the request.
PortableServer::POA var child poa =

root poa->create POA ("biDirPOA", poa manager.in(), policy list);

// Destroy the Policy objects.

for (CORBA::ULong i = 0; i < policy list.length(); ++i) {
policy list[i]->destroy ();

}

policy list.length(0);

// Activate both POAs.
poa manager->activate ();

// ... rest of application ...

Building Applications that use Bi-Directional GIOP
TAO’s support of bi-directional GIOP is implemented in the TAO_ BiDirGIOP
library. Thus, applications that use bi-directional GIOP features must link with
this library. MPC projects for applications that use bi-directional GIOP can
simply inherit from the bidir giop base project. For example, below is the
MPC file for the bi-directional GIOP test in

$TAO ROOT/tests/BiDirectional:

project (*idl): taoidldefaults {
IDL Files {
test.idl
}
custom only = 1;

}

project (*Server) : taoserver, anytypecode, avoids minimum corba, bidir giop,
avoids_corba e micro {
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Note

Note

after += *idl

Source Files {
testC.cpp
testS.cpp
test _i.cpp
server.cpp

}

IDL Files {

}

}

project (*Client): taoserver, anytypecode, avoids minimum corba, bidir giop,
avoids_corba_ e micro {
exename = client
after += *idl
Source Files {
testC.cpp
testS.cpp
test i.cpp
client.cpp
}
IDL Files {
}
}

The avoids minimum corba base project, from which the above projects
inherit, indicates that these projects will not build if minimum_corba=1.

For more information on MPC, see
<http://www.ociweb.com/products/MPC>.

The current implementation of TAO sets the BiDirPolicy at the ORB level
rather than in each POA. Thus, every connection in that ORB will have the
BiDirPolicy: :BOTH value.

Warning: There are security issues involved in using Bi-Directional GIOP.
See the last paragraph of section 9.8, “Bi-Directional GIOP”, in Part 2 of the
CORBA specification (OMG Document formal/08-01-06) for a complete
description. See section 15.8.1.1, “IIOP/SSL Considerations,” for issues
related to using Bi-Directional GIOP over [IOP/SSL.
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6.5 Endpoint Policy

Endpoint Policy

6.5.1

&

The Endpoint Policy is a TAO-specific policy that enables applications
running on multi-homed hosts to limit the endpoints specified for some
objects. This allows an ORB to listen to both public and private interfaces, and
then publish object references that are only public or private. For instance, a
process may provide public access to some business logic object, but private
access, perhaps only on localhost, to an administrative object.

The Endpoint policy makes use of a new policy scope, being applied to a
POA Manager rather than to an Object, POA, or ORB. The policy will affect
all POAs associated with the constrained POA Manager.

The Endpoint Policy is located in the TAO_EndpointPolicy library. The
source code is located in $TAO ROOT/tao/EndpointPolicy. MPC-based
applications that use this policy should derive their server projects from the
endpointpolicy base project.

Using the Endpoint Policy

The Endpoint Policy object is constructed with a sequence of endpoint objects
that identify the different endpoints that should be used. The policy is used to
create a POA Manager via the POA Manager Factory. When POAs are
created with that POA manager, any objects activated within those POAs
restrict their object references to the endpoints that match those found in the
corresponding Endpoint Policy object.

The following server example code is adapted from the TAO test in
$TAO ROOT/tests/POA/EndpointPolicy. First, we need to include the
header files for the Endpoint Policy and the IIOP Endpoint Value:

#include "tao/EndpointPolicy/EndpointPolicy.h"
#include "tao/EndpointPolicy/IIOPEndpointValue i.h"

After initializing the ORB, we’ll initialize an Endpoint List with an I[IOP
endpoint value containing a host name of “localhost” and a port of 1234:

EndpointPolicy: :EndpointList list;
list.length (1);
1ist[0] = new IIOPEndpointValue i (“localhost”, 1234);
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Once we have finished populating the Endpoint List, we can use it to create a
an Endpoint Policy:

CORBA::PolicyList policies;
policies.length (1);

CORBA: :Any policy value;

policy value <<= list;

policies[0] = orb->create policy (EndpointPolicy::ENDPOINT POLICY TYPE,
policy value);

Now we are ready to create a new POA Manager. In order to create a POA
Manager with new policies, we’ll need to get the POA Manager Factory from
an existing POA (such as the Root POA).

PortableServer::POAManagerFactory var poa manager factory;
poa_manager_ factory = root poa->the POAManagerFactory ();

local pm = poa manager factory->create POAManager ("localPOAManager",
policies);

When creating new POAs that we want to apply this policy to, we need to pass
out POA Manager to the create POA () operation.

PortableServer::POA var local poa = root_poa->create POA ("localPOA",
local pm.in (),
poa policies);

We start the server with two endpoints, one on the external network and one
with localhost:

server -ORBListenEndpoints iiop://localhost:1234 \
-ORBListenEndpoints iiop://zippy:9999

Any CORBA objects activated with the Root POA includes both of these
endpoints in their object references. Any CORBA objects activated with our
local POA only includes the localhost endpoint and are only able to be used by
clients located on the same host.

Endpoints are matched in their final form. This means that if an IIOP Endpoint
makes use of the hostname in ior attribute, that is the name the policy
must match.
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6.5.2

6.6

Limitations

Currently, only IIOP endpoints are supported. This means that only IIOP
endpoints can be added to the policy and selected for use. Any non-1IOP
endpoints are not matched and are never selected when the Endpoint Policy is
used.

Specifying Differentiated Services with TAO

Some environments provide support for differentiated classes of network
service, and allow applications to specify their network quality of service
needs. A common mechanism for providing differentiated classes of service
on IP networks is the Differentiated Services (diffserv) architecture defined by
the Internet Engineering Task Force (IETF) Diffserv Working Group. In the
diffserv architecture, applications encode a particular six-bit pattern into a
field, called the DS field, of the IP packet header, thereby marking a packet to
receive a particular forwarding treatment, or per-hop behavior (PHB), at each
network node. The Diffserv Working Group has standardized a small number
of specific per-hop behaviors and a recommended bit pattern, or codepoint, for
each one. These PHBs and their recommended codepoints are defined in
various [ETF Requests for Comments (RFCs). For more information on
Differentiated Services and Diffserv Codepoints (DSCPs), see RFC 2474,
RFC 2475, RFC 2597, RFC 2598, and RFC 3246, all of which are available
from the IETF at <http://www.ietf.org/rfc/>.

TAO allows applications to control the setting of DSCPs on requests and
replies via client and server policies. Servers can apply the Network Priority
Policy and clients can apply the Client Network Priority Policy. Either policy
is used to set DSCP values for requests and replies. The network priority
model is used to determine which DSCP to apply to a particular request or
reply.

Support for the Network Priority Policies is located in the
TAO_DiffServPolicy library. The source code is located in

$TAO ROOT/tao/DiffservPolicy. MPC-based applications that use this
policy should derive their server projects from the diffservpolicy base
project.
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Note TAO can also set DSCPs as part of its Real-Time CORBA support. See 8.5.2
for details.

6.6.1 Using the Network Priority Policies

Both the Client Network Priority and Network Priority Policies use the
NetworkPriorityPolicy policy type that is defined in
STAO ROOT/tao/DiffServPolicy/DiffServPolicy.pidl:

module TAO

{
typedef long DiffservCodepoint;

enum NetworkPriorityModel

{
CLIENT PROPAGATED NETWORK PRIORITY,
SERVER DECLARED NETWORK PRIORITY,
NO_NETWORK_PRIORITY

}i

const CORBA::PolicyType CLIENT NETWORK PRIORITY TYPE = 0x54410003;
const CORBA::PolicyType NETWORK PRIORITY TYPE = 0x54410004;

local interface NetworkPriorityPolicy : CORBA::Policy
{
attribute NetworkPriorityModel network priority model;
attribute DiffservCodepoint request diffserv_codepoint;
attribute DiffservCodepoint reply diffserv codepoint;
}i
i

Here is some sample client code for specifying the Client Network Priority
Policy on the ORB:

CORBA::Policy var client network policy =
orb-> create_policy (TAO::CLIENT NETWORK_PRIORITY TYPE);

TAO: :NetworkPriorityPolicy var nw_priority =
TAO: :NetworkPriorityPolicy:: narrow (client network policy.in ());

nw_priority->request diffserv codepoint (20); // AF22
nw_priority->reply diffserv codepoint (22); // RAF23
nw_priority->network priority model (

TAO: :CLIENT PROPAGATED NETWORK PRIORITY);

CORBA::PolicyList policy list;
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policy list.length (1);
policy 1ist[0] = nw_priority;

policy manager->set policy overrides (policy list, CORBA::SET OVERRIDE);

policy list[0]->destroy ();

This sets the Client Network Priority Policy with the client-propagated model,
meaning we want the request and reply to be taken from this policy object.
The request DSCP is set to 20 and the reply DSCP is set to 22.

In order for this example to function properly, we should also set the server
policy in the POA to a compatible value:

CORBA: :Policy var npp =
orb-> create policy (TAO::NETWORK PRIORITY TYPE);

TAO: :NetworkPriorityPolicy var nw priority =
TAO: :NetworkPriorityPolicy:: narrow (npp.in ());

nw_priority->request diffserv codepoint (24); // CS3
nw_priority->reply diffserv codepoint (16); // CS2
nw_priority->network priority model (

TAO: :CLIENT PROPAGATED NETWORK PRIORITY) ;

CORBA: :PolicylList policy list;
policy list.length (1);
policy 1ist[0] = nw_priority;

PortableServer::POA var child poa =
root poa->create POA ("Child POA",
poa manager.in (),
policy list);

policy list[0]->destroy ();

These settings ensure that the client-specified request and reply DSCPs are
used.
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CHAPTER 7

Asynchronous Method Handling

71

Introduction

.-'!"’_
i

Processing CORBA requests may require a long duration of activity resulting
in the blocking of subsequent requests. This can reduce the server’s
responsiveness as threads that might otherwise be used to service incoming
requests must block while waiting for a response. Concurrency strategies such
as thread-per-connection and thread-pool can be used in such cases to increase
the system responsiveness, but these approaches may not scale well as the
number of threads increase due to increased number of client connections or
client requests. Asynchronous Method Handling (AMH) is a TAO specific
feature that addresses this situation without requiring you to implement
complicated concurrency strategies.

Note Although AMH is TAO specific, it has been submitted to the Object
Management Group for possible inclusion into the CORBA specification.
AMH provides server implementers the means to have a request for an
operation be handled by one thread, while having the response to that request
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delivered by another thread. For example, a server that needs to invoke a
remote operation in the course of handling a request can combine the use of
AMH with Asynchronous Method Invocation (AMI), discussed in 6.2, to have
an AMI callback handler complete the processing of the original invocation,
and return the result to the caller. In this way, AMH greatly reduces the risk of
a runaway stack that may arise from the use of concurrency and wait strategies
such as the Leader-Follower strategy.

Clients of AMH based services are unaware of this responsibility hand-off.
However, using AMH does impose some limitations:

*  All requests must be passed as GIOP messages. No direct or through-POA
collocation is possible with AMH. The use of AMH in an application must
be anticipated at design time.

*  AMH may be considered to violate certain aspects of the contract between
servants, POAs, servant managers, and other server objects. This
violation arises from the possibility that a thread calling a servant during
an invocation may return control back to the POA before the actual
operation is complete without throwing an exception.

Note Code using AMH can be found in TAO itself. In particular, TAO's
Implementation Repository uses AMH to improve its performance when there
are numerous clients trying to connect to it.

711 When AMH is Useful

Situations where AMH can be useful include:

*  You have numerous client connections or client requests to a service that
depends on systems or other services that may cause the serving thread to
block. Scenarios that cause such blockage include media I/0, database
access, reliance on long-running services, or computation intensive
activities such as numerical analysis. A scenario where AMH is
particularly useful is when it is used in conjunction with AMI for the
middle-tier server in a three-tier architecture where the middle-tier server
offloads requests to servers that can be time consuming to fulfill. For this
scenario, neither the client nor the target server processing the request are
aware of the AMH/AMI usage by the middle-tier server. Details on using
AMH in combination with AMI can be found in 7.6.
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7.1.2

A very large number of clients are concurrently connected to your server.
Empirical data from Design and Performance of Asynchronous Method
Handling for CORBA shows that when the number of concurrent clients
connected to a server gets large enough, when using standard concurrency
strategies, the request throughput becomes unacceptably low. In this case,
AMH becomes the only practical solution available.

You wish to simplify concurrency support in your server code. Using
AMH, it is possible to avoid multithreaded programming, which can be
difficult to write and maintain.

1t is important that requests be processed in the order in which they are
received. The special skeleton code generated for using AMH ensures that
client requests are processed in the order received.

When AMH is not Useful

Some situations where AMH may not be applicable include the following:

There will rarely be more than a medium load of concurrent clients.
Additional empirical data provided in Design and Performance of
Asynchronous Method Handling for CORBA shows that AMH is slightly
less efficient than other concurrency models. However, you should weigh
this slight reduction in efficiency to the possibly simpler server code that
can be written when using AMH to support concurrent requests.

You are using certain advanced CORBA features. Some advanced
CORBA features assume that the thread that starts an invocation is the
same one that finishes it. However, AMH breaks this assumption. Further
discussion about using advanced CORBA features along with AMH can
be found in 7.5.

Your application can throw a number of exceptions. Y ou must be careful
when using AMH in an application that raises exceptions. AMH response
handlers, the code responsible for sending a reply back to the client, are
typically not invoked by a POA or a skeleton. Therefore, care must be
taken to catch all exceptions in order to communicate them to the client.
There is no framework that will assist in automating this task.
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7.2

Participants in an AMH Servant

7.2.1

Server applications using AMH rely on the interaction of the following
classes:

* A special skeleton class generated by the IDL compiler for supporting
AMH.

* A Response Handler class also generated by the IDL compiler that takes
the reply information and passes it to the client. An instance of this class is
generated by the AMH skeleton.

* The AMH servant code you write.

AMH servants are derived from the AMH skeletons. The implementation
methods of these skeletons differ from the ordinary server-side IDL to C++
mapping. Only in and inout style arguments are passed to implementation
methods, and the method has a void return, regardless of the return type of the
IDL operation. The response handler’s interface deals with the outputs for
each operation.

The response handler is a local CORBA object. Its role is to gather any output
(out and inout arguments, and return values) from an IDL operation and
prepare a GIOP reply message for the client. A given response handler is only
valid during a single operation. Once the reply is sent, references to the
response handler should be discarded. For each IDL operation, the response
handler has two methods, one for ordinary returns, and another for returning
exceptions.

Simple Example
Consider the following IDL:

interface EchoTest

{
string echo (in string message);

i
The following code fragments illustrate the participants in an AMH servant.

AMH Skeleton

class AMH EchoTestResponseHandler ptr;
class POA _AMH EchoTest
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&

{

public:
virtual void echo (AMH EchoTestResponseHandler ptr rh,
const char * message) = 0;

}i

Response Handler

class AMH EchoTestResponseHandler : public virtual CORBA::Object

{
public:
virtual void echo (const char *return value)

}i

Servant
class AMH EchoTest i : public virtual POA AMH EchoTest
{
public:
virtual void echo (EchoTestResponseHandler ptr rh,
const char * message );

The following diagram illustrates how these participants interact to handle an

invocation.
Echo Server Application
AMH_EchoTest_|

Client invokes

EchoTest:Echo > EchoTestResponseHandler
ORB calls echo .
S
with response

handler referance
Servant calls echo

EchoTest:Echo
&

o
Cd

N
reply sent

X

Figure 7-1AMH Servant and Response Handler
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7.3

As shown in Figure 7-1, the ORB infrastructure processes the incoming
request from the client and invokes the servant. The reply to the request is not
sent until the application calls the appropriate response handler method. This
can happen from the servant code, or the application may retain a reference to
the response handler and send the reply at a later time.

Generating AMH Related Code

The TAO IDL compiler takes a single command line option, -GH, which
triggers the generation of the AMH skeleton and response handler classes. The
IDL compiler and its options are discussed at length in Chapter 4.

For each interface in the IDL file, the compiler generates an AMH skeleton
and a response handler. The name for the AMH skeleton is similar to that of
the ordinary skeleton, except that AMH is prepended to the interface name.
Recall that CORBA compliant skeletons are named by prepending POA  to the
fully qualified interface name, including any modules. In general the form is
POA [<modules>: :JAMH <interface>

For an interface declared as:

module DevGuide

{

interface Messenger

{

}i
}i

The IDL compiler will generate POA DevGuide: :Messenger and

POA DevGuide::AMH Messenger. If the interface were declared outside of
any module, the generated names would be POA Messenger and

POA AMH Messenger.

The response handler generated by the IDL compiler for each interface is
given a name derived from the interface name in this way:

[<module>: : ]AMH <interface>ResponseHandler. For example, the
response handler for the interface above is

DevGuide::AMH MessengerResponseHandler.

Response handlers are reference counted local CORBA objects. As such, the
response handler has a stub class, a var, ptr, and an out type related to it.
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7.4

These are all necessary to allow a response handler instance to be created
during the receipt of an invocation, then held until the invocation is complete.
Response handler references are kept by the skeleton infrastructure until a
reply or exception operation is invoked. It is the servant’s responsibility to
either use the response handler or store its reference for future use. It is
essential that either a reply or exception reply method be invoked before
losing the reference to the response handler. Failure to do so will cause the
client to hang.

An AMH Example Program

7.4.1

&

Now let us take a look at the Messenger example, extended to use an AMH
based servant. The full source code for this example can be found at
$TAO _ROOT/DevGuideExamples/AMH.

The IDL is nearly identical to that used in other code examples, except that
here the Messenger interface is enclosed in a module so that the application of
the naming convention can be seen.

module DevGuide

{

interface Messenger
{
boolean send message (in string user name,
in string subject,
inout string message);
i
i

The send message () operation has data that flows in and out through its
parameters, as well as returning a value. Also, even though no user exceptions
are raised by the operation, it is still liable to raise system exceptions.

The Generated Stub Classes

When the IDL is compiled, a stub is created for the Messenger interface that is
identical to the stub used for the non-AMH case. The same stub is used as a
proxy for objects served by synchronous servants as well as asynchronous
ones.
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Note

A stub for the response handler is also created. This stub is defined in the
MessengerC.h and MessengerC. cpp files. Although they are of no interest
to the clients, AMH-based servers will use these stubs. For the Messenger
interface shown above, the response handler stub appears as follows:

namespace DevGuide

{
class AMH MessengerResponseHandler : public virtual CORBA::Object

{
virtual void send message (
::CORBA: :Boolean return value,
const char * message
) = 0;

virtual void send message excep (
::DevGuide: :AMH MessengerExceptionHolder * holder

For each operation in the interface, two corresponding response handler
member functions are created. The first, which has the same name as the
operation, takes arguments for the operation’s return value, and any out (or
inout) arguments. The second method generated for responding to an
operation is used for sending exceptions back to the client. The name of this
method is generated by appending excep to the operation name. The
exception reply method takes a single argument, a reference to an exception
holder. The exception holder is a valuetype object that is capable of raising
whatever exception it contains.

The use of an exception holder valuetype and inclusion of AMH stubs make
the generated client-side files dependent on the valuetype library. Any
application linked to these generated files must also be linked to the valuetype
library. A way to minimize the impact of this dependency is to generate two
sets of stub definitions: one with AMH for use in server development, and one
without for use on the client side.

The exception holder is a specialized value type object that is unique to a
particular interface. The exception holder has a method for each operation that
is responsible for raising whatever exception needs to be propagated back to
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7.4.2

the client. An example showing the use of the exception holder is shown in
7.6.1.

The AMH Servant

The TAO IDL compiler, when given the ~GH option, generates an ordinary
skeleton as well as an AMH skeleton for every interface. Using the example
IDL shown above, the ordinary skeleton and AMH skeleton are as follows.

namespace POA DevGuide

{

class Messenger : public virtual PortableServer::ServantBase
{
public:
virtual CORBA::Boolean send message (

const char * user_name,

const char * subject,

char *& message

) = 0;

}i

class AMH Messenger : public virtual PortableServer::ServantBase
{
public:
virtual void send message (
DevGuide::AMH MessengerResponseHandler ptr tao_ rh,
const char * user name,
const char * subject,
const char * message
) = 0;

i

Note that the AMH skeleton’s definition of the send message () method
differs from that of the ordinary skeleton in two ways:

1. The leading argument is a reference to the response handler for this
particular invocation. This response handler must be invoked by the
servant for any operation to send a GIOP reply message to the client.

2. The remaining send message () parameters map to the operation’s in
and inout arguments. The return from send message () is void, even
though the IDL operation returns a string. The return value is passed to the
appropriate method on the response handler, as are any out and out-bound
inout values, if any are defined.

ociweb.com 133



Asynchronous Method Handling

Now lets take a look at a very simple implementation for the AMH version of
send message (). In this case, we are not really taking advantage of the
benefit of AMH because we are directly invoking the response handler
immediately from the servant.

void
AMH Messenger i::send message (
DevGuide::AMH MessengerResponseHandler ptr _tao rh,
const char * user name,
const char * subject,
const char * message
)
{

std::cout << "Message from: " << user name << std::endl;
std::cout << "Subject: " << subject << std::endl;
std::cout << "Message: " << message << std::endl;

CORBA::String var inout message arg =
CORBA::string dup("Thanks for the message.");
CORBA::Boolean result = true;

_tao_rh->send message(result,inout message arg.inout());

}

The parameters passed to the response handler’s send message () method
are supplied using in parameter semantics. This means that the caller is still
responsible for releasing memory that was used by any intermediate values
that may be returned. So, for example, the response handler must duplicate the
in parameters it receives.

This behavior exists due to an inversion of control that results from the
asynchronous request processing. In an ordinary request/reply invocation, the
servant has control only when the thread is in the implementation method,
thus control goes away when the method returns. Another way to look at this
is that the lifespan of the invocation is only as long as the duration of the
invocation method. This means that it is the responsibility of the caller of the
method (the generated skeleton class) to clean up any allocated resources
being passed back to the client.

By contrast, when using AMH it is possible for the lifespan of the invocation
to exceed the duration of the invocation method. The example shown above
happened to use the response handler right away, but it is perfectly valid to
store a reference to the response handler, then invoke the appropriate method
on it at a later time. For instance, the example code shown above alternatively
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#include <ace/Thread.h>
void
AMH Messenger i::send message (
DevGuide::AMH MessengerResponseHandler ptr tao_rh,
const char * user_name,
const char * subject,
const char * message

std::cout << "Message from: " << user name << std::endl;
std::cout << "Subject: " << subject << std::endl;
std::cout << "Message: " << message << std::endl;

DevGuide::AMH MessengerResponseHandler ptr dup rh =
DevGuide::AMH MessengerResponseHandler:: duplicate (_tao_rh)
ACE Thread::spawn (send message reply, dup rh);
}i

The response handler reference must be managed, and sending the response
does not end the method. The response handler is a reference counted local
CORBA object. An instance of the response handler is created in the skeleton
just prior to calling the implementation method, and the skeleton releases its
reference to the response handler when the implementation method returns.
This is why, in the implementation of send message () above, the servant
duplicates the reference to the response handler before returning.

void send message reply (void * arq)
{
DevGuide::AMH MessengerResponseHandler ptr rh =
(DevGuide: :AMH MessengerResponseHandler ptr)arg

CORBA::String var inout message arg =
CORBA: :string dup("Thanks for the message.");
CORBA::Boolean result = true;

ACE 0S::sleep (5);

rh->send message (result,inout message arg.in());
CORBA::release (rh);

In this case, the response handler is passed to a thread function that waits a
few seconds before proceeding to send the reply. Here, the invocation spans
the life of both the implementing method called by the skeleton, as well as the
second thread function. The first method returns to the caller immediately
after spawning the thread, but the client does not receive a reply until after the
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74.4

thread function completes. The thread function must release a reference to the
response handler to offset the reference duplication done in
AMH Messenger i::send message ().

Invoking the response handler CORBA object results in the sending a
response back to the original client without having any effect on any of the
values passed to it. Therefore, any allocation of storage, such as the string
shown above, is still available for reuse (or leaking if not managed properly).

AMH and Oneway Invocations

Operations that have no out or inout arguments and a void return type will still
have a response handler that must be called. This is also true for oneway
operations. Oneways may be invoked by a client that has set the

SYNC WITH TARGET synchronization scope policy, which requires the server
to send a GIOP response when the operation completes. See 6.3.4 for more
details on this policy.

Throwing Exceptions

Exceptions are sent back to clients using a special form of the GIOP reply
message. The message header contains a flag indicating that the reply contains
an exception and the message data contains the marshaled exception. Because
of the inversion of control mentioned above, we cannot simply throw an
exception and expect it to be propagated back to the original client.
Exceptions are thrown by the use of specialized methods on the response
handler. Along with each method for returning values (even if void) from an
interface’s attributes and operations, the response handler also has a method
for each of these to raise exceptions. These methods are named by appending
_excep to the name of the operation to which it is related. Thus, the
DevGuide::AMH MessengerResponseHandler::send message ()
method shown above is accompanied by send message excep () for
raising exceptions.

There is a distinct exception method for each operation. The data supplied to
the method is a reference to a value type object that contains the exception to
be thrown. This exception holder object is similar to the exception holder
defined by the CORBA Messaging specification for AMI. The difference
being that in AMI, the framework calls the excep method you implement in
your callback handler, whereas with AMH, you call the excep method
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The following example code shows how to throw an exception via the
response handler. To make this example a little clearer, a new interface is
defined with an operation that raises a user exception.

module DevGuide

{
exception demo {};
interface Asynch Except Demo
{

boolean trigger () raises (demo);
}i
i

This could be implemented by an AMH servant method such as this one:

void
Excep Example i::trigger (DevGuide::AMH Asynch Except DemoResponseHandler ptr
_tao_rh)
{
DevGuide::demo *d = new DevGuide::demo;
DevGuide::AMH Asynch Except DemoExceptionHolder ex_holder (d);
_tao _rh->trigger excep (&ex holder);
std::cout << "Done sending exception." << std::endl;

}

You will see there is something peculiar about this code example. The
exception instance, d, is a pointer to an exception allocated on the heap. This
code does not free the exception object after invoking the exception sender.
This is because the exception is given to the exception holder, which takes
ownership of the exception.

The AMH exception holder is initialized by supplying a pointer to an
exception instance allocated on the heap. This requirement is a consequence
of the mechanism used to propagate the exception back to the caller. This is
done by the response handler invoking the operation-specific raise method of
the exception holder, which in turn guards the pointer to the exception with an
auto-pointer, then calls a method on the exception that causes it to throw itself.
Afterward, the auto-pointer releases the holder’s reference to the exception,
causing it to be deleted.

Remember that invoking the appropriate response method was semantically
identical to making an invocation with in parameters. The exception methods
violate this notion because these methods require the exception to be allocated
on the heap, and consume it as a side effect of sending the exception.
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This behavior results from the mechanism used to actually form and transmit
the GIOP message containing the exception. This code relies on the exception
holder to throw the exception, then uses existing skeleton helper methods to
generate the GIOP method. By throwing the exception, the exception holder
extracts the exception instance from the exception holder, assigns it to an auto
pointer, then throws the exception.

AMH And The Server Main

A process hosting objects served by asynchronous servants is only different
from one hosting synchronous objects in that it has a choice as to which type
of servant it wishes to attach to an activated object. The server must still
initialize an ORB, obtain a POA, and use that POA to associate the servant
(asynchronous or synchronous) with an object.

AMH and the Client

As with the main function of the server, clients are unaware of the synchrony
of the servant behind any objects it uses. Currently, TAO imposes a side-effect
on clients of AMH enabled services. The AMH response handler and
exception holder classes are defined in the generated stub header file. The
exception holder is a value type, as is the exception holder in an AMI callback
object. This creates a dependency between the client application and the TAO
value type library.

A second side-effect is manifest in MPC files related to applications that
directly build the IDL for an AMH based server. As is the case with the AMH
example code provided in $TAO ROOT/DevGuideExamples/AMH, the client
subproject must be dependant on the AMH base project, amh . mpb. This
ensures that if this project is used to compile the IDL, the proper AMH
elements will be generated. For example, the definition for an MPC project
that inherits from the AMH base project could look like:

project (*Client): .., amh

{
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7.5

AMH and Advanced CORBA Features

7.5.1

CORBA servers frequently have many details to manage in addition to
running implementation code. Examples include:

* An application may make use of servant managers to control the
deployment of servant instances.

*  Applications may make use of certain CORBA Current objects to gain
access to information that is specific to a particular invocation context.

* Applications may be written in such a way that a servant is collocated
with a client, and may wish to use strategies such as direct collocation for
performance optimization.

Many of these advanced features of CORBA assume that the thread that starts
an invocation is the same thread that finishes it. AMH makes it possible to
invalidate this assumption. Therefore, care must be taken to ensure that any
invocation-specific context data is separately managed so that any subsequent
thread that participates in an invocation is able to access this information. The
following subsections outline some of the obvious situations where such
context dependent information may be needed, although it is not a complete
list.

Portable Interceptors

Portable Interceptors are specialized client or server objects that are used to
process inbound or outbound messages, very close to the transport layer.
Interceptors are used to initialize the context within any CORBA Current
objects used by the server, and they may be used to process service contexts,
which contain meta-information attached to a message. For example, this
meta-information might include security information such as authorization
tokens or credentials, or may include transaction tracking information.

When using any service that relies on interceptors, you should be very careful
when AMH is also used. For example, TAO’s RT Scheduling Service assumes
that all responses will be sent by the same thread as that on which the original
request was received.

If you are implementing your own interceptor to manage meta-information,
such as request auditing or other activities, and you use AMH, be sure to write
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your interceptor in such a way as to avoid relying on any information that is
specific to the thread receiving a request or sending a reply.

Servant Locators

Servant managers work with the POA to supply servant instances on demand.
As discussed in Advanced CORBA Programming with C++, 11.7.3, there are
two kinds of servant managers: activators and locators. Activators provide a
servant to the POA that is retained in the POA’s active object map, and
remains associated with a given object until that object is deactivated or the
POA itself shuts down. Locators are servant managers that provide servants
only for the duration of a single invocation. Because of the limited lifespan of
servants when using locators, care must be taken using AMH when servants
are managed using locators.

Whether the servant is held by the POA for the duration of a single invocation
or many, it is handed back to the servant manager for clean up. With AMH,
this may occur before the response handler has sent a reply message. If you
are using AMH and a servant locator then you must ensure that any reference
to the original servant is not used, as the servant locator may have destroyed
the servant. Similarly, you may have implemented the servant locator to
manage a pool of servant objects. While the servant instance may still be
valid, you must be aware that any state information that you update while
handling an invocation may be modified if the invocation is handed off to
another thread for completion.

Invocation Related CORBA::Current Objects

CORBA Current objects are locality constrained interfaces, derived from the
empty CORBA: :Current interface, that give application code access to
information that is specific to the current thread of control. This access is
provided through an object reference supplied by the ORB. Some current
objects, such as PortableServer: :Current and
PortableInterceptor::Current, are specific to the current invocation.
Because this invocation information is thread-specific, it is not sufficient to
hand a current object to whatever thread will complete an AMH invocation.
The initial servant thread must extract any information from the current and
hand that data separately to the invocation completing thread. If a completion
handler needs invocation-specific information from the current, such as the
object ID from a PortableServer: :Current, the information must be
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7.5.4

7.5.5

accessed in the original servant method and handed off to the completing
thread along with the response handler.

Since current objects are context aware, the completing thread cannot simply
use a reference to the invocation related current. Any invocation on the current
by that thread would result in a NO CONTEXT exception being raised. From the
point of view of the current, the second thread is outside of the context of an
invocation.

Reference Counted Servants

Servants may be reference counted in order to avoid memory leaks when
objects associated with the servants are destroyed. A servant’s reference count
is incremented during an invocation and decremented again when the
invocation completes. This way, an invocation that deactivates an object, such
as one calling POA: :deactivate object (), will not cause a crash when
the POA removes its reference to the servant.

When an AMH servant method returns, regardless of the disposition of any
pending reply, the skeleton code will treat this as a completion of the
invocation and will decrement the reference count on the servant. This means
that if your AMH servant uses a companion object to complete an invocation,
the companion object should either have no association with the original
servant, or must manage the reference count of that servant. Managing the
reference count may be done explicitly by calling add ref () and
_remove ref () on the servant, or implicitly by holding the reference to the
servant in a PortableServer: :Servant var<>.

Collocation

Collocation occurs when the servant for an object is in the same address space
as the client making an invocation on that object. There are two forms of
collocation, thru-POA and direct. Collocated invocations that go through the
POA have an opportunity to also go through interceptors and are subject to the
control imposed by the POA such as being rejected because the POA is in the
discarding state. Direct invocations are forwarded straight from the stub
method to the servant method. In both cases, the caller’s thread is actually
used to perform the invocation.

Since an AMH servant’s implementation of an operation has a different
signature than what is expected based on the IDL definition of the operation, it
does not match what is expected by the collocated stub. Further, AMH makes
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it possible or likely that the invocation is not complete when the servant
method returns. There is currently no mechanism in TAO’s collocated stubs to
enable the calling thread to wait until some other thread invokes the response
handler and provides results to the caller. Therefore, there is no support in
TAO for combining collocation and AMH.

Given that the desire to use AMH is often the result of bottlenecks in the
servant, we might find that the efficiency gained by using collocated calls that
avoid marshaling would be minimal anyway. Therefore, it is reasonable to
explicitly disable collocated calls in an application that is implemented using
AMH based servants. Keep in mind that such control is imposed at IDL
compilation time. Be sure to isolate the definitions of interfaces that will be
implemented using AMH from those for which you wish to support collocated
access.

Note Future versions of TAO may support collocated invocation of AMH servants.

7.6 Combining AMH with AMI

CORBA servers are often used in multi-tier applications, with middle layers
serving as concentrators or gateways. The middle layer may process requests
by turning around and sending invocations to other servers to complete.
Consider the following IDL interfaces:

// file: middle.idl
interface Middle
{
string get the answer (in string question);
bi

// file: inner.idl
interface Inner

{
string answer (in string question);

}i

A client might invoke Middle: :get the answer (), which in turn invokes
Inner::answer (), waits for the response, then replies back to the client
with the answer. Imagine that invoking Inner: :answer () takes a long time,
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Note

and that the client load is variable. Sometimes there may be two or three client
requests pending, while at other times there may be hundreds. The thread
waiting for a reply is essentially a wasted resource. As the client load
increases, if there are insufficient threads available to handle the load, then
clients may not be able to have their requests processed within their time
constraints.

Traditionally, to avoid making a thread a wasted resource, the server
implementing the Middle interface would process a request invoking

get the answer () in a separate thread using some threading strategy.
Before this thread returns, it in turn invokes Inner: :answer () and waits for
the result. While waiting, this thread may be blocked so that it cannot handle
other requests. If TAQO’s thread pool strategy is being used, and the thread is
part of a thread pool, then it is at risk of being “borrowed” to process another
incoming request. This is illustrated in Figure 7-2.

Further discussion about TAO's threading models and wait strategies can be
found in Chapter 15.

Client Middle Server Irmer Server

invoke get_the_answer(]

invoke answer()

Thread blacked

until reply received
(may be borrowed by
TP wait strategy)

reply from answer()

reply from
get_the_answer()

Figure 7-2 Middle-tier Server Without AMH and AMI
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In addition, using TAO’s thread pool strategy raises the possibility of
recursive requests (also called “nested upcalls”), wherein a thread waiting for
the Inner: :answer () response may be required to handle another incoming
client request. Of course, the problem could be resolved by adding more
threads, but this does not scale well as the number of client requests increases.
This is because context switching between many threads may overwhelm the
system.

The best solution to this problem is to implement the Middle server using
AMH to handle the incoming get the answer () requests and AMI to
invoke Inner: :answer (), as shown in Figure 7-3.

Client Middle Server Inner Server

invoke get_the answer()

invake answer()

AMI callback handler Thread available

created, given response 1o handle other requests
handler reference

rephy from reply from answer()
get_the_answer)

T Reply handed to AMI
Callback handler which
invokes AMH response
handler

Figure 7-3 Middle-tier Server Using AMI and AMH together

AMH/AMI Example

An example implementation of the Middle server using AMH and AMI
together is given here. The full code for this example is in the directory
STAO ROOT/DevGuideExamples/AMH AMI.

7.6.1.1 AMI Callback Handler
To realize the benefits of AMH/AMI, an AMI callback handler in the middle
tier must be supplied to manage asynchronous replies from the Inner server.
144
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Note

Since AMI callback handlers are CORBA servants we must supply an
implementation for the handler. Inner callback i isthe AMI callback
handler invoked when the reply to Inner: :answer () is received. The role of
this callback handler is to forward the answer back to the original caller.
Therefore, the callback servant must be initialized with the correct response
handler shown here:

class Inner callback i : public virtual POA AMI InnerHandler
{
public:
Inner callback i (PortableServer::POA ptr poa,
AMH MiddleResponseHandler ptr tao_rh);
virtual void answer (const char * ami return val);
virtual void answer excep (Messaging::ExceptionHolder * excep holder);

private:
PortableServer::POA var poa
AMH MiddleResponseHandler var response handler ;

}i

As you will see below, we will make sure the AMI reply handler is initialized
with the AMH response handler. The callback handler reference must be
supplied for each sendc_ call, in order to allow the ORB’s dispatcher to
deliver the reply to the appropriate handler.

As 1s the case for all AMI callback handlers, our callback handler has two
methods that must be supplied for each operation in the interface. One for
dealing with ordinary replies, another for dealing with exceptions. In this
example, we have a callback handler class, Inner callback i, with
methods answer () and answer excep ().

Because we are using AMI, the Inner server does not need to change to
support AMH-based asynchronous replies.

Consider now the handling of ordinary replies:

void

Inner callback i::answer (const char * ami return val)

{
this->response_handler ->get the answer (ami_return val);
PortableServer::0ObjectId var oid = this->poa ->servant to id(this);
this->poa ->deactivate_object (oid.in());
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Handling return values is straightforward. The return value and any
out/inout parameters are supplied as in parameters to the callback handler.
It simply passes those values on to the AMH response handler, again as in
parameters, which forwards the response to the original client. After that, this
servant has done its job, so it deactivates itself.

Now consider the handling of exceptions. As shown in section 7.4.4, the AMH
exception holder is initialized with a local copy of the exception extracted
from the AMI exception holder. Combining this behavior with the AMI
exception callback interface requires that we explicitly duplicate the exception
in order to pass it on to the client. This may be done by having the AMI
exception holder throw the exception, which we then catch, duplicate, and
pass to the client via the AMH response handler. This technique is shown
here.

void
Inner callback i::answer excep (Messaging::ExceptionHolder* excep holder)
{
try |
excep_holder->raise exception();
}
catch (CORBA::Exception& ex) {
CORBA: :Exception* local ex = ex. tao duplicate();
AMH MiddleExceptionHolder amh excep holder (local ex);
this->response handler ->get the answer excep (&amh excep holder);
}
catch (...) {
CORBA: :Exception* unknown ex = new CORBA::UNKNOWN;
AMH MiddleExceptionHolder amh excep holder (unknown ex);
this->response_handler ->get the answer excep (&amh excep holder);

}

std::cout << "inner callback i deactivating self" << std::endl;
PortableServer::0ObjectId var oid = this->poa ->servant to id(this);
this->poa ->deactivate object (oid.in());

7.6.1.2 AMH Servant
Consider now the interface to servant for the middle-tier servant:
#include "middleS.h"
#include "innerC.h"
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class Asynch Middle i :
public virtual AMH POA Middle
{
public:
Asynch Middle i (PortableServer::POA ptr poa, Inner ptr inner);
virtual void get the answer (AMH MiddleResponseHandler ptr tao rh,
const char * question);
private:
PortableServer::POA var poa
Inner var inner ;

}i

The middle servant is the only piece that needs to be AMH aware, therefore it
is the only class to derive from a POA_ AMH * base class.

Asynch Middle izget the answer () is passed an AMH response handler, which
is used to initialize an instance of an AMI reply handler, as shown below:

void
Asynch Middle i::get the answer (AMH MiddleResponseHandler ptr tao rh,
const char * question)

{
PortableServer::ServantBase var servant =
new Inner callback i (this->poa .in(), tao rh.in());

PortableServer::0ObjectId var objid =

this->poa ->activate_object (servant.in());
CORBA::Object var obj = this->poa ->id to reference(objid.in());
AMI InnerHandler var cb = AMI InnerHandler:: narrow(obj.in());
this->inner ->sendc_answer (cb.in(),question);

The call to Inner::sendc answer () sends the invocation request message
to the Inner server and returns immediately.

In general, after this point the servant thread is free to handle any other
incoming messages, whether they are new requests from clients, or AMI
replies from the Inner server. The AMI reply handler will be invoked on some
thread when the Inner server sends a reply message from the answer ()
invocation. It will then immediately invoke the get the answer () method
of the AMH response handler, which sends a reply back to the originating
client.
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CHAPTER 8

Real-Time CORBA

8.1

Introduction

In 1999, the OMG introduced the Real-Time CORBA specification
(ptc/99-06-02) (RT CORBA 1.0) to provide CORBA developers with policies
and mechanisms for controlling allocation of system resources and improving
the predictability of system execution. The RT CORBA 1.0 specification was
originally defined as a set of extensions to the CORBA core and the CORBA
Messaging specifications. In August 2002, the OMG published a minor
revision of the RT CORBA specification, RT CORBA 1.1 (formal/02-08-02).
RT-CORBA 2.0 (formal/03-11-01), released in November 2003, introduced
the dynamic scheduling model. Finally, RT-CORBA 1.2 (formal/05-01-04)
integrated the dynamic scheduling details with the existing static scheduling
model. Despite the unusual version numbering sequencing, RT-CORBA 1.2,
released in January of 2005, is the most current version of the RT CORBA
specification.
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8.1.1

8.2

Road Map

In this chapter, we explore the topic of real-time CORBA from the perspective
of an application with real-time predictability requirements, as well as from
the perspective of the features available in TAO’s implementation. While the
chapter is designed to be taken as a whole, you may find benefit to reading
certain sections independently.

If you want to learn more about...

The motivation for and scope of RT CORBA, see 8.2, “Real-Time CORBA
Overview.”

The new modules and interfaces introduced by RT CORBA, see 8.3,
“Real-Time CORBA Architecture.”

The latest dynamic scheduling features of RT CORBA, see 8.4, “Dynamic
Scheduling.”

Building and configuring applications that use TAO’s implementation of
RT CORBA, see 8.5, “TAQO’s Implementation of Real-Time CORBA.”
This section also discusses TAO’s extensions to RT CORBA.

Sample code that uses TAO’s RT CORBA features, see 8.6,
“Client-Propagated Priority Model,” 8.7, “Server-Declared Priority
Model,” and 8.8, “Using the RTScheduling::Current.” These sections
present examples of client and server application code using various RT
CORBA features and priority models. In addition, 8.9, “Real-Time
CORBA Examples,” lists further examples and tests in TAO that use
several of the RT CORBA features discussed in this chapter.

Real-Time CORBA Overview

The standard CORBA specification has historically done a very good job of
supporting the requirements of distributed object-oriented systems, such as
location transparency, programming language and operating system
independence, separation of interface from implementation, and
interoperability in heterogeneous environments.

However, in real-time systems, the timeliness of a system is as important as its
functional requirements. That is, success is determined not only by logical
correctness, but also by the time required to reach a correct solution or
complete a task. A correct result that is reached outside the predetermined
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&

time interval is still considered a failure. Such systems must be predictable
and deterministic.

The applicability of CORBA to real-time systems has been limited, due to
CORBA’s lack of standard mechanisms for specifying and enforcing Quality
of Service (QoS) across distributed objects and supporting real-time
programming techniques.

The goal of the RT CORBA specification is to address the shortcomings of
CORBA for distributed real-time systems without sacrificing the spirit of
CORBA and without placing a burden on developers of non-real-time
systems. RT CORBA adds QoS control to standard CORBA with the goal of
improving application predictability. RT CORBA achieves this by bounding
priority inversions and managing resources end-to-end.

Specifically, RT CORBA provides policies and mechanisms for resource
configuration and control in the following areas:

¢ Processor Resources:

- RT CORBA defines portable priorities and a mechanism for
mapping them to native operating system priorities.

- RT CORBA enables end-to-end priority propagation via standard
priority models and mechanisms so that clients and servers can
specify request-priority propagation semantics.

- RT CORBA adds thread pools and mechanisms for servers to
allocate, partition, and manage thread characteristics.

- RT CORBA defines standard synchronizers for coordinating
contention for system resources in a consistent fashion.

- RT CORBA defines distributable threads and schedulers for
managing static or dynamic scheduling.

* Communication Resources:

- RT CORBA adds protocol properties to enable selection and
configuration of protocols by clients and servers.

- RT CORBA enables mechanisms for explicit binding to establish
and manage connections between clients and servers.

*  Memory Resources:
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- RT CORBA enables request buffering by servers when all available
threads are currently servicing requests.

Figure 8-1 shows how various RT CORBA policies and mechanisms (in
italics) relate to the standard CORBA architecture.

CLIENT SERVER
End-to-End Priority Propagation
> CORBAObject
" R i Sy
: - |
Client | & g | Yo
0%
o'
Skeleton Thread
Stub Pools
Portable Object | Request
Explicit Standard Adapter Buffering
Binding Synchronizers
ORB Core ORB Core
ACE ACE
) 0S
Portable Priorities
Network
Protocol Properties

Figure 8-1 Real-Time CORBA Policies and Mechanisms
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8.3

To achieve its goals with regard to the above QoS policies, the RT CORBA
specification leverages the QoS policy framework defined in the CORBA
Messaging specification. See Chapter 6 for more information on CORBA
Messaging.

For example, using the QoS policy framework, a client can override default
policy settings at the ORB, thread, or object reference level to affect qualities
such as request priority, message delivery, and request/reply timeouts.
Likewise, servers can use QoS policies with the Portable Object Adapter’s
create POA () operation to affect server-side qualities such as request
queuing and the creation and management of thread pools.

The remainder of this chapter describes the specific QoS policies addressed by
the RT CORBA specification and how they are supported by TAO. We extend
the Messenger example from previous chapters to show how to use TAO’s
implementation of the RT CORBA specification to address the QoS
requirements of real-time applications.

For more information on RT CORBA, read “Object Interconnections:
Real-time CORBA, Part 1: Motivation and Overview,” by Douglas C.
Schmidt and Steve Vinoski.

Real-Time CORBA Architecture

The RT CORBA specification extends the standard CORBA specification
with the addition of several new modules and interfaces to achieve end-to-end
predictability and control over the management of resources. Developers of
non-real-time CORBA applications need not be burdened by these extensions.
RT CORBA extensions to the standard CORBA architecture include:

* Real-time ORB (RTCORBA: : RTORB)

* Real-time POA (RTPortableServer: : POR)

* Real-time CORBA priority (RTCORBA: : Priority)
* Real-time Current (RTCORBA: : Current)

* Real-time mutex (RTCORBA: :Mutex)

*  Thread pools (RTCORBA: : ThreadpoolId)

*  Thread pool lanes (RTCORBA: : ThreadpoolLane)
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Figure 8-2 shows how key entities defined by the RT CORBA extensions
relate to the standard CORBA architecture.

RTScheduling::
/Client Current Server
[ I
RTScheduling: Servant
RTCORBA:Current Scheduler
I |
Distributable
CORBA:Current Threads POA RT POA
RTCORBA::Priority RTCORBA:Threadpool
CORBA:ORB RTCORBA:RTORB
1P ESIOP(s) (others) _ RTCORBA:
PriorityMapping
I [

Figure 8-2 RT CORBA Extensions

Figure 8-2 also shows elements of Dynamic Scheduling, an extension to the
real-time CORBA specification. Dynamic Scheduling, its components,
features, and services are discussed at length in 8.4.

8.3.1 Real-Time CORBA Modules
The RT CORBA specification introduces additional IDL modules, RTCORBA
RTPortableServer, and RTScheduling, which contain definitions of RT
CORBA interfaces and types.

e The RTCORBA module contains definitions for portable priorities, priority
mapping, thread pools, real-time policies, and protocol properties. It also
contains definitions for real-time Current, Mutex, and ORB interfaces.
Entities defined in the RTCORBA module are used by both clients and
servers.
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8.3.2

Note

* The RTPortableServer module contains the definition of the real-time
Portable Object Adapter (POA) interface for use by servers.

*  The RTScheduling module defines the components used to support
dynamic and static scheduling and distributable threads. The
RTScheduling::Current may be used in both client and server
processes.

The interface definition for module RTCORBA is quite large. We will be
examining portions of it throughout this chapter. The definition is included in
the TAO source distribution in $STAO ROOT/tao/RTCORBA/RTCORBA.pidl.
Likewise, the definition of RTPortableServer is found in

S$TAO ROOT/tao/RTPortableServer/RTPortableServer.pidl andthe
definition of RTScheduling is found in

STAO ROOT/tao/RTScheduling/RTScheduler.pidl.

The Real-Time ORB

The RT CORBA specification introduces an interface for a real-time ORB,
RTCORBA: :RTORB. The RT ORB is a local interface used to create resources
necessary to manage real-time applications. The RTORB interface does not
inherit from CORBA: : ORB, rather it is simply a helper object that applications
use to create and manage instances of various RT CORBA types, such as
mutexes, thread pools, and policies.

TAO’s RT CORBA library supplies the implementation of RTORB. The RT
CORBA library uses specialized ORBInitializers, as defined in the Portable
Intercepter specification, to initialize the RTORB. Each ORB has an RTORB
instance. Applications obtain a reference to the RTORB by calling
resolve initial references (“RTORB”) on the ORB.

Rather than showing the entire RTORB interface in one place, the various
operations are introduced in smaller functional groupings as we describe how
to use them in subsequent sections.

The RTCORBA: : RTORB is initialized when its associated CORBA: : ORB 1is
initialized during CORBA: : ORB_init (). The RT CORBA specification
defines a new ORB initialization parameter, ORBRTPriorityRange, used to
constrain the range of CORBA priorities the RTORB may use. However, this
option is not currently supported by TAO, meaning that any CORBA priority
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8.3.3

value may be used by any RTORB. CORBA Priority values are discussed in
8.3.4.

Here we show an example that obtains the RTORB from the ORB. For the
sake of clarity, we have omitted error-handling code:

#include <tao/corba.h>
#include <tao/RTCORBA/RTCORBA.h>

int main (int argc, char* argv[])
{
// Initialize the ORB.
CORBA::0RB var orb = CORBA::ORB init (argc, argv);

// Get the RTORB.
CORBA: :Object var obj = orb->resolve initial references ("RTORB");
RTCORBA: :RTORB _var rt_orb = RTCORBA::RTORB:: narrow (obj.in());

// Use the RTORB to access RT CORBA features (e.g., create threadpool() )

The Real-Time POA

The RT CORBA specification introduces the real-time POA interface,
RTPortableServer: : POA, which specializes PortableServer: : POA. As
shown below, the real-time POA adds new reference creation operations that
accept a priority as an additional parameter.

module RTPortableServer
{
local interface POA : PortableServer::POA
{
Object create reference with priority (in CORBA::RepositoryId intf,
in RTCORBA::Priority priority)
raises (WrongPolicy);

Object create reference with id and priority
(in PortableServer::0bjectId oid,
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority)
raises (WrongPolicy);

PortableServer::0ObjectId activate object with priority
(in PortableServer::Servant p servant,
in RTCORBA::Priority priority)
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i

void activate object with id and priority (in PortableServer::0ObjectId oid,
in PortableServer::Servant p_ servant,
in RTCORBA::Priority priority)
raises ( ServantAlreadyActive, ObjectAlreadyActive, WrongPolicy );

i
}i

When an application links to the RTPortableServer library, all POA
references are implemented by the real-time POA. Thus an application may
create a POA using the ordinary method of invoking
PortableServer::POA::create POA (), then narrow the newly-created
POA reference to RTPortableServer: : POA. The following example shows
this technique. Once again, error checking has been omitted for the sake of
clarity:

#include <tao/corba.h>
#include <tao/RTPortableServer/RTPortableServer.h>

int main (int argc, char* argv[])
{
// Initialize the ORB.
CORBA::ORB var orb = CORBA::ORB init (argc, argv);

// Get the RootPOA.
CORBA::Object var obj = orb->resolve initial references ("RootPOA");
PortableServer::POA var poa = PortableServer::POA:: narrow (obj.in());

// Create a child POA.
CORBA::PolicylList policies;
policies.length(2);
policies[0] = poa->create lifespan policy (PortableServer::PERSISTENT);
policies[1l] = poa->create id assignment policy (PortableServer::USER ID);
PortableServer::POAManager var mgr = poa->the POAManager();
PortableServer::POA var child poa =

poa->create POA ("Child POA", mgr.in(), policies);

// Use the new POA as a RT POA.
RTPortableServer::POA var rt poa =
RTPortableServer::POA:: narrow (child poa.in());
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8.34 Real-Time Priority Mapping
A Real-Time Operating System (RTOS) must support the concept of discrete
thread priority to adequately leverage benefits of RT CORBA. Thread
priorities are usually represented as a range of integer values and a direction of
precedence. A thread’s priority is used to determine its execution eligibility,
with threads having higher precedence being eligible for execution ahead of
threads with lower precedence. RT CORBA refers to an operating system’s
representation of priority as native priority. Native priorities are not used
directly by RT CORBA, but are represented in IDL to provide a mechanism
for allowing native code to interact with RT CORBA. The native priority type
is defined as follows:

module RTCORBA ({
typedef short NativePriority;
/] ..

}

A short integer has the range -32768 to 32767, however only a subset of this
range will be valid in any particular operating system.

To allow all objects participating in a distributed real-time application to have
a consistent notion of thread priority, RT CORBA supplies a second type to
represent portable priority:

module RTCORBA ({

typedef short Priority;
07
32767;

const Priority minPriority
const Priority maxPriority
/...

i

The type Priority is used when referring to “portable” priority values.
Although it is a signed short integer, an RT CORBA priority value is always
positive, its range being constrained by the constants minPriority and
maxPriority. With CORBA priorities, higher values take precedence over
lower values.

Conversion between native priority and RT CORBA priority is achieved
through mapping functions. The RT CORBA specification uses the following
declaration to represent the mapping between priority types:

module RTCORBA ({

- A
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native PriorityMapping;

}i

The specification recognizes that this mapping behavior is frequently invoked.
To minimize performance impact, the declaration uses a native type rather
than an interface. Use of an interface would necessitate the use of a CORBA
object, and require obtaining a reference to the same. On the other hand,
native types are specified directly in the target language binding. The C++
binding for PriorityMapping is a class in the RTCORBA namespace.

namespace RTCORBA {
class PriorityMapping
{
public:
virtual CORBA::Boolean to native (RTCORBA::Priority corba priority,
RTCORBA: :NativePriority& native priority );
virtual CORBA::Boolean to CORBA (RTCORBA::NativePriority native priority,
RTCORBA: :Priority& corba priority );
}i
}i

The methods to _native () and to CORBA () may be called several times by
an ORB during an invocation. To provide the greatest possible efficiency
these methods do not throw exceptions, not even CORBA System exceptions.
However these functions will return FALSE if the input value is outside the
allowed range for that type. For both of these functions, the first argument has
the semantics of an in, supplying input, the second argument being an out for
receiving the converted results.

An RT ORB conforming to the specification will make use of these mapping
functions throughout the course of an invocation. If the call to either mapping
function returns FALSE, the ORB is required to stop processing the invocation
and throw a DATA CONVERSION system exception to the invoking application.
Note that this exception may not be propagated if the error is the result of a
oneway operation.

8.3.5 The Real-Time Current

The CORBA: : Current interface serves as a common base for interfaces
providing context-specific information in clients and servers. Applications use
the RTCORBA: :Current, which derives from CORBA::Current, to
determine the priority of the current invocation.

- -
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module RTCORBA ({
local interface Current : CORBA::Current
{
attribute Priority the priority;
}i
}i

The real-time Current is obtained by narrowing the reference to the object
returned by calling resolve initial references (“RTCurrent”).

The RTCORBA: : Priority value obtained from the Current may be mapped
to a native priority by using the PriorityMapping object, as discussed in
section 8.3.4.

The Real-Time Mutex

Real-time CORBA defines the local Mutex object to present a portable
interface for controlling access by multiple threads. RT CORBA mutexes are
created by the RTORB. The RT CORBA Mutexes are local objects, thus
references to the Mutexes are not allowed to cross process boundaries.

The interface definition for Mutex is in the RTCORBA module. Here is the
Mutex definition.

module RTCORBA

{
// Mutex.
local interface Mutex

{
void lock ();
void unlock ();
boolean try lock (in TimeBase::TimeT max wait);
// if max wait = 0 then return immediately
}i
}i

A real-time CORBA Mutex is functionally similar to a common mutual
exclusion lock, which is used to ensure that only one thread has access to
critical sections of code at a time. A mutex has two states, locked and
unlocked. A mutex starts out in the unlocked state. The mutex operations are:

e lock () setsthe mutex state to locked, when called on an unlocked mutex.
If the mutex is already locked, then 1ock () blocks until the owning
thread calls unlock (). A mutex is not recursive, therefore if a thread
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* try lock() attempts to set the state of a mutex to locked. It returns
TRUE if it successfully locks the mutex, or FALSE if the mutex cannot be
locked within the max wait time period. If zero is passed as the
max walt time, try lock () immediately returns FALSE if the mutex
cannot be locked. The type TimeT, used as the argument to try lock (),
is defined in the module TimeBase.

* unlock () resets the mutex state back to unlocked. If there is a single
thread waiting to acquire the lock, it will do so at this time. If multiple
threads are waiting, and either SCHED FIFO or SCHED RR scheduling
policies (described in Table 8-3) are in effect, the mutex is acquired in
priority order. If the threads implementation does not support the
aforementioned scheduling policies, or a different scheduling policy is
used, the order in which threads are awarded the lock is undefined.

RT CORBA Mutexes are supplied by the RTORB. The operations which affect
the life cycle of Mutexes are shown below:

module RTCORBA

{
local interface RTORB

{
/] ...
Mutex create mutex ();
vold destroy mutex (in Mutex the mutex);

// TRAO specific ...
i
}i

* RTORB::create mutex () createsanew instance of a mutex and returns
a reference to it. An RT CORBA mutex is a reference-counted object.

* RTORB::destroy mutex (in Mutex the mutex) cleans up the
resources held by the mutex object. In TAO, destroy mutex () removes
the mutex from the internal table of named mutexes.

In addition to these RT-CORBA-compliant operations, TAO provides extra
functionality. See 8.5.3 for details on the TAO extension.

Thread Pools

A thread pool is a collection of threads that are all separately available to
perform work on behalf of the ORB. A typical thread pool consists of two or
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more threads, all waiting for incoming requests. The threads in a pool may be
of the same default priority, or they may be grouped together in lanes. Each
lane is designated by a certain priority, and each thread in the lane executes at
that priority. Upon creation, a thread pool may have a number of pre-created
static threads. A number of dynamic threads may be created later if needed.
By default, dynamic threads live forever after they are created. The
-RTORBDynamicThreadRunTime and
-RTORBDynamicThreadIdleTimeout options can be used to specify when
dynamic threads should be destroyed. See 8.5.7.1 for details on these options.
The RT CORBA specification provides a mechanism that allows a lane of
higher priority to borrow a thread from a lane of lesser priority in the same
thread pool, if needed.

TAO thread pools are not fully compliant with the RT CORBA specification.
Specifically, request buffering and thread borrowing are not supported.
Attempts to specify request buffering or thread borrowing result in a
CORBA: :NO IMPLEMENT exception.

Interface Specifications
The RTCORBA module defines several types that are used in conjunction with
thread pools, as shown here:

module RTCORBA
{
// Threadpool types.
typedef unsigned long Threadpoolld;

struct ThreadpoolLane
{
Priority lane priority;
unsigned long static threads;
unsigned long dynamic_threads;
i
typedef sequence <ThreadpoolLane> ThreadpoolLanes;

// Threadpool Policy.
const CORBA::PolicyType THREADPOOL POLICY TYPE = 41;
local interface ThreadpoolPolicy : CORBA::Policy
{
readonly attribute ThreadpoolId threadpool;
bi
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Thread pools are identified by a value of type RTCORBA: : ThreadpoolId. A
POA may be associated with a single thread pool. This is done by supplying a
ThreadpoolPolicy as part of the PolicyList supplied to create POA().
Because a POA may only be associated with a single thread pool, there is only
one ThreadpoolId inthe ThreadpoolPolicy. The thread pool policy may
also be applied to the ORB to set the default thread pool used by subsequently-
created POAs.

Thread pools are created by the RTORB, using the IDL operations shown
here:

module RTCORBA
{
local interface RTORB
{
// Threadpool creation/destruction.
exception InvalidThreadpool {};

Threadpoolld create threadpool (in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default priority,
in boolean allow request buffering,
in unsigned long max_buffered requests,
in unsigned long max request buffer size);

Threadpoolld create threadpool with lanes (
in unsigned long stacksize,
in Threadpoollanes lanes,
in boolean allow_borrowing,
in boolean allow request buffering,
in unsigned long max buffered requests,
in unsigned long max_request buffer size);

void destroy threadpool (in ThreadpoolId threadpool)
raises (InvalidThreadpool);

Creating Thread Pools

Thread pools are managed by the ORB. This is similar to using multiple
threads with the thread-pool reactor (see Chapter 18). The main advantage to
using RT CORBA thread pools is that multiple lanes can be created with
differing thread priorities.
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Here we show the steps necessary to create a thread pool. First, the thread pool
lanes must be defined. To do this, an RTCORBA: : ThreadpoolLanes
sequence is instantiated and filled with information specifying the lane
priorities and the number and types of threads to create:

// Set the thread pool lane size.

const CORBA::ULong TOTAL LANES = // get a value from somewhere
RTCORBA: :ThreadpoolLanes lanes (TOTAL LANES);
lanes.length (TOTAL LANES) ;

// Initialize the lane information.

for (CORBA::ULong i = 0; i < TOTAL_ LANES; ++1) |
lanes[i].static_threads 1;
lanes[i] .dynamic threads = 0;

// Initialize the lane priority (a value between 0 - 32767).
lanes[i].lane priority = // some priority value

}

Next, use the RTORB to create the thread pool and child POA:

// Create the threadpool and get back its ThreadpoolId.
RTCORBA: :ThreadpoolId threadpool id =
rt orb->create threadpool with lanes (0, // Stack Size

lanes,
false, // Allow borrowing
false, // Allow request buffering
0, // Max buffered requests
0); // Max request buffer size

// Create a policy list.
CORBA::PolicyList poa policy list(2);
poa policy list.length(2);

// Set the priority model (client propagated for this example).
poa policy 1list[0] =
rt _orb->create priority model policy(RTCORBA::CLIENT PROPAGATED, O0);

// Set the thread pool id.
poa policy list[1l] =
rt_orb->create threadpool policy(threadpool id);

// Create the child poa with the policy list.

PortableServer::POA var child poa = root poa->create POA("child poa",
poa manager.in(),
poa policy list);
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Operations dispatched to servants activated in this new POA will run in one of
the threads from the thread pool at a priority requested by the client
application. See the example in 8.9 for more details on the use of thread pools.

Thread Pool Lane Listen Endpoints

Persistent object references require the same endpoint(s) to be used each time
the server is run. When thread pools with lanes are required to support
persistent object references, you must supply explicit endpoints for each lane.
This is accomplished by specifying the ~-ORBLaneListenEndpoints ORB
initialization option. This option takes two parameters—the lane identifier and
an endpoint specification. The lane identifier is a composite value of the form
n:mwhere n is the thread pool number, starting with 1, and m is the lane index
within the thread pool, starting with 0. The endpoint specification parameter is
of the form of an ordinary endpoint specification such as may be provided to
the ~-ORBListenEndpoints ORB initialization option.

For example, an application creating a thread pool with three lanes might
specify the following lane listen endpoints:

-ORBLaneListenEndpoints 1:0 iiop://:1234 \
-ORBLaneListenEndpoints 1:1 iiop://:1235 \
-ORBLaneListenEndpoints 1:2 iiop://:1236

to define three explicit endpoints for the pool’s lanes. Both of the thread pool
number and lane index can use the wildcard character of ‘*’. This value means
that the specified endpoint should be used for all lanes that match. For
example:

-ORBLaneListenEndpoints *:* iiop://myhost

would specify that all lanes in all thread pools should use the network
interface named myhost. This would be useful with systems that have multiple
network interfaces.

Another ORB initialization option, ~-ORBLaneEndpoint, is an alias for
-ORBLaneListenEndpoints. See 17.13.40 and 17.13.41 for more
information about these options.
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End-to-End Priority Propagation

One of the biggest challenges in using CORBA for real-time applications is
making sure that the priority of an activity is honored by all of the objects and
operations involved in carrying out that activity. End-to-end predictability
requires that both client and server respect the system-wide priorities during
request processing. Furthermore, the system needs to bound the priority
inversions and latencies during end-to-end processing. Of course, ultimately
the RT ORB relies upon the real-time operating system to schedule threads
appropriately. The RT CORBA specification does not attempt to define or
dictate real-time OS capabilities.

The RT CORBA specification defines two common priority propagation
models: client-propagated and server-declared. The priority model is selected
through the RTCORBA: : PriorityModelPolicy as follows:

module RTCORBA

{
// Priority Model Policy.
const CORBA::PolicyType PRIORITY MODEL POLICY TYPE = 40;
enum PriorityModel
{
CLIENT PROPAGATED,
SERVER_DECLARED

i

local interface PriorityModelPolicy : CORBA::Policy
{
readonly attribute PriorityModel priority model;
readonly attribute Priority server priority;
}i
i

The PriorityModelPolicy is a client-exposed policy, meaning that a client
ORB knows what policy is in force and can adjust itself accordingly. As
defined in the CORBA messaging specification, the value of this property is
communicated through I0P: :ServiceContexts. In 8.6 and 8.7, we
describe how to use the client-propagated and server-declared priority models
to specify how priorities are propagated end-to-end across ORB endsystems.

Explicit Binding
Frequently, real-time CORBA systems need to explicitly bind object
references prior to their first use. To fulfill this requirement, RT CORBA
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makes use of the operation CORBA: :Object:: validate connection()
with the appropriate policies set, which preestablishes a connection between
the client and server. This operation forces the server to allocate basic
resources necessary to service requests on the physical connection used to
generate the call.

Priority-banded Connections

The server uses the create priority banded connection policy ()
operation on the RTORB to create priority bands. This operation takes as a
parameter a sequence of PriorityBand structures called

RTCORBA: :PriorityBands. As shown in the IDL below, a PriorityBand
structure contains two priorities, Low and high. The low priority represents
the minimum priority of the band and the high priority represents the
maximum priority of the band.

module RTCORBA

{
// Priorities.
typedef short NativePriority;
typedef short Priority;

// PriorityBandedConnectionPolicy.
struct PriorityBand
{
Priority low;
Priority high;
i
typedef sequence <PriorityBand> PriorityBands;

}i

Each band corresponds to one or more lanes within a thread pool on the
server. The following example shows how to create priority-banded
connection policies.

// Create the sequence of priority bands.

const CORBA::ULong NUM BANDS = // some number of bands
RTCORBA: :PriorityBands bands (NUM_BANDS) ;

bands.length (NUM_BANDS) ;

// Populate the priority band sequence.
bands[0].low = low _valuel;
bands[0].high = high valuel;
bands[1].low = low value2;
bands[1].high = high value2;
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// Create the policy list and add the priority banded connection policy.
CORBA::PolicyList policy list(1);

policy list.length(l);

policy 1list[0] = rt orb->create priority banded connection policy(bands);

// Create a child poa with the priority banded connection policy.
PortableServer::POA var child poa = root poa->create POA("child poa",
poa manager.in(),
policy list);

The priority band chosen depends on the priority model specified by the
server. See 8.6 and 8.7 for more information on priority models.

Private Connections

Ordinarily, the client ORB is allowed to reuse a connection to support many
object references. However, multiplexing requests for different object
references on a single connection carries a risk of blocking a thread if the
connection is busy during an invocation triggered by another thread. The RT
CORBA PrivateConnectionPolicy allows the application to specify that
dedicated, non-multiplexed connections will be used for certain object
references. When this policy is applied to an ORB or a thread, each object
reference will have a private connection associated with it. Be aware that the
connection is associated with the object reference, not the ORB or thread. If
multiple threads use the same object reference, they may still share a
connection.

An application should use the RTORB to create instances of the

RTCORBA: : PrivateConnectionPolicy policy. This policy may be applied
to an RTORB via the ORBPolicyManager, or to a specific thread via the
PolicyCurrent. In the following example, we apply the private connection
policy to the PolicyCurrent to ensure that requests on object references
invoked from within this thread will be carried over private connections to the
servers hosting the referenced objects.

CORBA Object var obj = orb->resolve initial references("PolicyCurrent");
CORBA::PolicyCurrent var policy current =
CORBA::PolicyCurrent:: narrow(obj.in());

// Create a policy list to supply to the PolicyCurrent.
CORBA::PolicyList policy list;
policy list.length(l);
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policy 1list[0] = rt orb->create private connection policy();

policy current->set policy overrides (policy list,
CORBA: :SET OVERRIDE) ;

8.3.12 Protocol Properties
Protocol Properties were introduced into the RT CORBA specification to
allow users to specify a preferred protocol to use for connections between
clients and servers, and to fine tune the parameters of the physical transport
over which GIOP requests are made. As shown below, the
ProtocolProperties interface does not contain any operations or
attributes:

module RTCORBA
{
// Protocol Properties.
local interface ProtocolProperties
{
i
i

The TCPProtocolProperties interface corresponds to GIOP over TCP/IP
(IIOP) and allows the application to specify the sizes of the TCP send and
receive buffers, as well as the TCP keep-alive, routing, and delay attributes.
The enable network priority attribute is a TAO extension and is
described in 8.5.2. The TCPProtocolProperties interface is shown here:

module RTCORBA
{
local interface TCPProtocolProperties : ProtocolProperties
{
attribute long send buffer size;
attribute long recv buffer size;
attribute boolean keep alive;
attribute boolean dont route;
attribute boolean no_delay;
attribute boolean enable network priority;
bi
b

TAO also provides protocol property interfaces for the TAO-specific transport
protocols UIOP, DIOP, SCIOP, and SHMIOP as shown below:
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{

}i

dule RTCORBA

// Communication over Unix Domain Sockets (Local IPC).
local interface UnixDomainProtocolProperties : ProtocolProperties
{

attribute long send buffer size;

attribute long recv buffer size;

}i

// Communication over Shared Memory.
local interface SharedMemoryProtocolProperties : ProtocolProperties
{
attribute long send buffer size;
attribute long recv_buffer size;
attribute boolean keep alive;
attribute boolean dont route;
attribute boolean no_delay;
attribute long preallocate buffer size;
attribute string mmap filename;
attribute string mmap lockname;

i

// Communication over UDP (DIOP)
local interface UserDatagramProtocolProperties : ProtocolProperties
{

attribute long send buffer size;

attribute long recv_buffer size;

attribute boolean enable network priority;

}i

// Communication over SCTP (SCIOP)
local interface StreamControlProtocolProperties : ProtocolProperties
{
attribute long send buffer size;
attribute long recv buffer size;
attribute boolean keep alive;
attribute boolean dont route;
attribute boolean no delay;
attribute boolean enable network priority;
i

RT CORBA specifies two new policies for configuring protocols:

ServerProtocolPolicy

ClientProtocolPolicy
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When the server or client protocol policy is created, several protocols can be
configured at the same time by specifying the protocols and their properties in
a sequence called a ProtocolList. The order in which protocols are
specified in the list indicates the order of preference. The server-side ORB
lists protocol information in this same order in IORs created through that
ORB; the client-side ORB considers the protocols in this same order when
binding to the server. Server and client protocol policies are created via
factory operations on the RT ORB interface. These type and interface
definitions are shown below:

module RTCORBA
{

local interface ProtocolProperties { };

struct Protocol

{
IOP::Profileld protocol type;
ProtocolProperties orb protocol properties;
ProtocolProperties transport protocol properties;

i

typedef sequence<Protocol> ProtocolList;

// Server Protocol Policy
local interface ServerProtocolPolicy : CORBA::Policy
{

readonly attribute ProtocolList protocols;

i

// Client Protocol Policy
local interface ClientProtocolPolicy : CORBA::Policy
{

readonly attribute ProtocolList protocols;

i

// RT ORB factory operations for protocol policies
local interface RTORB
{
//
ServerProtocolPolicy create server protocol policy (
in ProtocollList protocols);

ClientProtocolPolicy create client protocol policy (
in Protocollist protocols);
i
i
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The following example shows how to specify protocol properties on the server
side. In this example, we configure two protocols—IIOP and the
TAO-specific UIOP—with IIOP specified as the preferred protocol (because
it is first in the protocol list).

#include <tao/RTCORBA/RTCORBA.h>

int main (int argc, char* argv[])
{
try
{
// Initialize the ORB.
CORBA::0RB var orb = CORBA::ORB_init (argc, argv);

// Get a reference to Root POA and activate it.

CORBA: :Object var obj = orb->resolve initial references ("RootPOA");
PortableServer::POA var poa = PortableServer::POA:: narrow (obj.in());
PortableServer::POAManager var mgr = poa->the POAManager () ;
mgr->activate();

// Get the RTORB.
obj = orb->resolve initial references ("RTORB");
RTCORBA: :RTORB var rtorb = RTCORBA::RTORB:: narrow (obj.in());

// Create a protocol list with 2 elements
RTCORBA: :ProtocolList protocols(2);
protocols.length(2);

// Specify the TCP properties.
CORBA::Long send buffer size = 16384;
CORBA::Long recv_buffer size = 16384;
CORBA::Boolean keep alive = true;
CORBA::Boolean dont route = false;
CORBA: :Boolean no_delay = true;

// Create TCP protocol properties.
RTCORBA: : TCPProtocolProperties var tcp_properties =
rtorb->create tcp protocol properties(
send buffer size,
recv_buffer size,
keep_alive,
dont route,
no_delay );

// Specify the TCP (IIOP) protocol as the primary protocol type.
protocols[0].protocol type = TAG INTERNET IOP;
protocols[0].transport protocol properties =

RTCORBA: :ProtocolProperties:: duplicate (tcp properties.in ());
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// Next, use UIOP with the default values if IIOP fails.
protocols[1l].protocol type = TAO TAG UIOP PROFILE;
protocols[l].transport protocol properties =

RTCORBA: :UnixDomainProtocolProperties:: nil ();

// Create server protocol policy and insert it into a policy list.
CORBA: :PolicyList policy list;

policy list.length(1l);

policy list[0] = rtorb->create server protocol policy (protocols);

// Set the policy on a new child POA.
PortableServer::POA var child poa = poa->create POA (

"childPOA", mgr.in (), policy list);

/..

Other Real-Time CORBA Features

Other aspects of the RT CORBA specification are covered in other chapters of
this guide.

Timeouts

See 6.3.3 for information on request and reply timeouts.

Reliable oneways

See 6.3.4 for information on specifying the reliability of oneway requests.
Asynchronous Invocations

Asynchronous invocations of operations on CORBA objects are covered
in 6.2.

Dynamic Scheduling

&

CORBA Real-Time Scheduling is defined in section 3 of the Real-Time
CORBA specification, version 1.2 (OMG document formal/05-01-04). This
specification supersedes the static real-time scheduling service defined in
version 1.0.

Note This specification is also known as the “static” specification. The OMG'’s
document access page refers to a separate document, formal/03-11-01, as the
“dynamic” specification. In fact, version 1.2 supersedes version 2.0, and
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represents an integration of the dynamic scheduling features first specified in
version 2.0 back into the 1.x specification branch.

Static scheduling depends upon knowing the run time characteristics of a
system a priori in order to determine the scheduling needs. Dynamic
scheduling, on the other hand, is much more flexible, allowing for run time
selection of scheduling behavior. This is achieved through the implementation
of scheduling disciplines. The RT CORBA specification lists some well
known disciplines, such as Fixed Priority Scheduling (i.e., Static) and Earliest
Deadline First. These disciplines are used to evaluate thread execution order
when using a scheduler to dispatch threads. See section 8.4.5 for more
information on the scheduler.

A distributable thread is a schedulable entity that maps to an operating system
thread while in the context of a particular process, but may pass between
processing nodes carrying schedule requirements as service contexts.
Distributable threads may be newly spawned, or may be created from an
existing thread. Distributable threads carry context information with them as
they span nodes. This context information is accessed by the scheduler in each
node through the use of portable interceptors.

8.4.1 Distributable Threads
The RT CORBA specification defines distributable threads as schedulable
threads that can run across many nodes in a distributed system. The interface
RTScheduling: :DistributableThread is used by both the Current and
Scheduler interfaces, but may also be used by the application. Distributable
thread creation occurs in two ways:

*  Creating a new operating system thread by calling
RTScheduling: :Current: :spawn (), described in 8.4.3.

* Invoking begin scheduling segment (), also described in 8.4.3.
Calling begin scheduling segment () when not in a distributable
thread makes the current thread distributable.

The distributable thread interfaces shown below provide only the means of
canceling the thread while it is running. Distributable threads work in
conjunction with scheduling segments, which in turn are managed by the
RTScheduling: :Current.
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module RTScheduling
{

local interface DistributableThread

{

enum DT State
{
ACTIVE,
CANCELLED

bi

void cancel();
readonly attribute DT State state;
}i
bi

The RTScheduling: :DistributableThread: :cancel () operation may
be used to cancel a running thread. The thread’s current state may be
referenced via the state attribute. Any thread may cancel a distributable
thread, however it is dangerous to try to cancel a thread other than the current
thread. While a distributable thread may span many nodes of a distributed
system, the interface shown above is local, meaning it only has effect in the
current process. It is possible to obtain a reference to a
DistributableThread object in one process while the actual head of the
thread is in another process. Calling cancel () on such a
DistributableThread will then not have the desired effect as the
cancellation is indicated as a change of state in the span. While a distributable
thread’s cancel () operation may be invoked at any time, in any process,
doing so does not necessarily alter the thread’s processing.

8.4.2 Real-Time Scheduling Thread Action

Thread Action objects, which implement the
RTScheduling: :ThreadAction interface, are the RT CORBA equivalent
of thread functions.

module CORBA
{

native VoidData;

i

module RTScheduling
{

local interface ThreadAction

{
void do (in CORBA::VoidData data);
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}i
}i

Objects that implement the ThreadAction interface are required to provide a
method to be invoked when using RTScheduling: :Current: : spawn () to
start a new distributable thread. The spawn () operation takes a reference to a
ThreadAction and invokes do () on it in the native thread creation method.
The data argument is a native type, CORBA: : VoidData, which is defined as
avoid* by the C++ language mapping and is used the same way that a void*
argument is supplied to a C/C++ thread function.

Real-Time Scheduling Current

The real-time scheduling current, RTScheduling: :Current, is a
specialization of the RTCORBA: : Current interface providing additional
operations related to creation and management of distributable threads.
Through the RTScheduling: :Current, distributable threads may be
spawned or the current thread may be converted into a distributable thread. A
distributable thread may span several scheduling segments. The Current
provides the means to identify all the segments of the currently operating
thread.

TAO?’s definition of RTScheduling: :Current deviates slightly from the
RT CORBA specification in one important regard. In TAO, the signature of
the spawn () operation contains additional parameters that are not present in
the RT CORBA specification. The RT CORBA specification defines the
spawn () operation as follows:

module RTScheduling
{
local interface Current : RTCORBA::Current
{
// Standard RT CORBA spawn() operation definition.
DistributableThread spawn (in ThreadAction start,
in unsigned long stack size,
in RTCORBA::Priority base priority);
i
}i

TAO extends this interface to include parameters that would normally be
supplied to the begin scheduling segment () operation.

module RTScheduling
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local interface Current : RTCORBA::Current
{

// TAO’s extended spawn() operation definition.

DistributableThread spawn (in ThreadAction start,
in CORBA::VoidData data,
in string name,
in CORBA::Policy sched param,
in CORBA::Policy implicit_sched param,
in unsigned long stack size,

in RTCORBA::Priority base priority);
i
}i

TAQ’s extended spawn () operation combines two steps into one. The RT
CORBA specification is very open in terms of how distributable threads may
interact with schedules. It states that schedules, or schedulers, are not required,
but does not completely describe what should happen when they are not
present. By allowing distributable threads to exist outside of schedules, the
specification imposes an explicit burden for any thread to also invoke
begin scheduling segment () when starting. This requires that the
schedule segment information either be known implicitly by the thread
function, or it must be communicated to the thread function via the data
parameter, which usually carries application data for the thread. TAO’s
implementation of spawn () carries the schedule segment information
separately from any application-specific thread data. It also uses a wrapper
function to invoke begin scheduling segment () before, and

end scheduling segment () after, invoking the thread function.

The RTScheduling: :Current is responsible for managing scheduling
segments. Threads invoke begin scheduling segment () to start a new,
and possibly nested, scheduling segment. Threads invoke

end scheduling segment () at the completion of a scheduling segment.
Threads may also invoke update scheduling segment () to modify the
attributes of the current scheduling segment, if necessary.

module RTScheduling
{
local interface Current : RTCORBA::Current

{
exception UNSUPPORTED SCHEDULING DISCIPLINE {};

void begin_scheduling segment (in string name,
in CORBA::Policy sched param,
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in CORBA::Policy implicit sched param)
raises (UNSUPPORTED_ SCHEDULING DISCIPLINE);

void update scheduling segment (in string name,
in CORBA::Policy sched param,
in CORBA::Policy implicit sched param)
raises (UNSUPPORTED SCHEDULING DISCIPLINE);

void end scheduling segment (in string name);
}i
i

The operations above allow RT CORBA applications to manage scheduling
segments. Scheduling segments may be named, and the name can be used
when ending a scheduling segment to ensure the correct segment is ended;
otherwise, the name has no purpose. The sched param and

implicit sched param parameters are used to describe how a scheduling
segment relates to other scheduling segments within the scheduler. The
sched param parameter is used to explicitly define the new or updated
scheduling segment. The implicit sched param parameter is used
whenever a nested scheduling segment is started with a nil sched param
value. There are no constraints placed on the definition of the scheduling
parameters by the RT CORBA specification other than the fact that they must
derive from the CORBA: : Policy interface. Scheduling parameters are created
by schedulers that implement a particular scheduling discipline, by way of a
factory operation that returns scheduling parameters specific to that discipline.
The RT CORBA specification describes a number of well-known scheduling
disciplines, and includes example IDL specifications for each. These
scheduling disciplines are briefly described in section 8.4.5. See also section
3.7 of the RT CORBA 1.2 specification for a more complete description of
these scheduling disciplines.

Real-Time Scheduling Resource Manager

The RT CORBA specification defines a scheduler-aware specialization of the
RTCORBA: :Mutex called RTScheduling: :ResourceManager. This
interface defines no new operations or attributes, it simply provides a means to
distinguish a resource manager from a base mutex. A ResourceManager is
created by calling the create resource manager () operation on the
RTScheduling: :Scheduler interface. See 8.4.5 for more details on the
RTScheduling: :Scheduler interface. Operations that acquire
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&

RTScheduling: :ResourceManager::try lock()) or release
(RTScheduling: :ResourceManager: :unlock () ) areal-time CORBA
resource manager are defined as scheduling points, meaning the scheduler will
have a chance to run and reassess the scheduling parameters, thereby ensuring
that the scheduling discipline is maintained. Distributable threads may share
local resources by using RTScheduling: :ResourceManager operations.

Real-Time Scheduling Scheduler

A scheduler is responsible for allocating system resources and determining
timeliness. The real-time CORBA scheduler is intended to be pluggable. ORB
implementations may provide different scheduler implementations as long as
they implement the RTScheduling: : Scheduler interface, defined in
RTScheduler.pidl. This pluggable architecture affords implementors the
flexibility to provide specific schedulers, each with particular scheduling
characteristics. The scheduler works in conjunction with portable interceptors
to track scheduling segments of a distributable thread. The real-time scheduler
interface is described in 8.4.5.3, where it is presented in context with the other
elements of real-time scheduling.

TAO’s RTScheduleManager

While the real-time CORBA specification describes the

RTScheduling: :Scheduler interface and its role in distributed real-time
systems, it does not mandate an implementation or even a scheme for
managing schedulers. The specification states that using a scheduler is
optional, and for ORBs that have a scheduler, it may be accessed by calling
resolve initial references (“RTScheduler”).TAO, on the other
hand, provides a TAO-specific initial reference called the
“RTScheduleManager”. A call to

resolve initial references (“RTSchedulerManager”) returns an
object through which an application may supply its own scheduler.

Scheduling Disciplines

A scheduler is used to implement a particular scheduling discipline. It may
implement a well-known scheduling discipline such as Earliest Deadline First
or something esoteric such as Most Important First. The real-time CORBA
specification describes four well-known scheduling disciplines:

*  Fixed Priority
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» Earliest Deadline First (EDF)
* Least Laxity First (LLF)
e Maximize Accrued Utility (MAU)

For each of these disciplines, the specification provides a recommended
interface, including the definition of the particular scheduling parameter type
and how it might be created.

In addition, TAO provides an example scheduler that implements a scheduling
discipline that is not one of the above well-known disciplines, but that may be
useful in some situations:

*  Most Important First (MIF)

The following sections briefly describe each of the well-known scheduling
disciplines, the associated scheduling parameter types, and the scheduler
interface.

Common RTScheduling::Scheduler Interface

Each of the discipline-specific schedulers listed above extends the common
base interface RTScheduling: : Scheduler. The RT CORBA specification
provides an interface for this base type. TAO extends the Scheduler
interface, as shown in 8.5.4. The RT CORBA specified interface focuses on
resource management and is shown here:

module RTScheduling
{
local interface Scheduler

{
exception INCOMPATIBLE SCHEDULING DISCIPLINES {};

attribute CORBA::PolicyList scheduling policies;
readonly attribute CORBA::PolicyList poa policies;
readonly attribute string scheduling discipline name;

ResourceManager create resource manager (
in string name,
in CORBA::Policy scheduling parameter);

void set scheduling parameter (
inout PortableServer::Servant resource,
in string name,
in CORBA::Policy scheduling parameter);
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i

Note that the exception INCOMPATIBLE SCHEDULING DISCIPLINES is not
explicitly referenced by any of the operations defined in the specification.

The scheduling policies and poa policies attributes provide the
scheduler with a way of listing any POA policies that might be required for the
scheduler to work. It is reasonable and typical for these attributes to return nil
values.

The scheduling discipline name attribute is simply a name that may be
queried by the application to identify the particular discipline implemented by
the scheduler.

The create resource manager () operation is used to create instances of
RTScheduling: :ResourceManager, providing it with a name and
optionally associating it with a scheduling parameter.

The set scheduling parameter () operation is intended to be a hook
giving schedulers a way to associate certain schedule parameters, such as a
fixed priority ceiling, to a particular resource. The resource in this case is a
servant.

It is not necessary for a scheduler to implement all or any of these operations.
They are defined merely as hooks to provide scheduler implementors a means
to express any sort of scheduling needs in code.

Fixed Priority Scheduling

The fixed priority scheduling discipline, also known as rate-monotonic
scheduling, is characterized by static schedules where the schedule is
completely determined prior to deployment. An example of fixed priority
scheduling is available in

$TAO ROOT/examples/RTScheduling/Fixed Priority Scheduler.
The fixed priority scheduler is a suitable replacement for the older static
scheduling model.

Fixed priority scheduling is defined in the FP_ Scheduling module. The
fixed priority scheduling parameter is defined by the

FP Scheduling::SegmentSchedulingParameterPolicy local
interface. It has an attribute representing a single RT CORBA priority value.
The fixed priority scheduler is defined by the

FP Scheduling::FP_Scheduler interface.
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module FP_Scheduling
{
local interface SegmentSchedulingParameterPolicy : CORBA::Policy
{
attribute RTCORBA::Priority value;
}i

local interface FP_Scheduler : RTScheduling::Scheduler
{
SegmentSchedulingParameterPolicy create segment scheduling parameter (
in RTCORBA::Priority segment priority);
i
i

8.45.5 Earliest Deadline First Scheduling
The earliest deadline first (EDF) scheduling discipline places emphasis on
those threads that must complete the soonest. EDF scheduling segments are
based on a required completion time, which may be modified further by an
indication of a thread’s importance depending upon a particular scheduler’s
implementation. TAO does not currently provide a reference implementation
of the EDF scheduling discipline. The RT CORBA specification, however,
provides a suggested EDF scheduling interface in the EDF_Scheduling
module, shown here:
module EDF Scheduling
{
struct SchedulingParameter
{
TimeBase::TimeT deadline;
long importance;
i
local interface SchedulingParameterPolicy : CORBA::Policy
{
attribute SchedulingParameter value;
}i
local interface Scheduler : RTScheduling::Scheduler
{
SchedulingParameterPolicy create scheduling parameter (
in SchedulingParameter value);
}i
i
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Note that the deadline member of the scheduling parameter is of type
TimeBase: : TimeT. This type is defined as part of the CORBA Time Service

specification.

Least Laxity First Scheduling

The least laxity first (LLF) scheduling discipline favors threads that have the
least amount of time they can wait before missing a deadline (i.e., being late).
The real-time CORBA specification defines laxity as:

laxity = deadline - current time - estimated remaining time to completion

Where the estimated remaining time to completion is based on an estimated
initial execution time and the current time executed. In the LLF scheduling
discipline, threads that have a lower laxity value are scheduled first.

Least laxity first scheduling is defined in the LLF Scheduling module:

module LLF Scheduling
{

struct SchedulingParameter

{
TimeBase::TimeT deadline;
TimeBase::TimeT estimated initial execution time;
long importance;

i

local interface SchedulingParameterPolicy : CORBA::Policy
{

attribute SchedulingParameter value;

}i

local interface Scheduler : RTScheduling::Scheduler
{

SchedulingParameterPolicy create scheduling parameter (
in SchedulingParameter value);
bi
bi

The LLF scheduling parameter is similar to the EDF scheduling parameter in
that it includes a deadline and an importance qualifier. An estimate of the
amount of time this schedule segment is anticipated to take to complete is also
included, so that the scheduler can compute the laxity for this segment. TAO
does not currently provide a reference implementation of the LLF scheduling
discipline.
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Maximize Accrued Utility Scheduling

The maximize accrued utility (MAU) scheduling discipline is a special case of
the Earliest Deadline First scheduling discipline. In MAU scheduling, a
special function, called the utility function, is used to compute a utility value
for a thread. The utility of a thread is a measure of the likelihood that a thread
will complete close to, but prior than, its deadline. A thread that can complete
close to its deadline has a greater utility value than a thread completing much
earlier. A thread that will complete after its deadline may have a zero or
negative utility value. The MAU discipline seeks a schedule that results in
maximal accrued (i.e., summed) utility.

Maximize accrued utility scheduling is defined in the
Max Utility Scheduling module:

module Max Utility Scheduling
{

struct SchedulingParameter

{
TimeBase::TimeT deadline;
long importance;

i

local interface SchedulingParameterPolicy : CORBA::Policy
{

attribute SchedulingParameter value;

i

local interface Scheduler : RTScheduling::Scheduler
{
SchedulingParameterPolicy create scheduling parameter (
in SchedulingParameter value);
}i
i

The MAU scheduling parameter is similar to the EDF scheduling parameter in
that it includes a deadline and an importance qualifier. TAO does not currently
provide a reference implementation of the MAU scheduling discipline.

Most Important First Scheduling

TAO provides an example of a scheduler that implements a somewhat
different scheduling discipline from the well-known disciplines described
above. The most important first (MIF) scheduler makes use of a thread’s
importance to determine which thread should execute. The MIF scheduler
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interface is defined in the MIF Scheduling module in
$TAO ROOT/examples/RTScheduling/MIF Scheduling.idl.

module MIF Scheduling

{
local interface SegmentSchedulingParameterPolicy : CORBA::Policy

{

attribute short importance;

}i

local interface MIF Scheduler : RTScheduling::Scheduler
{
SegmentSchedulingParameterPolicy create segment scheduling parameter (
in short segment importance);
i
i

An implementation of MIF scheduling is provided in
$TAO ROOT/examples/RTScheduling/MIF Scheduler.

8.5 TAO’s Implementation of Real-Time CORBA

This section provides details on using TAO’s implementation of RT CORBA
and RT CORBA extensions provided in TAO. Topics in this section include:

*  Priority Mapping in TAO

*  Enabling Network Priority in TAO

* Using TAO’s Named Mutexes

* Building RT CORBA Support into TAO
*  Configuring the RT ORB Component

8.5.1 Priority Mapping In TAO

TAO offers three priority mappings: continuous, direct and linear. These
priority mappings are explained in the following subsections.

8.5.1.1 Continuous Priority Mapping

The continuous priority mapping, as shown in Figure 8-3, uses only the first »
priorities of CORBA’s priority range, providing a one-to-one mapping of
native-to-CORBA priorities, where 7 is the number of discrete native priority

- -
ﬁ' ociweb.com 185




Real-Time CORBA

Continuous
Mative CORBA

max_ Ericnity

invalid

4=
highest ‘Q:D n—1
et | | w2
% NN
e | =
e

Figure 8-3 TAO Continuous Mapping Behavior

values permitted by the operating system. The lowest native priority maps to a
CORBA priority value of 0, the next higher native priority maps to 1, etc.

Because the mapping functions, PortableMapping::to native () and
PortableMapping::to CORBA () are idempotent, you can start with a
priority value, convert it twice and end up with the same value. This advantage
of continuous mapping is countered by the disadvantage that part of the
CORBA priority range is invalid. If you are using more than one RTOS in a
distributed environment, where each RTOS defines a different number of
discrete priority values, some CORBA priorities will map to valid native
priorities in one RTOS, but be invalid in another RTOS.
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8.5.1.2

Direct Priority Mapping

The direct priority mapping is similar to the continuous priority mapping in
that some of the CORBA priority values are invalid. However, native priority
values are passed directly through as CORBA priority values. As shown in
Figure 8-4, no priority transform is applied to the native value. This mapping
would only be desirable where native priority values fall within the minimum
and maximum values of the CORBA priority range.

It is possible to have native priority values that do not directly map onto the
CORBA priority range. The direct mapping would be useless in this situation.
An attempt to set the priority from a native value that does not map into the

ociweb.com 187



Real-Time CORBA

CORBA priority range would cause a CORBA: : DATA CONVERSION exception
to be raised.
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Figure 8-4 TAO Direct Mapping Behavior

8.5.1.3 Linear Priority Mapping
The linear priority mapping is one-to-many, providing a range of CORBA
priority values for each native priority value. The size of the range is
(RTCORBA: :maxPriority - RTCORBA::minPriority)/n, where n is the
number of discrete native priorities. For instance, a native system offering 16
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priority values would result in a map with 2048 CORBA priority values for
each native priority value.

Linear
Native CORBA
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midling n—1

least
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Figure 8-5 TAO Linear Mapping Behavior

The risk with the linear priority mapping is that rounding can occur. In other
words, a CORBA priority converted to a native priority may be converted
back to a different CORBA priority value than the original. Furthermore, if
objects are hosted on processes using different real-time operating systems
with sufficiently different priority ranges, the linear mapping may result in a
native priority being communicated, then communicated back as a different
native priority.

8.5.1.4 Using TAO’s Priority Mappings
The RT CORBA specification only defines what a priority-mapping object is
to do, not kow it is to do it. Furthermore, the specification does not define a
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means of accessing the priority-mapping object. What is defined is
RTScheduling, which hides the details of priority mapping from the
application.

To ensure that priority mappings are used consistently in an environment,
TAO is configured at run time through the RT ORB Loader service
configuration option ORBPriorityMapping (see 8.5.7). Within your
application, the ORB’s priority-mapping object may be obtained through a
helper object, an instance of TAO Priority Mapping Manager (or its alias
RTCORBA: :PriorityMappingManager) as shown below:

class TAO RTCORBA Export TAO Priority Mapping Manager :
public virtual CORBA::LocalObject

{
public:
//... implementation details not shown

// Get the current priority mapping.
RTCORBA: :PriorityMapping* mapping (void);

// Set a new priority mapping.
void mapping (RTCORBA::PriorityMapping* new mapping);

}i

Since the priority-mapping manager, TAO Priority Mapping Manager,
inherits from CORBA: : LocalObject, it ultimately inherits from

CORBA: : Object, which means that a reference to it may be obtained from the
ORB viaacall to resolve initial references (). The name used for
this object is PriorityMappingManager. The object reference returned
from resolve initial references () must be narrowed using a call to
RTCORBA: :PriorityMappingManager:: narrow (). The mapping()
operation is then called on the resulting object reference to obtain a pointer to
the RTCORBA: : PriorityMapping object as shown below:

CORBA::Object var obj =
orb->resolve initial references ("PriorityMappingManagaer");

RTCORBA: :PriorityMappingManager var mapping manager =
RTCORBA::PriorityMappingManager:: narrow (obj.in());

RTCORBA: :PriorityMapping* priority mapping = mapping manager->mapping();

Note that the PriorityMappingManager retains ownership of the
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8.5.2

Enabling Network Priority in TAO

Some environments provide support for differentiated classes of network
service, and allow applications to specify their network quality of service
needs. A common mechanism for providing differentiated classes of service
on IP networks is the Differentiated Services (diffserv) architecture defined by
the Internet Engineering Task Force (IETF) Diffserv Working Group. In the
diffserv architecture, applications encode a particular six-bit pattern into a
field, called the DS field, of the IP packet header, thereby marking a packet to
receive a particular forwarding treatment, or per-hop behavior (PHB), at each
network node. The Diffserv Working Group has standardized a small number
of specific per-hop behaviors and a recommended bit pattern, or codepoint, for
each one. These PHBs and their recommended codepoints are defined in
various I[ETF Requests for Comments (RFCs). For more information on
Differentiated Services and Diffserv Codepoints (DSCPs), see RFC 2474,
RFC 2475, RFC 2597, RFC 2598, and RFC 3246, all of which are available
from the IETF at <http://www.ietf.org/rfc/>.

The RT CORBA specification does not provide a way to map RT CORBA
priorities to network priorities. As an extension to RT CORBA, TAO provides
a mechanism to map RT CORBA priorities to network priorities via diffserv
codepoints. Applications enable this mapping via a TAO-specific extension to
the TCPProtocolProperties described in 8.3.12. The interface is:

module RTCORBA
{

local interface TCPProtocolProperties : ProtocolProperties
{
attribute long send buffer size;
attribute long recv buffer size;
attribute boolean keep alive;
attribute boolean dont route;
attribute boolean no_delay;
attribute boolean enable network priority;
bi
bi

When the enable network priority attribute is set to TRUE, mapping
between RT CORBA priority and a corresponding network priority diffserv
codepoint is enabled. The diffserv codepoint resulting from this mapping is
encoded into the DS field in the IP packet header for GIOP requests and
replies.
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8.5.2.1 Enabling Network Priority in a Client
If you enable network priorities on the client side, the RT CORBA priority of
the invoking thread is mapped to a corresponding diffserv codepoint and set in
the IP packet header for GIOP requests. To enable network priorities on the
client side, you must create a TCPProtocolProperties object, set the
enable network priority attribute to TRUE, create a protocol properties
policy, then set the protocol properties policy at the ORB, thread, or object
level. An example of how to do this is shown below:

#include <tao/RTCORBA/RTCORBA.h>

int main (int argc, char* argv[])
{
try
{
// Initialize the ORB.
CORBA::0RB var orb = CORBA::ORB init (argc, argv);

// Get the RTORB.
obj = orb->resolve initial references ("RTORB");
RTCORBA: :RTORB_var rtorb = RTCORBA::RTORB:: narrow (obj.in());

// Specify the TCP properties.
CORBA::Long send buffer size = 16384;
CORBA::Long recv _buffer size = 16384;
CORBA: :Boolean keep alive = true;
CORBA: :Boolean dont_ route = false;
CORBA::Boolean no_delay = true;

// Create TCP protocol properties.
RTCORBA: : TCPProtocolProperties var tcp properties =
rtorb->create_tcp protocol properties (
send buffer size,
recv_buffer size,
keep alive,
dont_route,
no_delay );

// Enable network priority.
tcp_properties->enable network priority (1);

// Create a protocol list and set the ProtocolProperties.
RTCORBA: :ProtocollList protocols;
protocols.length (1);
protocols[0].protocol type = TAO TAG IIOP PROFILE;
protocols[0].transport protocol properties =

RTCORBA: :ProtocolProperties:: duplicate (tcp properties.in ());
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// Create client protocol policy and insert it into a policy list.
CORBA: :PolicyList policy list;

policy list.length (1);

policy 1ist[0] = rtorb->create client protocol policy (protocols);

// Set the policy at the ORB level.
CORBA: :Object var obj = orb->resolve initial references ("ORBPolicyManager");
CORBA: :PolicyManager var policy manager =
CORBA: :PolicyManager:: narrow(obj.in());
policy manager->set policy overrides(policy list, CORBA::SET OVERRIDE) ;

/..

In the example above, since the client protocol policy is set at the ORB level
(by setting the policy overrides on the ORBPolicyManager), network priority
mapping will be enabled for all requests invoked through that ORB.

8.5.2.2 Enabling Network Priority in a Server

If you enable network priorities on the server side, the RT CORBA priority of
the request-dispatching thread is mapped to a corresponding diffserv
codepoint and set in the IP packet header for the GIOP reply. To enable
network priorities on the server side, create TCPProtocolProperties and
set the enable network priority attribute to TRUE. Then, create a
protocol-properties policy and set the policy on a new POA upon creation. An
example of how to do this is shown below:

#include <tao/RTCORBA/RTCORBA.h>

int main (int argc, char* argvl[])
{
try
{
// Initialize the ORB.
CORBA: :0RB var orb = CORBA::ORB init (argc, argv);

// Get a reference to Root POA and activate it.

CORBA: :Object var obj = orb->resolve initial references ("RootPOA");
PortableServer::POA var poa = PortableServer::POA:: narrow (obj.in());
PortableServer::POAManager var mgr = poa->the POAManager();
mgr->activate ();

// Get the RTORB.
obj = orb->resolve initial references ("RTORB");
RTCORBA: :RTORB_var rtorb = RTCORBA::RTORB:: narrow (obj.in());
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// Specify the TCP properties.
CORBA::Long send buffer size = 16384;
CORBA::Long recv_buffer size = 16384;
CORBA::Boolean keep alive = true;
CORBA::Boolean dont route = false;
CORBA::Boolean no delay = true;

// Create TCP protocol properties.
RTCORBA: : TCPProtocolProperties var tcp properties =
rtorb->create_tcp protocol properties (
send buffer size,
recv_buffer size,
keep_ alive,
dont_route,
no delay );

// Enable network priority.
tcp_properties->enable network priority (1);

// Create a protocol list and set the ProtocolProperties.
RTCORBA: :ProtocolList protocols;
protocols.length (1);
protocols[0].protocol type = TAO TAG IIOP PROFILE;
protocols[0].transport protocol properties =

RTCORBA: :ProtocolProperties:: duplicate (tcp properties.in ());

// Create server protocol policy and insert it into a policy list.
CORBA::PolicyList policy list;

policy list.length (1);

policy 1ist[0] = rtorb->create server protocol policy (protocols);

// Set the policy on a new child POA.

PortableServer::POA var child poa = poa->create POA (
"childPOA", PortableServer::POAManager:: nil(), policy list);

/..

In the example above, network priority mapping will be enabled in all replies
generated from servants activated in the child POA. Replies generated from
servants activated in the Root POA will not have network priority mapping
enabled, so take care when using this to get object references from

servants.
8.5.2.3 Network Priority Mappings
Different mappings of RT CORBA priorities to network priorities are
possible. A specific network priority mapping is provided via a TAO-specific
194
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NetworkPriorityMapping interface. This mapping is similar to the RT
CORBA priority to native priority mapping described in 8.3.4. The interface is
shown below:

module RTCORBA

{
typedef long NetworkPriority;
native NetworkPriorityMapping;

i

The C++ binding for NetworkPriorityMapping is a class in the RTCORBA
namespace as shown below:

namespace RTCORBA {
class NetworkPriorityMapping
{
public:
virtual CORBA::Boolean to network (RTCORBA::Priority corba priority,
RTCORBA: :NetworkPriority& network priority );
virtual CORBA::Boolean to CORBA (RTCORBA::NetworkPriority network priority,
RTCORBA: :Priorityé& corba priority );
}i
i

The functions to_network () and to CORBA () may be called several times
by an ORB during an invocation. To provide the greatest possible efficiency
these functions do not throw exceptions, not even CORBA System exceptions.
However these functions will return FALSE if the input value is outside the
allowed range for that type. For both of these functions, the first argument has
the semantics of an in, supplying input, with the second argument being an out
for receiving the converted results.

During an invocation, the RT ORB uses these mapping functions to map
between RT CORBA priority and network priority. If the call to either
mapping function returns FALSE, the ORB stops processing the invocation
and throws a DATA CONVERSION system exception to the invoking
application.

By default, TAO uses a linear network-priority mapping that maps RT
CORBA priority values to discrete diffserv codepoints recommended by
various IETF RFCs. For example, RFC 2474 recommends specific codepoints
for “default” per-hop behaviors and various Class Selector (CS) codepoints;
RFC 2597 recommends specific codepoints for various Assured Forwarding
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(AF) PHBs; RFC 3246 recommends a specific codepoint for Expedited
Forwarding (EF) PHB. See the relevant RFCs for more information on the
values and semantics of these PHBs and their recommended diffserv
codepoints.

8.5.2.4 Using TAO’s Network Priority Mappings

Similar to the run-time configuration of priority mappings described in
8.5.1.4, the network priority mapping used by TAO can be configured at run
time through the RT ORB Loader option
RTORBNetworkPriorityMapping, described in 8.5.7. Within your
application, the ORB’s network priority-mapping object may be obtained
through either a helper object, an instance of
TAO Network Priority Mapping Manager or its typedef
RTCORBA: :NetworkPriorityMappingManager.
class TAO RTCORBA Export TAO Network Priority Mapping Manager :

public virtual CORBA::LocalObject
;ublic:
//... implementation details not shown

/// Get the current network priority mapping.

RTCORBA: :NetworkPriorityMapping* mapping (void);

/// Set a new network priority mapping.

void mapping (RTCORBA::NetworkPriorityMapping* new mapping);
}
Because TAO Network Priority Mapping Manager is derived from
CORBA: :LocalObject, it ultimately is derived from CORBA: :Object. As a
descendant of CORBA: : Object, a reference to the network priority mapping
manager may be obtained from the ORB via a call to
resolve initial references (). The name used for this object is
NetworkPriorityMappingManager. The object reference returned from
resolve initial references () must be narrowed using a call to
RTCORBA: :NetworkPriorityMappingManager:: narrow (). Then, a
call must be made to the mapping () function on the resulting object
reference to obtain a pointer to the RTCORBA: : NetworkPriorityMapping
object. An example of how to do this is shown below:

; L
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CORBA::Object var obj =

orb->resolve initial references ("NetworkPriorityMappingManagaer");
RTCORBA: :NetworkPriorityMappingManager var network mapping manager =

RTCORBA: :NetworkPriorityMappingManager:: narrow (obj.in());
RTCORBA: :NetworkPriorityMapping* network priority mapping =

network mapping manager->mapping();

Note that the NetworkPriorityMappingManager retains ownership of the
NetworkPriorityMapping, so it should not be deleted.

Implementing a Custom Network Priority Mapping

An application can implement a custom NetworkPriorityMapping by
deriving a new class from RTCORBA: :NetworkPriorityMapping and
overriding the to network () and to CORBA () functions as shown below:

class CustomNetworkPriorityMapping :
public virtual RTCORBA::NetworkPriorityMapping

public:
virtual CORBA::Boolean to network (RTCORBA::Priority corba priority,
RTCORBA: :NetworkPriority& network priority );
virtual CORBA::Boolean to CORBA (RTCORBA::NetworkPriority network priority,
RTCORBA: :Priorityé& corba priority );
}i

CORBA: :Boolean CustomNetworkPriorityMapping::to network (
RTCORBA::Priority corba priority,
RTCORBA: :NetworkPriorityé& network priority )

{

network priority = // map corba priority to network priority
return true;

CORBA::Boolean CustomNetworkPriorityMapping::to CORBA (
RTCORBA: :NetworkPriority network priority,
RTCORBA::Priority& corba priority )

corba priority = // map network priority to corba priority
return true;

To create an instance of our custom network priority mapping and instruct
TAO to use it instead of the default network priority mapping, we do the
following:

CustomNetworkPriorityMapping* new network priority mapping =

ociweb.com 197



Real-Time CORBA

8.5.3

new CustomNetworkPriorityMapping();
network mapping manager->mapping(new network priority mapping);

Note that the NetworkPriorityMappingManager takes ownership of the
new network priority-mapping object.

Using TAO’s Named Mutexes

The basic RT CORBA Mutex specification only requires that an RTORB
create and destroy mutexes. TAO adds the option of maintaining a table of
mutexes keyed by a name, freeing the application developer from managing
references to the mutex as shown below:

module RTCORBA

{
local interface RTORB

{
/...
// TAO specific
// Named Mutex creation/opening
exception MutexNotFound {};
Mutex create named mutex (in string name,
out boolean created flag);

Mutex open named mutex (in string name)
raises (MutexNotFound);

}i
}i

In addition to supplying the RT-CORBA-compliant implementation of
mutexes, TAO provides the following functions for accessing mutexes by
name:

RTORB: :create named mutex(in string name, out boolean created flag)

Creates a new instance of a mutex and returns a reference to it, or returns a
reference to an existing mutex of that name. The value of created flag
will be TRUE only if the mutex was created as a result of this call.

RTORB: :open named mutex (in string name)

Returns a reference to an existing mutex only if it exists. Raises the TAO-
specific exception MutexNotFound if the supplied name does not match
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Dynamic Scheduling and TAO

TAO fully supports the scheduling feature of RT CORBA. TAO deviates from
the specification in a few important respects. In particular, the definitions of
the RTScheduling: :Current (see 8.4.3) and the base interface for the
RTScheduling::Scheduler (see 8.4.5) are slightly different in TAO than
in the specification.

TAO does not provide an implementation of RTScheduling: : Scheduler.
As discussed in 8.4.5, the scheduler is effectively an abstract interface, the real
work of scheduling being handled by specialized schedulers. TAO does
provide the framework for building your own scheduler and using it to
manage the dispatching of distributable threads. TAO’s framework includes a
set of portable interceptors to provide message notification to the scheduler.
These interceptors provide additional scheduling points in addition to the
usual begin, update, and end of a scheduling segment.

TAO extends the base scheduler as defined in the RT CORBA specification to
define several operations used by the portable interceptors or
RTScheduling: :Current as schedule evaluation points. TAO’s scheduler
interface definition is shown here:

module RTScheduling
{
local interface Scheduler
{
void begin new scheduling segment (in Current::IdType guid,
in string name,
in CORBA::Policy sched param,
in CORBA::Policy implicit sched param)
raises (Current::UNSUPPORTED SCHEDULING DISCIPLINE);

void begin nested scheduling segment (in Current::IdType guid,
in string name,
in CORBA::Policy sched param,
in CORBA::Policy implicit sched param)
raises (Current::UNSUPPORTED SCHEDULING DISCIPLINE);

void update scheduling segment (in Current::IdType guid,
in string name,
in CORBA::Policy sched param,
in CORBA::Policy implicit sched param)
raises (Current::UNSUPPORTED SCHEDULING_DISCIPLINE) ;

void end scheduling segment (in Current::IdType guid,
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in string name);

vold end nested scheduling segment (in Current::IdType guid,
in string name,
in CORBA::Policy outer sched param);
i
b

The scheduler’s operations are invoked by the RTScheduling: :Current
whenever a new base or nested schedule segment is begun or ended, or when a
segment is updated. These invocations provide the scheduler an opportunity to
raise an exception (e.g., if an inappropriate exception is used) or to possibly
dispatch or otherwise order existing distributable threads.

The TAO scheduler provides implementations for all of the portable
interceptor interception points. With the exception of receive request (),
the signatures of all the interception operations is the same as that of the
equivalent PortableInterceptor: :ServerInterceptor or
PortableInterceptor::ClientInterceptor operations. The difference
in the signature of the receive request () operation results from the need
to supply additional information to the scheduler, as shown here:

module RTScheduling
{

local interface Scheduler
{
vold receive request (in Portablelnterceptor::ServerRequestInfo ri,
in Current::IdType guid,
in string name,
in CORBA::Policy sched param,
in CORBA::Policy implicit sched param)
raises (PortablelInterceptor::ForwardRequest) ;
i
b

As with the common scheduler operations shown in 8.4.5.3, TAO’s additional
operations provide additional hooks to allow the expression of any sort of
scheduler that may be required by the application. The TAO-specific
scheduler interface is intended to describe all possible schedule evaluation
points, making up for apparent deficiencies in the RT CORBA specification’s
scheduler interface.
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8.5.6

Enabling RT CORBA Support in TAO

RT CORBA features are controlled when building TAO by the rt corba,
corba messaging, and minimum corba build flags. The RT CORBA
features are enabled in TAO by default because rt corbaissetto 1,

corba messagingissetto 1, and minimum corba is set to 0 by default in
the TAO make files. If any of these three flags is set to the opposite value, RT
CORBA support will not be available in the TAO libraries. The preprocessor
macros TAO_HAS RT CORBA, TAO HAS CORBA MESSAGING, and

TAO HAS MINIMUM CORBA can also be used to set these flags (for example,
in build environments where you are not using GNU Make). See A.4 for more
information concerning these flags and macros.

Building Applications that use RT CORBA

TAO’s support of basic RT CORBA features is implemented in the

TAO RTCORBA library, and the RTPortableServer module’s features are
implemented in the TAO RTPortableServer library. Thus, applications that
use TAO’s RT CORBA features must link with one or both of these libraries.
MPC projects for clients that use RT CORBA can simply inherit from the

rt client base project. MPC projects for servers that use RT CORBA can
simply inherit from the rt server base project. For example, here is the
MPC file for the RT CORBA example in

$TAO ROOT/DevGuideExamples/RTCORBA:

project (*Server): rt server {
Source Files {
Messenger i.cpp
MessengerServer.cpp
common . Cpp
}
}

project (*Client): rt client {
Source Files {
MessengerC.cpp
MessengerClient.cpp
common . cpp
}
}

For more information on MPC, see
<http://www.ociweb.com/products/MPC>.
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8.5.7 Configuring RT CORBA at Run Time

Certain behavioral aspects of TAO’s implementation of RT CORBA can be
configured at run time.

8.5.71 RT ORB Loader

The RT ORB can be configured via the RT ORB Loader service object. The
TAO RT ORB_Loader takes initialization options that control the priority
mapping type, the network priority mapping type, the scheduling policy, the
thread scoping policy, and the lifetime of dynamic threads in a thread pool.

The RT ORB_Loader object is initialized by supplying a service
configuration directive, typically as a line in a svc. conf file. Service
configuration directives are explained in further detail in Chapter 16. For
example, an application that statically links the RTCORBA library may use a
static directive as shown here. (The entire directive should appear on one
line in the file.)

static RT ORB_Loader "-ORBPriorityMapping linear -ORBSchedPolicy SCHED FIFO
-ORBScopePolicy SYSTEM"

The possible configuration options for the RT ORB_Loader service object are
listed in the following tables.

Table 8-1 Priority Mapping Selection Option

Option Description

Selects the algorithm to use when mapping RT
—ORBPriorityMapping mapping type | CORBA priorities to native operating system
- priorities.

Valid values for mapping type are:

* direct (default)}—RT CORBA priorities are passed directly through as
native priorities. The entire range of RT CORBA priorities may not be
usable.

* linear—The entire RT CORBA priority range is mapped to the entire
native priority range.
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* continuous—RT CORBA priorities are mapped onto native priorities
based on the minimum native value. For example, if the minimum native
value is 8 and the CORBA priority is 22 then the mapped priority would
be 30.

See 8.5.1 for more information on TAQ’s priority mappings.

Table 8-2 Network Priority Mapping Selection Option

Option Description

Selects the algorithm to use when
-RTORBNetworkPriorityMapping mapping | mapping RT CORBA priorities to
network priorities.

Currently, the only valid value for mapping is:

* linear (default)}—RT CORBA priorities are mapped to a series of
network priorities, represented as diffserv codepoints. The 1inear
mapping is the only network priority mapping provided with TAO.

See 8.5.2 for more information on enabling network priorities in TAO.

Table 8-3 Scheduling Policy Selection Option

Option Description

Specifies the scheduling policy used when
-ORBSchedPolicy sched policy | mapping RT CORBA priorities to native
priorities.

On some operating systems, the choice of scheduling policy affects how the
priority mapping computations are performed. Each scheduling policy may
have different low and high priority values, and therefore would affect the
priority at which threads may run. Valid values for sched policy are:

* SCHED OTHER (default)}—System-dependent default scheduling policy.

* SCHED FIFO—FIFO scheduling policy, wherein the highest priority
thread that can run is scheduled first.

* SCHED RR—Round-robin scheduling policy, wherein a fixed time-slice is
provided for each thread.

You may need “super-user” or “Administrator” privileges to affect the
scheduling policy.
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Table 8-4 Scope Policy Selection Option

Option Description

-ORBScopePolicy scope policy | Specifies the thread-scheduling contention scope.

On some operating systems, the choice of scheduling contention scope affects
the preemption and execution of the threads allocated to RT CORBA thread
pools. Valid values for scope_policy are:

*  PROCESS (default)y—Threads compete for resources only with other
threads in the same process.

*  SYSTEM—Threads with system scheduling contention scope compete for
resources against all threads in the system. This may not be available for
all threading implementations.

Table 8-5 Dynamic Thread Options

Option Description

Specifies that dynamic threads should exit

-RTORBDynamicThreadIdleTimeout time . . . :
Y after being idle for time microseconds.

Specifies that dynamic threads should exit
after time microseconds. Any work in
progress will be completed before
termination.

-RTORBDynamicThreadRunTime time

These options control when thread pools’ dynamic threads should exit and
end. If neither option is specified, dynamic threads will essentially run forever
(until the ORB shuts down). The thread pool automatically creates new
dynamic threads as required. See 8.3.7 for more details about thread pools.

RT Collocation Resolver

TAO normally optimizes collocated invocations (where the client and the
target object are in the same address space). The effect of the ORB’s default
collocation optimization is such that the client thread is used to carry out the
request. As described in 15.4.5, this effect may be undesirable in real-time
applications, because the client thread may not be running at the priority at
which the request should be processed, possibly leading to priority inversions.
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Therefore, TAO’s implementation of RT CORBA employs a special
“real-time collocation resolver” (RT_Collocation Resolver)to determine
whether an invocation should be subject to collocation optimization. As
described in 17.13.11, the RT collocation resolver considers factors other than
just whether the request target object is in the same address space as the client
when deciding if the collocation optimization should be applied.

The default behavior of TAO’s RT collocation resolver is appropriate for most
real-time CORBA applications. However, its behavior can be disabled if the
default (non-RT) collocation optimization resolution mechanism is desired.
The RT collocation resolver can be disabled using the
-ORBDisableRTCollocation ORB initialization option.

Table 8-6 RT Collocation Resolver Option

Option Description

Controls how collocation optimization
-ORBDisableRTCollocation {0 | 1} | decisions are made in RT CORBA
applications.

See 17.13.11 for more information on this option.

Client-Propagated Priority Model

8.6.1

&

In the client-propagated priority model, a CORBA request is executed at the
priority specified by the client when the request is invoked. The CORBA
priority of the request is carried with the invocation. In this model, the server
is obligated to execute the servant code that handles the request in a thread
running at the appropriate native priority, according to the selected priority
mapping. The client’s requested priority is carried to the server in a CORBA
priority service context, and is passed back to the client from the server, along
with the reply, through the service context.

Specifying the Client-Propagated Priority Model in
the Server

A server specifies that it supports the client-propagated priority model by
setting the RTCORBA: : CLIENT PROPAGATED policy during POA creation.

The policy is then exported to clients via object references generated through
that POA.
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Here, we extend the Messenger example from Chapter 3 to set the
RTCORBA: : CLIENT PROPAGATED priority model policy in the Messenger
server:

#include "Messenger i.h"
#include <iostream>
#include <fstream>

int main (int argc, char* argv[])
{
try
{
// Initialize the ORB.
CORBA::0RB var orb = CORBA::ORB init (argc, argv);

// Get a reference to Root POA and activate it.

CORBA::Object var obj = orb->resolve initial references ("RootPOA");
PortableServer::POA var poa = PortableServer::POA:: narrow (obj.in());
PortableServer::POAManager var mgr = poa->the POAManager () ;
mgr->activate () ;

// Get the RTORB.
obj = orb->resolve initial references ("RTORB");
RTCORBA: :RTORB_var rtorb = RTCORBA::RTORB:: narrow (obj.in());

// Use the RTORB to create the CLIENT PROPAGATED priority model policy.
CORBA: :PolicyList policies;
policies.length(1l);
RTCORBA: :Priority default server priority = 30;
policies[0] = rtorb->create priority model policy(
RTCORBA: :CLIENT PROPAGATED,
default server priority); // priority to use if not propagated from client

// Create a child POA with CLIENT PROPAGATED priority model in effect.
PortableServer::POA var child poa =
poa->create POA ("MessengerPOA", mgr.in(), policies);

// Create a Messenger i servant.
PortableServer::Servant var<Messenger i> messenger servant
= new Messenger 1i(orb.in());

// Register the servant with the new POA, obtain its object reference,
// stringify it, and write it to a file
PortableServer::0ObjectId var oid =

child poa->activate object (messenger servant.in());
CORBA::Object var messenger obj = child poa->id to reference (oid.in());
CORBA::String var str = orb->object to string (messenger obj.in());

iorFile << str.in() << std::endl;
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iorFile.close();
std::cout << "IOR written to file Messenger.ior" << std::endl;

// Accept requests from clients.
orb->run();

// Release resources.
orb->destroy () ;
}
catch (CORBA::Exception& ex) {
std::cerr << "Caught a CORBA exception: " << ex << std::endl;
return 1;
}

return 0;

Using the Client-Propagated Priority Model in the
Client

To use the client-propagated priority model in the client, we first check to see
if the object reference we obtain from the server is configured with the
RTCORBA: : CLIENT PROPAGATED policy. We do this by calling the

_get _policy () operation on the object reference, narrowing the resulting
policy object to RTCORBA: : PriorityModelPolicy, then testing it to see if
its value is RTCORBA: :CLIENT PROPAGATED:

// Get the Messenger object reference.
CORBA: :Object var obj = orb->string to object ("file://Messenger.ior");
Messenger var messenger = Messenger:: narrow (obj.in());

// Get the policy from the object reference.
CORBA::Policy var policy =
messenger-> get policy (RTCORBA::PRIORITY MODEL POLICY TYPE);

// Check to see if it is of type RTCORBA::PriorityModelPolicy.
RTCORBA: :PriorityModelPolicy var priority policy =
RTCORBA: :PriorityModelPolicy:: narrow (policy.in ());
if (CORBA::is nil (priority policy.in ())) {
std::cerr << "Messenger object does not support RTCORBA::PriorityModelPolicy"
<< std::endl;
return 1;

// Check to see if the priority model is RTCORBA::CLIENT PROPAGATED.
RTCORBA: :PriorityModel priority model = priority policy->priority model();
if (priority model != RTCORBA::CLIENT PROPAGATED) {
std::cerr << "Messenger object does not support RTCORBA::CLIENT PROPAGATED"
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<< std::endl;
return 1;

}

Next, we use the RTCORBA: :Current interface to set the priority of the
calling thread to the priority we want propagated to the server with the
request. We call resolve initial references (“RTCurrent”) on the
ORB to obtain the RTCORBA: : Current, then use the RTCORBA: : Current
object to set the priority of the current thread to the CORBA priority at which
we want the request to be processed by the server:

CORBA::Object var current obj = orb->resolve initial references ("RTCurrent");
RTCORBA::Current var current = RTCORBA::Current:: narrow (current obj.in());
RTCORBA::Priority desired priority = 10;

current->the priority (desired priority);

Now, when we invoke an operation on the Messenger object reference, the
priority will be carried with the request to the server’s ORB, where it will be
used to set the priority of the thread that processes the request:

CORBA::String var message = CORBA::string dup ("Howdy!");
messenger->send message ("TAO User", "Test", message.inout());

Server-Declared Priority Model

In the server-declared priority model, a CORBA request is executed at the
priority specified by the server as the default for CORBA objects managed by
the POA to which the policy applies, or at the priority specified on a
per-object-reference basis. The server-declared model is appropriate when
some operations must always be invoked at the same priority, regardless of the
client thread making the request. In this model, the priority at which
invocations on an object reference will be executed by the server is published
in the object reference, where it is available to the client-side ORB. The
client’s ORB can use this priority information to, for example, set the priority
of the calling thread or choose the appropriate connection to the server over
which to send the request. The priority is not carried with the request through
the service context list as it is with the client-propagated priority model.
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Specifying the Server-Declared Priority Model in the

Server

The server specifies that it supports the server-declared priority model by
setting the RTCORBA: : SERVER DECLARED policy, and the default priority
value to use for executing requests, during POA creation. By default,
operation invocations on CORBA objects managed by a particular POA will
be executed at the default priority value specified at that POA’s creation. The
server-declared policy and the priority value are exported to clients via object
references generated through that POA. The priority can also be set on a
per-object-reference basis, as explained later in this section.

Here, we extend the Messenger example from Chapter 3 to set the
RTCORBA: : SERVER DECLARED priority model policy in the Messenger
server:

#include "Messenger i.h"
#include <iostream>
#include <fstream>

int main (int argc, char* argv[])
{
try {
// Initialize the ORB.
CORBA::0RB_var orb = CORBA::0RB_init (argc, argv);

// Get a reference to Root POA and activate it.

CORBA: :Object var obj = orb->resolve initial references ("RootPOA");
PortableServer::POA var poa = PortableServer::POA:: narrow (obj.in());
PortableServer::POAManager var mgr = poa->the POAManager () ;
mgr->activate();

// Get the RTORB.
obj = orb->resolve initial references ("RTORB");
RTCORBA: :RTORB var rtorb = RTCORBA::RTORB:: narrow (obj.in());

// Use the RTORB to create the SERVER DECLARED priority model policy.
CORBA: :PolicyList policies;
policies.length(1);
RTCORBA: :Priority default server priority = 30;
policies[0] = rtorb->create priority model policy(
RTCORBA: : SERVER_DECLARED,
default server priority); // default priority to use

// Create a child POA with SERVER DECLARED priority model in effect.
PortableServer::POA var child poa =
poa->create POA ("MessengerPOA", mgr.in(), policies);
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// Create a Messenger i servant.
PortableServer::Servant var<Messenger i> messenger servant
= new Messenger 1i(orb.in());

// Activate the Messenger in the new POA.
PortableServer::0ObjectId var oid =
child poa->activate object (messenger servant.in());

// Obtain the Messenger object reference, stringify it, and write it to a file
CORBA::Object var messenger obj = child poa->id to_reference (oid.in());
CORBA::String var str = orb->object to string (messenger obj.in());
std::ofstream iorFile ("Messenger.ior");

iorFile << str.in() << std::endl;

iorFile.close();

std::cout << "IOR written to file Messenger.ior" << std::endl;

// Accept requests from clients.
orb->run() ;

// Release resources.
orb->destroy() ;
}
catch (CORBA::Exception& ex) {
std::cerr << "Caught a CORBA exception: " << ex << std::endl;
return 1;

}

return 0;

You can use operations defined on the RTPortableServer: : POA interface
to override the POA’s default priority on a per-object-reference basis. For
example, we can use the activate object with priority() function
rather than activate object () to activate the Messenger object with a
CORBA priority other than the default, specified when the POA was created:

// Use the POA as a RT POA.
RTPortableServer::POA var rt poa =
RTPortableServer::POA:: narrow (child poa.in());

// Activate the Messenger in the new POA with a specific priority.
RTCORBA::Priority messenger specific priority = 50;
PortableServer::0ObjectId var oid =
rt_poa->activate object with priority (
messenger servant.in(),
messenger specific priority);
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Other operations on the RTPortableServer: : POA interface are used
similarly, including

* create reference with priority(),
* create reference with id and priority(),and
* activate object with id and priority(),

depending upon the POA policies (e.g., PortableServer: :USER_ID or
PortableServer::SYSTEM ID) in effect. If the POA does not support the
RTPortableServer: : SERVER DECLARED priority policy, and you try to
use one of the above operations to set the priority of the object reference, the
PortableServer: :WrongPolicy exception is raised.

Using the Server-Declared Priority Model in the
Client

You do not need to do anything special on the client-side to use an object
reference with the server-declared priority model. The server automatically
executes operations invoked on that object reference at the priority declared in
the object reference. However, clients can use the priority information in the
object reference to make decisions about how (or whether) to invoke the
request. In the following example, our MessengerClient will invoke the
send message () operation only if the Messenger object reference supports
the server-declared priority model, and the priority value is sufficiently high:

// Get the Messenger object reference.
CORBA: :Object var obj = orb->string to object ("file://Messenger.ior");
Messenger var messenger = Messenger:: narrow (obj.in());

// Get the policy from the object reference.
CORBA::Policy var policy =
messenger-> get policy (RTCORBA::PRIORITY MODEL POLICY TYPE);

// Check to see if it is of type RTCORBA::PriorityModelPolicy.
RTCORBA: :PriorityModelPolicy var priority policy =
RTCORBA: :PriorityModelPolicy:: narrow (policy.in ());
if (CORBA::is nil (priority policy.in ())) {
std::cerr << "Messenger object does not support RTCORBA::PriorityModelPolicy"
<< std::endl;
return 1;

}

// Check to see if the priority model is RTCORBA::SERVER DECLARED.
RTCORBA: :PriorityModel priority model = priority policy->priority model();
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if (priority model != RTCORBA::SERVER DECLARED) {
std::cerr << "Messenger object does not support RTCORBA::SERVER DECLARED"
<< std::endl;
return 1;

}

// Check to see if the server’s priority value is high enough for us.
RTCORBA::Priority desired priority = 30;
RTCORBA: :Priority server priority = priority policy->server priority();
if (server priority < desired priority) {
std::cerr << "Messenger object’s priority is too low." << std::endl;
return 1;

}

// Send the message.
CORBA::String var message = CORBA::string dup ("Howdy!");
messenger->send message ("TAO User", "Test", message.inout());

Using the RTScheduling::Current

8.8.1

The RTScheduling: :Current exists to manage distributable threads.
Through its interface, an application is able to spawn new distributable
threads, and begin, update, and end scheduling segments. The Current object
provides a thread with an identity as well as a way to obtain references to other
distributable threads. The interface is described in detail in 8.4.3.

Spawning New Distributable Threads

The Current’s spawn () operation will create a new distributable thread, to
invoke the do () operation of the supplied RTScheduling: :ThreadAction
reference. Spawning a new distributable thread has the side effect of creating a
new operating system thread bound to the current process. The spawn ()
operation allows you to set the priority of the new thread and supply a
scheduling parameter appropriate for whatever scheduling discipline was
chosen for the application. TAO’s implementation of spawn () implicitly
associates the newly created distributable thread with a scheduling segment by
invoking begin scheduling segment () right before calling the thread
function, then invoking end scheduling segment () immediately after.

The following code fragment, found in
STAO ROOT/tests/RTScheduling/DT Spawn/test.cpp, shows how to
use the RTScheduling: :Current: : spawn () operation.
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The application begins as any other CORBA application, setting up some
pointers that will refer to various objects, then calling CORBA: :ORB_init ().
Note that, in this case, the sched paramand implicit sched param
values are initialized to nil policy references. In this example, the particular
scheduler we are using does not support any particular scheduling parameters.

#include "../Scheduler.h" // for class TAO Scheduler
#include "Thread Action.h" // for class Test Thread Action
#include "tao/RTScheduling/RTScheduler Manager.h"

int main (int argc, char* argv [])

{
CORBA::0RB_var orb;
RTScheduling::Current var current;

const char * name = 0;
CORBA::Policy var sched param = CORBA::Policy:: nil();
CORBA::Policy var implicit sched param = CORBA::Policy:: nil();

Test Thread Action thread action;

try {
orb = CORBA::O0RB_init (argc, argv);

A distributable thread cannot exist without a scheduler, so the next portion of
the code shows the initialization of a scheduler. TAO deviates a bit from the
RT CORBA specification by supplying a scheduler manager, through which
an externally created scheduler may be associated with the ORB. The
scheduler used for this example is trivial; its implementation is available in the
parent directory for this example, in

$TAO ROOT/tests/RTScheduling/Scheduler.h.

CORBA: :Object var manager obj =
orb->resolve initial references ("RTSchedulerManager");

TAO RTScheduler Manager var manager =
TAO_RTScheduler Manager:: narrow (manager obj.in());

TAO Scheduler* scheduler;
ACE_NEW_RETURN (scheduler, TAO_Scheduler (orb.in ()), -1);

manager->rtscheduler (scheduler);

Now that we have created a scheduler, we are ready to obtain a scheduling
current and use it to spawn a distributable thread.
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CORBA::Object var current obj =
orb->resolve initial references ("RTScheduler Current");
current = RTScheduling::Current:: narrow (current obj.in());

try {

ACE DEBUG ( (LM DEBUG,
ACE_TEXT ("Invoking DT spawn without calling "
"begin scheduling segment...\n")));

ACE_CString data ("Harry Potter");
char* thread data = const cast<char*>(data.c_str());
CORBA::ULong stack size = 0;
RTCORBA::Priority base priority = 0;
current->spawn (&thread action,

thread data,

name,

sched param.in(),

implicit sched param.in(),

stack size,

base priority);

At this point, the new thread is off and running. Notice that the spawn ()
operation takes several arguments

* thread action—a reference to an object that derives from
RTScheduler: :ThreadAction. The do () operation of this object is
invoked as the interesting part of the thread function. See 8.4.2 for more
information on the ThreadAction interface. In this example, the class
Test Thread Action is defined in
STAO_ROOT/tests/RTScheduling/DT_spawn/Thread Action.h.

* thread data—the argument that is passed to the thread function. In this
case, the thread function takes a string as an argument.

* name—the identity supplied to the new distributable thread. As a
side-effect, this identity is supplied to begin scheduling segment ()
as part of the thread function. In this example, the name is empty since no
other distributable threads exist when spawn () is called.

* sched param—depending on the scheduling discipline applied to the
application, this argument may point to information required to schedule
this thread. It is forwarded to begin scheduling segment (). In this
example, the trivial scheduler does not require any parameters, thus
sched paramis nil.
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* implicit sched param—also passed to
begin scheduling segment (), this argument is used to update the
scheduling parameter that would be used if one were needed and
sched param was nil. In this example, scheduling parameters are not
needed, so this value is also nil.

* stack size—the next argument supplied is the size of the stack for the
newly spawned thread. A non-zero value would indicate the desired stack
size; passing zero, as in this example, indicates the operating system
defined default stack size should be used.

* base priority—the last argument supplied is the base priority value
for the newly spawned thread. In this example, multiple thread priorities
are not being used, so the base priority value is passed as zero.

The rest of the example in the distribution shows how to manage distributable
threads using the current.

Managing Scheduling Segments

Scheduling segments are logical entities that may cross application
boundaries. They are used to define the life span of a distributable thread.
Depending upon the scheduling discipline used, a scheduling segment may
have information associated with it, such as a completion deadline, that may
cause the priority of the associated thread to be dynamically changed.
Scheduling segments are used by the scheduler to associate requests or
activities with application threads of appropriate priority. Scheduling
segments have a beginning and an end; the end need not be in the same
process as the beginning. Segments may be nested or consecutive. A
distributable thread may span many scheduling segments. Scheduling
segments may also be updated, changing the associated schedule parameter,
and possibly raising or lowering the priority.

The following example demonstrates the management of scheduling
segments. This example is found in

STAO ROOT/tests/RTScheduling/Current/Thread Task.cpp. Here,
we look at Thread Task: :svc (), which provides an implementation of a
thread function just like any class derived from ACE Task Base. The code
below begins three nested scheduling segments, uses the current to obtain a
list of the currently scheduled segments, then finally ends each segment.

int Thread Task::svc (void)
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try {

const char * name = 0;
CORBA: :Policy var sched param = CORBA::Policy:: nil();
CORBA::Policy var implicit sched param = CORBA::Policy:: nil();

this->current ->begin scheduling segment (
"Fellowship of the Ring",
sched param.in(),
implicit sched param.in());

size t count = 0;
ACE 0S::memcpy (
&count,
this->current ->id()->get buffer(),
this->current ->id()->length());

ACE_DEBUG ( (LM_DEBUG,

ACE_TEXT ("Starting Distributable Thread %d with 3 nested scheduling "

"segments...\n"),
count));

// Start - Nested Scheduling Segment
this->current ->begin scheduling segment (
"Two Towers",
sched param.in(),
implicit sched param.in());

// Start - Nested Scheduling Segment
this->current ->begin scheduling segment (
"The Return of the King",
sched param.in(),
implicit sched param.in());

RTScheduling::Current::NameList* segment name list =
this->current ->current scheduling segment names();

ACE GUARD RETURN (TAO SYNCH MUTEX, ace mon, *lock , -1);
ACE DEBUG ( (LM DEBUG,

ACE_TEXT ("Segment Names for DT %d :\n"),

count));

for (unsigned int i = 0; i < segment name list->length(); ++i)
{
ACE DEBUG ( (LM DEBUG,
ACE_TEXT ("$s\n"),
(*segment name list)[i].in()));
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// End - Nested Scheduling Segment
this->current ->end scheduling segment (name);

// End - Nested Scheduling Segment
this->current ->end scheduling segment (name);

// End - Nested Scheduling Segment
this->current ->end scheduling segment (name);

ACE_DEBUG ( (LM_DEBUG,
ACE TEXT ("DT %d terminated ...\n"),
count)) ;

ACE GUARD RETURN (TAO SYNCH MUTEX, ace mon, *shutdown lock , -1);
--active thread count ;
if (active thread count == 0)
{
// Without this sleep, we will occasionally get BAD INV_ORDER

// exceptions on fast dual processor machines.
ACE_0OS::sleep (1);
orb ->shutdown (0);

}
catch (CORBA::Exception& ex)

{
ACE_PRINT EXCEPTION (ex, "Caught exception:");
return -1;

return 0;

8.9 Real-Time CORBA Examples

Throughout this chapter we have shown several code fragments illustrating
the use of real-time CORBA features. Many of the examples we have shown
are available as executable code distributed with TAO. This code is found in
the following directories:

* $TAO_ROOT/DevGuideExamples/RTCORBA—This directory contains a
variation of the Messenger application introduced in Chapter 3. This
example uses the RTORB in the client to create a private connection
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policy and uses the RTCORBA: : Current for setting the priority to be
consistent with the server. On the server side, the example shows the use
of a thread pool with some number of lanes (the number depending on the
native platform).

* STAO ROOT/examples/RTCORBA/Activity—The example in this
directory highlights configuration of RTORB and RTPOA characteristics
including the priority mapping policy.

* S$TAO_ROOT/examples/RTScheduling—This directory contains
several applications that demonstrate the use of distributable threads and
various scheduling disciplines.

* STAO ROOT/tests/RTCORBA—This directory is the top level directory
for a suite of tests that are run regularly to ensure the integrity of TAO’s
real-time CORBA implementation. These tests are focused on isolating
particular features, but do provide insight into use of RT CORBA
mutexes, priority-banded connections, client-propagated and
server-declared priority models, collocation, and more.

* $TAO ROOT/tests/RTScheduling—This directory includes a suite of
tests focused on the use of the real-time scheduler. Specific tests highlight
using distributable threads, canceling threads, and the scheduling current.
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CHAPTER 9

Portable Interceptors

9.1

Introduction

Portable Interceptors in CORBA are objects that the ORB invokes at
predefined points in the request and reply paths of an operation invocation
(request interceptors) or during the generation of an IOR (IOR interceptors).
As an application developer, you define the code executed in an interceptor.
Since interceptors exist orthogonally to the operation invocations they
monitor/modify, interceptor code can be added without affecting existing
client and server code. Portable Interceptors can perform a variety of
information collection and authentication tasks, including the following:

*  Gathering debugging information about messages sent between clients
and servers.

* Logging usage or access information about distributed objects.
* Performing security and authenticity checks in a distributed system.

TAO supports both request interceptors and IOR interceptors. Except for
minor differences, TAO’s implementation conforms to the CORBA 3.1
Portable Interceptor specification (Chapter 16 of OMG Document
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formal/08-01-04). Portable interceptor support in TAO is controlled by the
interceptors build flag. By default, interceptors are enabled unless
minimum corba=1 orinterceptors=0. For more information on build
flags, refer to .

The Portable Interceptors functionality is mostly defined by local interfaces.
In order to create your own portable interceptors you will need to be familiar
with how to implement local objects. If you need more information how to
implement local objects, see Chapter 12.

For more information on Portable Interceptors, read “Object Interconnections:
CORBA Metaprogramming Mechanisms, Part 1: Portable Interceptors
Concepts and Components,” by Douglas C. Schmidt and Steve Vinoski.

Using TAO Request Interceptors

TAO request interceptors can be attached at four points along the
request/reply path of client and server communications. On the client, they can
be activated when a request is sent or when a reply is received. On the server,
they can be activated when a target operation is called, or when the reply is
sent. There are ten interception operations, discussed in the next four sections.
Figure 9-1 shows the relationship of clients and servers to the ten interception
operations.
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Figure 9-1 Client and Server Interception Operations
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9.2.1

9.2.2

The Interceptor Interface
All interceptor interfaces defined in the CORBA specification are derived
from the Interceptor interface:

module PortableInterceptor

{

local interface Interceptor

{
readonly attribute string name;
void destroy ();

}i

This interface is defined in $TAO_ROOT/tao/PI/Interceptor.pidl. All
interceptors we define need to implement the name attribute and destroy ()
operation.

Client Request Interceptors

Client request interceptors implement the following interface, which ia
defined in $TAO ROOT/tao/PI/ClientRequestInterceptor.pidl:

module PortableInterceptor
{
local interface ClientRequestInterceptor : Interceptor
{
void send request (in ClientRequestInfo ri) raises (ForwardRequest);
void send poll (in ClientRequestInfo ri);
void receive reply (in ClientRequestInfo ri);
void receive exception (in ClientRequestInfo ri)
raises (ForwardRequest);
void receive other (in ClientRequestInfo ri) raises (ForwardRequest);
i
i

To use interceptors on the client-side, developers define a new class that
inherits from PortableInterceptor::ClientRequestInterceptor
and CORBA: : LocalObject, and implement the five operations that
correspond to the client side interception points, plus operations that provide
the name of the interceptor and destroy the interceptor.

TAO does not support the send poll () client interception point. The
send poll () operation is specific to time-independent invocations and TAO
does not currently support time-independent invocations.
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9.2.3

Client Interception Points

The four client interception points available in TAO are send_request (),
receive reply (), receive exception(), and receive other (). The
send request () interception point allows an interceptor to monitor or
change the service context before a request is sent to the server. The
receive reply () point intercepts a reply after it has returned from the
server but before it has been passed to the client. The

receive exception () point is invoked when an exception occurs, before
the exception is raised to the client. The receive other() interception point
allows the interceptor to monitor responses that are neither normal replies nor
exceptions. An example of this would be a LOCATION FORWARD response.

Server Request Interceptors

Interceptors on the server side implement the following interface, which is
defined in $STAO ROOT/tao/PI_Server/ServerRequestInterceptor.pidl:

module PortableInterceptor ({

local interface ServerRequestInterceptor : Interceptor
{
void receive request service contexts (in ServerRequestInfo ri)
raises (ForwardRequest);
void receive request (in ServerRequestInfo ri) raises (ForwardRequest);
void send reply (in ServerRequestInfo ri);
void send exception (in ServerRequestInfo ri) raises (ForwardRequest);
void send other (in ServerRequestInfo ri) raises (ForwardRequest);

}i

// additional interfaces omitted for brevity.

}i

To use interceptors on the server side, developers define a new class that
inherits from PortableInterceptor: :ServerRequestInterceptor
and CORBA::LocalObject, and implement the five operations that
correspond to the five server side interception points, plus operations that
provide the name of the interceptor and destroy the interceptor.

9.2.3.1 Server Interception Points
The receive request service context () interception point is called
before the servant manager is called. The operation parameters that are passed
as part the request’s service context are not available to the interceptor at this
222
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point. Any service context information the interceptor needs must be obtained
from the request scope PICurrent. The PICurrent is explained in 9.5. The
receive request () point allows the interceptor to monitor request
information once all operation parameters are available. An interceptor that
implements the send_reply () operation can monitor and modify the reply
service context after the server operation has been invoked but before the
reply is sent to the client. The send _exception () point allows the
interceptor to inspect exception information and modify the reply service
context before the exception is sent to the client. Interceptors implementing
the send other () operation can inspect the information available when the
request results in something other than a normal reply or an exception.

9.2.4 Request Parameters
Request interceptors access request information through
ClientRequestInfo and ServerRequestInfo objects, which are given as
parameters to their respective interception points. Client and server
RequestInfo objects inherit from a common interface defined in
$TAO _ROOT/tao/PI/RequestInfo.pidl:

local interface RequestInfo

{
readonly attribute unsigned long request id;
readonly attribute string operation;

readonly attribute Dynamic::ParameterList arguments;

readonly attribute Dynamic::ExceptionList exceptions;
readonly attribute Dynamic::ContextList contexts;

readonly attribute Dynamic::RequestContext operation context;

readonly attribute any result;
readonly attribute boolean response expected;
readonly attribute Messaging::SyncScope sync_scope;

readonly attribute ReplyStatus reply status;
readonly attribute Object forward reference;

any get_slot (in SlotId id) raises (InvalidSlot);
I0P::ServiceContext get request service context (in IOP::Serviceld id);
IOP::ServiceContext get reply service context (in IOP::Serviceld id);

}i

The ClientRequestInfo interface extends the RequestInfo interface
with attributes and operations of interest to client-side interceptors.
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local interface ClientRequestInfo : RequestInfo
{
readonly attribute Object target;
readonly attribute Object effective target;
readonly attribute IOP::TaggedProfile effective profile;

readonly attribute any received exception;
readonly attribute CORBA::Repositoryld received exception id;

I0P::TaggedComponent get effective component (in IOP::ComponentId id);
I0P::TaggedComponentSeq get effective components (in IOP::ComponentId id);
CORBA::Policy get request policy (in CORBA::PolicyType type);
void add request service context (

in IOP::ServiceContext service context,

in boolean replace);

}i

The ServerRequestInfo interface extends the RequestInfo interface
with attributes and operations of interest to the server-side interceptors.

local interface ServerRequestInfo : RequestInfo
{
readonly attribute any sending exception;
readonly attribute ServerId server id;
readonly attribute ORBId orb id;
readonly attribute AdapterName adapter name;
readonly attribute CORBA::OctetSeq object id;
readonly attribute CORBA::OctetSeq adapter id;
readonly attribute CORBA::Repositoryld target most derived interface;

CORBA::Policy get server policy (in CORBA::PolicyType type);
vold set_slot (in SlotlId id, in any data) raises (InvalidSlot);
boolean target is a (in CORBA::RepositoryId id);
void add reply service context (

in IOP::ServiceContext service context,

in boolean replace);

}i

For an explanation of the attributes and operations of a RequestInfo object,
as well as their applicability to each interception point, see Chapter 16 of the
CORBA 3.1 specification.

Registering Interceptors
As a developer, you provide the code to register your application’s
interceptors with the ORB. Interceptors are installed in the ORB with an
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9.2.6

Note

9.2.6.1

9.2.6.2

ORBInitializer object and registered by implementing its pre init () or
post init () method and calling
PortableInterceptor::register orb initializer() prior to
calling CORBA: :ORB_init (). The specifics of interceptor initialization are
shown in the example in the next section. Developers need to be aware that
certain operations that need a pointer to the ORB can not be invoked during
interceptor registration, because the registration occurs within the call to
ORB_init (), and no ORB pointer exists yet.

To allow for this, the ORBInitInfo interface contains functions and
attributes that hold the arguments passed to ORB_init (), a reference to the
CodecFactory, and additional information that would otherwise be
unavailable.

Example: A Simple Authentication Interceptor

Our first example uses interceptors to add a user name to each request that a
client makes. The client’s interceptor provides the name that is sent with the
request. The server’s interceptor authenticates the user before the request is
dispatched to the servant. Our example extends the Messenger example from
Chapter 3. The complete source code for this example is in the TAO source
code distribution in the directory

$TAO ROOT/DevGuideExamples/PortableInterceptors/Auth.

This example is not meant as a secure authentication solution. Please refer to
the Chapter 27 for a more thorough treatment of the subject of security.

Messenger Interface
The definition of the Messenger interface has not changed:

interface Messenger
{
boolean send message (in string user name,
in string subject,
inout string message);

Messenger Implementation Class
We now define the Messenger i implementation class as follows:
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#include "MessengerS.h"

class Messenger i1 : public virtual POA Messenger
{
public:

//Constructor

Messenger i (void);

//Destructor
virtual ~Messenger i (void);

virtual CORBA::Boolean send message (
const char* user name,
const char* subject,
char*& message
)i
}i

The implementation of the Messenger i class is as follows:

#include "Messenger i.h"
#include <iostream>

// Implementation skeleton constructor
Messenger i::Messenger i (void)

{

}

// Implementation skeleton destructor
Messenger i::~Messenger i (void)

{

}

CORBA: :Boolean Messenger i::send message (
const char* user name,
const char* subject,
char*& message

std::cout << "Message from: " << user name << std::endl;
std::cout << "Subject: " << subject << std::endl;
std::cout << "Message: " << message << std::endl;

CORBA::string free (message);
message = CORBA::string dup ("Thanks for the message.");
return true;
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9.2.6.3

9.2.6.4
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Defining the Client Request Interceptor

The client-side interceptor is defined in the ClientInterceptor class. This
class inherits from CORBA: : LocalObject and
PortablelInterceptor::ClientRequestInterceptor.

#include <tao/PortableInterceptorC.h>
#include <tao/LocalObject.h>
#include <tao/PI/PI.h>

class ClientInterceptor :
public virtual PortableInterceptor::ClientRequestInterceptor,
public virtual CORBA::LocalObject

{

public:
ClientInterceptor (void);
virtual ~ClientInterceptor ();
virtual char* name ();
virtual void destroy ();
virtual void send poll (Portablelnterceptor::ClientRequestInfo ptr ri);
virtual void send request (Portablelnterceptor::ClientRequestInfo ptr ri);
virtual void receive reply (PortablelInterceptor::ClientRequestInfo ptr ri);
virtual void receive other (PortablelInterceptor::ClientRequestInfo ptr ri);
virtual void receive exception(PortableInterceptor::ClientRequestInfo ptr ri);
private:

const char *myname_;

}i

In this example, we have overridden the operations that correspond to the five
interception points as well as the name () and destroy () operations from
PortablelInterceptor::Interceptor.

Implementing the Client Request Interceptor

Next, we implement the client request interceptor. The constructor initializes
the name of our interceptor. The name () operation’s implementation is
simple.

ClientInterceptor::ClientInterceptor (void)

ociweb.com 227



Portable Interceptors

: myname ("Client Authentication Interceptor")

std::cout << "Calling ClientInterceptor constructor." << std::endl;

char* ClientInterceptor::name ()

{

}

std::cout << "Calling ClientInterceptor name () method" << std::endl;
return CORBA::string dup (this->myname );

To illustrate how information can be passed using the service context list, we
insert some user name information into the service context list at the client’s
send_request () interception point. Later, we will show how we can extract

and use this as validation information on the server side at the server’s

receive request () interception point.

In our interceptor’s send request () operation, we first log information

about the request to standard output. Then, we insert information into the
service context list. Recall that the service context list is a sequence of

structures, each containing a context identifier of type unsigned longand a
sequence of octets. You can use these fields to pass any information you want
with the request. Here, we set the context id field to an arbitrary value and
populate the context data field with the user’s name after we convert the

name from a string to a sequence of octets.

const CORBA::ULong service ctx id = Oxdeed;

void ClientInterceptor::send request (

{

PortableInterceptor::ClientRequestInfo ptr ri)
std::cout << "Calling send request()." << std::endl;

I0P::ServiceContext sc;
sc.context id = service ctx id;

const char user name[] = "Ron Klein";

std::cout << "User’s Name: " << user name << std::endl;
CORBA::ULong string len = sizeof (user name) + 1;
CORBA::Octet *buf = new CORBA::Octet [string len];
ACE_0S::strcpy (reinterpret cast<char *>(buf), user name);

sc.context data.replace (string len, string len, buf, true);

// Add this context to the service context list.
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9.2.6.5
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ri->add request service context (sc, false);

Our receive reply(), receive other(), and recelive exception()
operations do nothing of any importance. They simply log information about
the request to standard output.

void ClientInterceptor::receive reply (
PortableInterceptor::ClientRequestInfo ptr)
{

std::cout << "Calling receive reply()." << std::endl;

}

void ClientInterceptor::receive other (
PortableInterceptor::ClientRequestInfo ptr)
{

std::cout << "Calling receive other()." << std::endl;

}

void ClientInterceptor::receive exception (
PortableInterceptor::ClientRequestInfo ptr)
{

std::cout << "Calling receive exception()." << std::endl;

}

Developing the Client and Installing the Interceptor

To use our client request interceptor, we implement the post _init ()
function of a ClientInitializer object, which inherits from

CORBA: :LocalObject and PortableInterceptor::0RBInitializer.

#include <tao/PortablelInterceptorC.h>
#include <tao/LocalObject.h>
#include <tao/PI/PI.h>

class ClientInitializer : public virtual PortablelInterceptor::ORBInitializer,
public virtual CORBA::LocalObject

virtual void post init (PortableInterceptor::0RBInitInfo ptr info);
}i

If we were registering another interceptor that needed access to this
interceptor’s initial services, we would choose to register this interceptor in
pre init (). Since no other interceptors need access to this interceptor’s

ociweb.com 229



Portable Interceptors

services, we register this interceptor in post _init (). In contrast to

pre init (), post init () is executed at the point in ORB initialization
when all initial references are available. Our post init () instantiates a
ClientRequestInterceptor and registers it by calling

ORBInitInfo::add client request interceptor().

void ClientInitializer::post init (
PortableInterceptor::0RBInitInfo ptr info)

{
// Create and register the request interceptors.
PortableInterceptor::ClientRequestInterceptor var ci = new ClientInterceptor();
info->add client request interceptor (ci.in());

}

With the initializer written, we develop a client and install our interceptor by
creating and registering the ClientInitializer object before calling
CORBA: :0RB_init (). We include header files for both the Messenger
interface and our Messenger initializer class definitions and instantiate an
ORBInitializer var which is passed as a parameter to
PortableInterceptor::register orb initializer().

#include "MessengerC.h"
#include "ClientInitializer.h"
#include <orbsvcs/CosNamingC.h>
#include <iostream>

int main (int argc, char* argv[])
{
try {
// Create and register our ORBInitializer.
PortableInterceptor::0RBInitializer var orb initializer =
new ClientInitializer;

PortableInterceptor::register orb initializer (orb initializer.in());

// Initialize the ORB.
CORBA::0RB var orb = CORBA::ORB init (argc, argv, "Client ORB");

Next, we acquire a reference to the Messenger object and use it to send a
message. The user name authentication is added transparently by the
interceptor and passed through the service context with the rest of the request
when send message () is invoked.

// Read and destringify the Messenger object's IOR.
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CORBA: :Object var obj = orb->string to object("file://Messenger.ior");

if (CORBA::is nil(obj.in())) |
std::cerr << "Could not get Messenger IOR." << std::endl;
return 1;

// Narrow the IOR to a Messenger object reference.
Messenger var messenger = Messenger:: narrow(obj.in());

if (CORBA::is nil(messenger.in())) {
std::cerr << "IOR was not a Messenger object reference." << std::endl;
return 1;

// Send a message the the Messenger object.
CORBA::String var message = CORBA::string dup ("Hello!");
messenger->send message ("TAO User", "TAO Test", message.inout());

// Print the Messenger's reply.
std::cout << "Reply: " << message.in() << std::endl;
}
catch (CORBA::Exception& ex) {
std::cerr << "CORBA exception: " << ex << std::endl;
return 1;

return 0;

9.2.6.6 Defining the Server Request Interceptor
The server-side interceptor is defined in the ServerInterceptor class. This
class inherits from the CORBA: : LocalObject and
PortableInterceptor::ServerRequestInterceptor classes.

#include <tao/PortableInterceptorC.h>
#include <tao/LocalObject.h>
#include <tao/PI_Server/PI_Server.h>

class ServerInterceptor
public virtual PortableInterceptor::ServerRequestInterceptor,
public virtual CORBA::LocalObject
{
public:
ServerInterceptor (void);
~ServerInterceptor ();

virtual char* name ();

" -
m ociweb.com 231



Portable Interceptors

9.2.6.7

virtual void destroy ();
virtual void receive request (Portablelnterceptor::ServerRequestInfo ptr ri);

virtual void receive request service contexts (
PortableInterceptor::ServerRequestInfo ptr ri);

virtual void send reply (PortablelInterceptor::ServerRequestInfo ptr ri);
virtual void send exception (PortableInterceptor::ServerRequestInfo ptr ri);
virtual void send other (Portablelnterceptor::ServerRequestInfo ptr ri);

private:
const char *myname ;

}i

Recall that the server request interceptor class should inherit from
PortableInterceptor::ServerRequestInterceptor. In this example,
we have overridden the operations that correspond to the five interception
points as well as the name () and destroy () operations.

Implementing the Server Request Interceptor

Next, we implement the server request interceptor. The constructor initializes
the name of our interceptor. The name () operation’s implementation is
simple.

ServerInterceptor::ServerInterceptor (void)
: myname ("Server Authentication Interceptor")

{

std::cout << "Calling ServerInterceptor constructor." << std::endl;

char* ServerInterceptor::name ()

{
std::cout << "Calling ServerInterceptor name () method" << std::endl;

return CORBA::string dup (this->myname );
}

Recall that the client request interceptor passes information along with the
request in the service context list. We now want to extract this information on
the server side at the server’s receive request () interception point.

In our interceptor’s receive request () operation, we call
target is a() to verify that the remote invocation is requesting a
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Messenger object. Then we obtain the service context data, which contains
the user name as an octet sequence, and cast it to a char * so that it can be
compared to allowed users[].If the user name matches and element in
allowed users[], authentication is successful.

const IOP::Serviceld service id = Oxdeed;
const unsigned int num allowed users = 4;
const static char* allowed users[num allowed users+l] =
{"Ron Klein", "Scott Case", "Mark Hodge", "Greg Black", 0};
const char* restricted interfaces[1l] = {"IDL:Messenger:1.0"};

void ServerInterceptor::receive request (
PortableInterceptor::ServerRequestInfo ptr ri)

{
bool permission granted = false;
std::cout << "Calling receive request()." << std::endl;

if (ri->target is a(restricted interfaces[0]))
{

I0P::Serviceld id = service id;

// Check that the request service context can be retrieved.
I0P::ServiceContext var sc ri->get request service context (id);
CORBA: :OctetSeq ocSeq = sc->context data;

const char * buf = reinterpret cast<const char *>(ocSeq.get buffer());

for (unsigned int i=0; i<num allowed users; ++i) {

if (ACE _OS::strcmp (buf, allowed users[i]) == 0) {
permission granted = true;
break;
}
}
}
if (permission granted == true) {

std::cout << "Permission Granted " << std::endl;
}
else {
std::cout << "Permission Denied " << std::endl;
throw CORBA: :NO PERMISSION() ;
}

Our other interception point operations do nothing important. They log
information about the request to standard output.

void ServerInterceptor::receive request service contexts (

ociweb.com 233



Portable Interceptors

9.2.6.8

PortableInterceptor::ServerRequestInfo ptr)

{

std::cout << "Calling receive request service contexts()." << std::endl;

}

vold ServerInterceptor::send reply (
PortableInterceptor::ServerRequestInfo ptr)

{
std::cout << "Calling send _reply()." << std::endl;
}

void ServerInterceptor::send exception (
PortableInterceptor::ServerRequestInfo ptr)

{

std::cout << "Calling send_exception()." << std::endl;

}

vold ServerInterceptor::send other (
PortableInterceptor::ServerRequestInfo ptr)

{

std::cout << "Calling send other()." << std::endl;
}

Developing the Server and Installing the Interceptor

We develop a server and install our interceptor by registering it with the ORB.
The procedure is very similar to installation of the client interceptor. We are
extending the MessengerServer example from Chapter 3. Few changes to
the original code are required to use interceptors and we will explain them as
we go along.

The code for the server interceptor initializer is similar to its client
counterpart. The ServerInitializer class inherits from

CORBA: :LocalObject and PortableInterceptor::ORBInitializer,
and we implement the post init () operation by creating a
ServerRequestInterceptor and using it as a parameter to
ORBInitInfo::add server request interceptor().

void ServerInitializer::post init (
PortableInterceptor::0RBInitInfo ptr info)
{

// Create and register the request interceptors.
PortableInterceptor::ServerRequestInterceptor var si = new ServerInterceptor();
info->add server request interceptor (si.in());

}
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In the server, we include header files for both the Messenger interface and
our Messenger interceptor initializer class definitions. We then instantiate a
new ServerInitializer object and register the server interceptor with a
call to PortableInterceptor::0ORBInitializer (). Then we initialize
the ORB as usual.

#include "Messenger i.h"
#include "MessengerS.h"
#include "ServerInitializer.h"
#include <iostream>
#include <fstream>
int main (int argc, char* argvl[])
{

try {

// Create and register our ORBInitializer.
PortableInterceptor::0RBInitializer var orb initializer =

new ServerInitializer;
PortableInterceptor::register orb initializer (orb initializer.in ());

// Initialize the ORB.
CORBA::0RB var orb = CORBA::ORB init (argc, argv, "Server ORB");

The next part of the server is unchanged from the MessengerServer in
Chapter 3.

//Get reference to the RootPOA.
CORBA: :Object _var obj = orb->resolve initial references ("RootPOA");
PortableServer::POA var poa = PortableServer::POA:: narrow(obj.in());

// Activate the POAManager.
PortableServer::POAManager var mgr = poa->the POAManager () ;
mgr->activate();

// Create a servant.
PortableServer::Servant var<Messenger_i> messenger_servant
= new Messenger i ();

// Register the servant with the RootPOA, obtain its object

// reference, stringify it, and write it to a file.

PortableServer::0ObjectId var oid =
poa->activate object (messenger servant.in());

CORBA: :Object_var messenger obj = poa->id to_reference(oid.in());

CORBA::String var str = orb->object to string(messenger obj.in());

std::ofstream iorFile("Messenger.ior");

iorFile << str.in() << std::endl;
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iorFile.close();
std::cout << "IOR written to file Messenger.ior" << std::endl;

// Accept requests from clients.
orb->run() ;
orb->destroy();
}
catch (CORBA::Exception& ex) {
std::cerr << "CORBA exception: " << ex << std::endl;
return 1;

return 0;

Running the Application

Run the MessengerServer and MessengerClient as before. The

MessengerServer will write a stringified object reference to the file named
Messenger.ior. The MessengerClient will read the stringified object
reference from the file, convert it to an object reference, and use it to invoke

operations upon the Messenger object.

Program Output

Each operation invoked by the client will go through the client and server

request interceptors that have been registered with their respective ORBs. The

client’s output should look something like this:

> ./MessengerClient

Calling ClientInterceptor constructor.
Calling ClientInterceptor name () method
Calling send_request().

User’s Name: Ron Klein

Calling receive reply().

The server’s output should look something like this:

> ./MessengerServer
Calling ServerInterceptor constructor.
Calling ServerInterceptor name () method

IOR written to file Messenger.ior

Calling receive request service contexts().
Calling receive request().

Permission Granted
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Message from: TAO User
Subject: TAO Test
Message: Hello!
Calling send reply().

9.3 Marshaling and the Service Context

Recall that data in the service context is a sequence of octets or raw bytes. In
the previous example, where it was intended that the client and server run on
the same machine, no special care was taken to ensure the integrity of the data
in the service context. Due to different hardware having different endianess,
the data in the service context can be corrupted if the client and server exist on
different machines. To keep this from occurring, octet sequences are
converted to a network byte order, or marshaled. This is accomplished by the
Codec.

9.3.1 The Codec

The Codec interface encodes and decodes between a sequence of octets and a
CORBA: : Any. A codec is obtained from the CodecFactory. There are
multiple ways to obtain a reference to it. If the ORB is available, a reference to
the CodecFactory can be obtained from a call to

ORB::resolve initial references("CodecFactory"). During
interceptor initialization, when the ORB is not available, a reference to the
CodecFactory can be obtained from ORBInitInfo::codec factory()
or ORBInitInfo::resolve initial references ("CodecFactory").

The Codec interface has four distinct functions that encode/decode either the
value of the data or the value and typecode of the data. This interface is
defined in $TAO ROOT/tao/CodecFactory/IOP Codec.pidl:

local interface Codec

{
exception InvalidTypeForEncoding {};
exception FormatMismatch {};
exception TypeMismatch {};

CORBA::0OctetSeq encode (in any data) raises (InvalidTypeForEncoding);
any decode (in CORBA::OctetSeq data) raises (FormatMismatch);
CORBA::OctetSeq encode value (in any data) raises (InvalidTypeForEncoding);
any decode value (in CORBA::OctetSeq data, in CORBA::TypeCode tc)

raises (FormatMismatch, TypeMismatch);
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Example: Using the Codec

Encoding data with a codec is straightforward. First, a reference to the
CodecFactory is obtained. Then an encoding scheme is specified and used
to create a codec instance. This codec object can encode and decode
between a CORBA: : Any and a CORBA: : OctetSeq. Files that utilize the
CodecFactory interface should add the following include:

#include <tao/CodecFactory/CodecFactory.h>

This example extends the first interceptor example from 9.2.6 by encoding all
the request information. The simple authentication scheme has changed from
user name to user and group ids (uid/gid), which are passed as CORBA: : Long,
and would be corrupted if client and server reside on different-endian hosts.
This example only shows the codec-specific code, as the majority of the
source has not changed. The complete source code for this example is in the
TAO source code distribution in the directory

$TAO _ROOT/DevGuideExamples/PortableInterceptors/SimpleCodec.

The Client

The user id is encoded before the send message () function is invoked. First
we obtain an initial reference to the CodecFactory, then we obtain a codec by
passing an encoding scheme to the CodecFactory reference.

// Obtain a reference to the CodecFactory.
CORBA::Object var obj2 = orb->resolve initial references ("CodecFactory");
if (CORBA::is nil(obj2.in())) {

std::cerr << "Error: codec factory" << std::endl;

return 1;

}

I0P::CodecFactory var codec factory = IOP::CodecFactory:: narrow (obj2.in());
std::cout << "got codec factory" << std::endl;

// Set up a structure that contains information necessary to
// create a GIOP 1.2 CDR encapsulation Codec.

IOP: :Encoding encoding;

encoding.format = IOP::ENCODING CDR ENCAPS;
encoding.major_version = 1;

encoding.minor version = 2;
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// Obtain the CDR encapsulation Codec.
I0P::Codec_var codec = codec_factory->create codec (encoding);

The user id is inserted into a CORBA: : Any which is encoded and returns a
CORBA: :OctetSeq that is used in the call to send message ().

// our user id

CORBA::Long uid = 64321;

CORBA::Any uid as any;

uid as_any <<= uid;

CORBA::OctetSeq client uid = *codec->encode (uid_as_any);
messenger->send message (client uid);

The Client Interceptor

In this example, the client interceptor passes group id information. Since the
gid is also a CORBA: : Long, it too is marshaled. Recall that interceptors are
registered within the call to ORB_init (). Since an ORB reference is not yet
available, interceptors that need access to a codec must obtain it from
operations in the ORBInitInfo interface.

void
ClientInitializer::post init (
PortableInterceptor::0RBInitInfo ptr info)

{
// get Codec factory
I0OP::CodecFactory var codec factory = info->codec factory();

The interceptor gets the CodecFactory reference through an argument passed
to its constructor by the ORBInitializer.

// Create and register the request interceptors.
PortableInterceptor::ClientRequestInterceptor var ci =
new ClientInterceptor (codec factory);
info->add client request interceptor (ci.in());

}

The client interceptor constructor has been modified to accept the reference to
the CodecFactory and create a codec. The send request () interception
point will use the codec to encode the gid. It then adds the encoded octet
sequence to the service context. The marshaling code is identical to that in the
client.
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ClientInterceptor::ClientInterceptor (IOP::CodecFactory var cf)
: myname_ ("Client Authentication_ Interceptor")

{

std::cout << "Calling ClientInterceptor constructor." << std::endl;

// Set up a structure that contains information necessary to
// create a GIOP 1.2 CDR encapsulation Codec.

IOP::Encoding encoding;

encoding.format = IOP::ENCODING CDR_ENCAPS;

encoding.major version = 1;

encoding.minor version = 2;

// Obtain the CDR encapsulation Codec.
this->codec = cf->create codec (encoding);

void

ClientInterceptor::send request (
PortableInterceptor::ClientRequestInfo ptr ri)

{

std::cout << "Calling send request()." << std::endl;

I0P::ServiceContext sc;
sc.context id = service ctx id;

const CORBA::Long gid = 9007;
std::cout << "GID: " << gid << std::endl;

CORBA::Any gid as any;
gid_as_any <<= gid;

sc.context data = *codec->encode (gid as_any));

// Add this context to the service context list.
ri->add request service context (sc, false);

The Server

The octet sequence is decoded in the send message () function of the
server. The code is very similar to the code in the client. A reference to the
CodecFactory is passed an encoding structure and returns a codec that is
used to demarshal the uid. In practice, creating the codec could be moved to
the constructor, but in this example it is left in the send message () function
for clarity.

// Obtain a reference to the CodecFactory.
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CORBA::Object var obj = orb->resolve initial references ("CodecFactory");
if (CORBA::is nil(obj.in())) {

std::cerr << "Error: codec_factory" << std::endl;

return 1;

IOP::CodecFactory var codec factory = IOP::CodecFactory:: narrow (obj.in ());
std::cout << "Server got codec factory" << std::endl;

// Set up a structure that contains information necessary to
// create a GIOP 1.2 CDR encapsulation Codec.

IOP::Encoding encoding;

encoding.format = IOP::ENCODING CDR ENCAPS;
encoding.major_version = 1;

encoding.minor_version = 2;

// Obtain the CDR encapsulation Codec.
I0P::Codec_var codec = codec_factory->create codec (encoding);

CORBA::Any uid as_any;
uid as_any = *(codec->decode (user_name)) ;

CORBA::Long uid;
if (uid_as_any >>= uid) {
std::cout << "UID: " << uid << std::endl;

} else {
std::cerr << "Could not extract UID from any." << std::endl;

}

The Server Interceptor

As in the client, the server interceptor is not able to access the CodecFactory
through the ORB because an ORB reference is not available. Instead, a
reference to the CodecFactory is obtained in the ORBInitializer from
ORBInitInfo::codec factory (). This reference is passed as an
argument to the interceptor’s constructor. The code that does this is identical
to the client code and is not shown here.

Decoding in the server interceptor is more complex than the decoding in the
server’s send message () function. Previously we decoded an octet
sequence that was passed as a parameter to send _message (). At the
receive request () interception point, we do not have direct access to an
octet sequence and must extract it from the service context. There is no service
context member function that returns the resident data as an octet sequence,
but there is a way to construct an octet sequence from the data in the service
context.
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// need to construct an octet seq for decoding
CORBA: :0OctetSeq ocSeq = CORBA::OctetSeq(
sc->context data.length(),
sc->context data.length(),
sc->context data.get buffer(),
false);

Once the data has been obtained as a CORBA: : OctetSeq, it can be decoded

using the codec that was created in the interceptor’s constructor.

CORBA::Any gid as any;
gid as_any = *codec->decode (ocSeq) ;

CORBA::Long gid;
if (gid_as_any >>= gid) {
for (int i=0; i<3; ++i) {
if (gid == allowed gid[i]) {
permission granted = true;
}
}
} else {

permission granted = false;
std::cerr << "Could not extract GID from any." << std::endl;

Program Output

The output of this example is similar to the previous example. The client

output should resemble:

> ./MessengerClient

Calling ClientInterceptor constructor.
Calling ClientInterceptor name () method
got codec factory

Calling send request().

GID: 9007

Calling receive reply().

message was sent

The server output should resemble:

> ./MessengerServer

Calling ServerInterceptor constructor.
Calling ServerInterceptor name () method
IOR written to file Messenger.ior

Calling receive request service contexts().
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Calling receive request().
Permission Granted

Server got codec factory
UID: 64321

Calling send reply().

IOR Interceptors

A second class of interceptors, IOR Interceptors, can add user-defined
information (called tagged components) to an object’s IOR at the time of the
creation of the IOR. This is useful in cases where developers might want to
add information about a server’s or object’s capabilities or requirements. [OR
interceptors implement the following interfaces, which are defined in

$TAO ROOT/tao/IORInterceptor/IORInterceptor.pidl.

local interface IORInterceptor : Interceptor
{

void establish components (in IORInfo info);

}i

local interface IORInterceptor 3 0 : IORInterceptor
{

void components established (in IORInfo info);

vold adapter manager state changed (in AdapterManagerId id,
in AdapterState state);
void adapter state changed (in ObjectReferenceTemplateSeq templates,
in AdapterState state);
}i

The IORInterceptor 3 0 interface was added in CORBA 3.0 and adds
additional operations and capabilities to IOR Interceptors. In general, you
should use this interface when implementing your own IOR Interceptors.

The server calls establish components () for all registered IOR
interceptors in the course of assembling the data that will be included in an
IOR, typically when the adapter (POA) is created. Per the CORBA
specification, the ORB ignores any exceptions thrown by

establish components (). By using the IORInfo object passed, IOR
interceptors can access adapter information and add tagged components
during this call. The adapter template is not available during this call.
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Once establish components () is called on each IOR interceptor, the
ORB calls components_established() on each interceptor that
implements the IORInterceptor 3 0 interface. The adapter template is
available during this call. If this operation throws an exception, then POA
creation fails.

The orb calls the adapter manager state changed() operation each
time an adapter manager (POA Manager) undergoes a state change. For
example a call to activate () on a POAManager results in a call to
adapter manager state changed () with a value for state of
PortableInterceptor: :ACTIVE. The id parameter identifies the
POAManager.

State changes on the adapter itself result in a call to
adapter state changed().

The TORInfo interface is used to get profile information and to add
components to an IOR. The TORInfo interface is defined in
STAO ROOT/tao/IORInterceptor/IORInfo.pidl.

local interface IORInfo
{
CORBA::Policy get effective policy (in CORBA::PolicyType type);
void add _ior component (in IOP::TaggedComponent component);
void add ior component to profile (
in IOP::TaggedComponent component,
in IOP::Profileld profile id);

readonly attribute AdapterManagerId manager id;

readonly attribute AdapterState state;

readonly attribute ObjectReferenceTemplate adapter template;
attribute ObjectReferenceFactory current factory;

}i

For more information about the TORInfo interface, Object Reference
Factories, and Object Reference Templates see the Portable Interceptors
chapter of the CORBA specification.

9.4.1 Defining and Implementing the IOR Interceptor
An IOR interceptor multiply inherits from
PortableInterceptor::IORInterceptor 3 0and
CORBA: :LocalObject. It mustimplement the establish components (),
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components established(), adapter manager state changed(),
adapter state changed(), name (), and destroy () methods.

#include "tao/PortablelInterceptorC.h"
#include "tao/LocalObject.h"
#include "tao/IORInterceptor/IORInterceptor.h"

class ServerIORInterceptor :
public virtual PortableInterceptor::IORInterceptor 3 0,
public virtual CORBA::LocalObject

{
public:
virtual char* name ();

virtual void destroy ();

virtual void establish components (PortableInterceptor::IORInfo ptr info);
virtual void components established (PortableInterceptor::IORInfo ptr info);
virtual void adapter manager state changed (
const char* id,
PortableInterceptor::AdapterState state);
virtual void adapter state changed (
const PortableInterceptor::0ObjectReferenceTemplateSeqgs templates,
PortableInterceptor::AdapterState state);
i

Registering the IOR Interceptor

Similar to request interceptors, IOR Interceptors are registered in the

pre init () orpost init () methods of the ORBInitializer. A newly
created instance of IORInterceptor is registered by passing it as an in
parameter to ORBInitInfo::add ior interceptor().

Extracting Tagged Information

Tagged components in an IOR can be extracted on the client-side at any of the
four implemented client interception points (send poll () is not supported).
The tagged component of an IOR is returned from

ClientRequestInfo::get effective component().

Example: “ServerRequiresAuth” Tag in IOR
The previous examples in 9.2.6 and 9.3.2 show how interceptors can be used
to provide simple authentication. In a more complex environment, different
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levels of security would exist and clients would not necessarily know what
types of authentication they might need to provide with remote requests.

This example demonstrates how IOR interceptors can allow an object to
advertise the type of authentication it requires. The following code extends the
codec example from 9.3.2 on the server side by publishing the string
"ServerRequiresAuth" as a component tag in the IOR. The client extracts
this new tag. The complete source code for this example is in the TAO source
code distribution in the directory

$STAO ROOT/DevGuideExamples/PortableInterceptors/IOR.

9.4.41 Developing the IOR Interceptor
The name () method of the TORInterceptor is simple.

char* ServerIORInterceptor::name ()

{
return CORBA::string dup ("ServerIORInterceptor");
}

To implement establish components (), we create an
I0P: : TaggedComponent and choose an arbitrary numeric value for its
taglD.

Note Were we developing an application that needed to interface with other
CORBA applications, we would want to make sure our taglD was unique, and
would ask the OMG to assign a Component ID. See
fip://ftp.omg.org/pub/docs/ptc/99-02-01.txt for additional information

We then copy the string “ServerRequiresAuth” into the TaggedComponent
buffer and call add ior component ().

void ServerIORInterceptor::establish components (
PortableInterceptor::IORInfo _ptr info )
{

const char * permission = "ServerRequiresAuth";

// arbitrary tag.
CORBA::ULong tagID = 9654;

// populate the tagged component
IOP: :TaggedComponent myTag;
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myTag.tag = taglD;
myTag.component data.length (ACE OS::strlen(permission) + 1);

CORBA::Octet *buf = myTag.component data.get buffer();
ACE_0S::memcpy (buf, permission, ACE OS::strlen(permission) + 1);

// add the tagged component
info->add ior_ component (myTag);
std::cout << "Created Tagged IOR." << std::endl;

The remaining member functions (components established(),
adapter manager state changed(), adapter state changed(),
and destroy () ) have empty definitions

Installing the IOR Interceptor

To install the IOR interceptor, we implement the post init () method of the
ServerInitializer class. This method is similar to the post init ()
method previously shown for Request interceptors. The IOR interceptor is
registered by creating a new instance of the interceptor and passing it to the
add ior interceptor () method.

void ServerInitializer::post init (
PortableInterceptor::0RBInitInfo ptr info)

{
// get reference to the codec factory
I0P::CodecFactory var codec_factory = info->codec_factory();

// Create and register the request interceptors.

PortableInterceptor::ServerRequestInterceptor var si =
new ServerInterceptor (codec factory);

info->add server request interceptor (si.in());

// add IOR Interceptor
PortableInterceptor::IORInterceptor var iori = new ServerIORInterceptor;
info->add_ior_interceptor (ior.in());

Decoding the Tag in the Client

In this example, the client accesses the TOP: : TaggedComponent
information at the send request () interception point. It retrieves an
IOP: : TaggedComponent based upon a known tagID. If the
TaggedComponent does not exist, the operation
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get effective component () raises a CORBA: :BAD PARAM exception,
hence the try/catch block below.

const CORBA::ULong tagID = 9654;
try
I0P::TaggedComponent var myTag = ri->get effective component (tagID);
char *tag = reinterpret cast<char *>(myTag->component data.get buffer());
std::cout << "IOR Tag is : " << tag << std::endl;
}
catch (CORBA: :BAD PARAM&) {
std::cerr << "Tagged Component not found" << std::endl;

}

Program Output

The server generates a tagged IOR which can be viewed in a more readable
form using the utility tao catior (in $STAO ROOT/utils/catior):

> $TAO_ROOT/utils/catior/tao_catior -f Messenger.ior
reading the file Messenger.ior

here is the IOR
IOR:010000001200000049444c3a4d657373656e6765723a312e300000000100000000000000870
000000101020010000000636869702e6£63697765622e636£6d00878200001b00000014010£0052
53540e02573¢698d0c0000000000010000000100000000030000000000000008000000010000000
04£415401000000140000000135p34001000100000000000901010000000000625000013000000
53657276657252657175697265734175746800

decoding an IOR:
The Byte Order: Little Endian

The Type Id: "IDL:Messenger:1.0"

Profile Count: 1

IIOP Version: 1.2
Host Name: chip.ociweb.com
Port Number: 33415
Object Key len: 27

Object Key as hex:
14 01 0f 00 52 53 54 0e 02 57 3c 69 8d 0Oc 00 00
00 00 00 01 00 00 00 01 00 00 00
The Object Key as string:
e RST.LWKE o e i et
The component <0> has tag <0>
Component Value len: 8
Component Value as hex:
01 00 00 00 00 4f 41 54
The Component Value as string:

The component <1> has tag <1>
Component Value len: 20
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Component Value as hex:

01 35 b3 40 01 00 01 00 00 00 00 00 09 01 01 00
00 00 00 00

The Component Value as string:

The component <2> has tag <9654>
Component Value len: 19
Component Value as hex:
53 65 72 76 65 72 52 65 71 75 69 72 65 73 41 75
74 68 00
The Component Value as string:
ServerRequiresAuth.

At the send request () interception point, the client obtains the
TaggedComponent and casts it to a char* for output. The output of the client
should resemble:

./MessengerClient

Calling ClientInterceptor constructor.
Calling ClientInterceptor name () method
got codec factory

Calling send request().

IOR Tag is : ServerRequiresAuth

GID: 9007

Calling receive reply().

message was sent

9.5 The Portablelnterceptor::Current

The PortableInterceptor: :Current or PICurrent is a slot table that is
used to transfer thread context information between the request and reply
service contexts. The PICurrent is an ancillary object to Portable
Interceptors. Its use is not required, but it is helpful in propagating data when
the service context is not available or not yet available.

9.5.1 Using PICurrent

The PortableInterceptor: :Current interface is defined in
$TAO ROOT/tao/PI/PICurrent.pidl:

module PortableInterceptor

{
typedef unsigned long SlotId;
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exception InvalidSlot {};
local interface Current : CORBA::Current
{
any get slot (in SlotId id) raises (InvalidSlot);
void set slot (in SlotId id, in any data) raises (InvalidSlot);
}i
}i

A reference to the PICurrent is obtained from a call to

ORB::resolve initial references ("PICurrent"). Data in the form
of a CORBA: : Any is inserted into a slot with set slot () and is retrieved
with get _slot().

9.5.2 When to use PICurrent

There are special instances where PICurrent can be helpful on both the
server- and client-side. Recall that the

recelve request service context () interception point does not have
access to the service context. Any data that is needed at this interception point
can be copied into the PICurrent before the invocation and will be available
at the interception point. The CORBA specification discusses a client-side
case where the PICurrent is useful in stopping recursion. The following
example demonstrates how interceptors can be called recursively and how the
PICurrent can be used to pass a flag between the client and server service
contexts to allow the client to recognize that it is making a recursive call.

9.5.3 Example: Stopping Client-side Recursion
Infinite recursion can happen if an interceptor makes an ORB-mediated
invocation on a CORBA object. Suppose the client makes an invocation,
which calls send message (), and send message () makes its own
invocation, which will call send message () indefinitely until somehow the
interceptor realizes it is recursing or the application crashes. The PICurrent
can be used to pass a flag that the ClientRequestInterceptor can use to
keep from making recursive calls.

Note Another way to solve this potential recursion problem may be to use the
Processing Mode Policy to disable interceptors for collocated invocations. If
the CORBA object that the interceptor is invoking an operation on is in the
same process, then disabling interceptors for collocated calls would avoid
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recursively calling the interceptor. See 9.6.1 for details of the Processing
Mode Policy.

In this example, we assume that the client needs to know the server’s date and
time with each invocation operation. Rather than returning the date and time
from a call to send message (), we choose to extend our IDL to add a
get time () function. The complete source code for this example is in the
TAO source code distribution in the directory
$TAO_ROOT/DevGuideExamples/PortableInterceptors/PICurrent.

Here is our Messenger interface with the addition of a get time () operation:

interface Messenger
{
boolean send message ( in string user_name,
in string subject,
inout string message );

string get time ();

}i
The get;_tjjne () operation is implemented on the server as:

char* Messenger i::get time ()
{

time t thetime;

struct tm* timeinfo;

ACE_0S::time(&thetime);
timeinfo = ACE 0S::localtime (&thetime);
char* timestring = CORBA::string dup(ACE 0S::asctime (timeinfo));

return timestring;

The functionality we would like to see in the client is that every time
Messenger: :send message () is called, Messenger: :get time () is
called. If we add a call to get _time () inthe send request () interception
point, we will cause send request () to be called recursively. Using the
PICurrent, we can detect this recursion.

Before we can use the PICurrent, we must get a reference to it. This is done
in the ORBInitializer. Because we want to call get time (), we need a
reference to the Messenger object. In the earlier examples in this chapter, we
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read an IOR from a file and called ORB: : string to object () to obtain
the object reference, but interceptors do not have access to the ORB in the
ORBInitializer,so string to object () is not available. For this
example we made the Messenger object an initial reference by passing the
server’s IOR as part of the ~-ORBInitRef command line argument.
Alternately, we could bind the Messenger object in the Naming Service and
resolve the Naming Service as an initial reference in the ORBInitializer.

void ClientInitializer::post init (
PortableInterceptor::0RBInitInfo ptr info)
{
// resolve Messenger object
CORBA::Object var obj = info->resolve initial references ("Messenger");
Messenger var messenger = Messenger:: narrow (obj.in());
if (CORBA::is nil(messenger.in())) {
std::cerr << "Not a Messenger reference" << std::endl;
// We could throw an exception here, or just ignore the error and go on.

We then allocate a slot in the current for our use. Since we cannot obtain a
reference to the PICurrent through

ORB::resolve initial references (), we obtain it through
ORBInitInfo::resolve initial references().

// allocate slot
PortableInterceptor::SlotId slot = info->allocate_slot id();

// get PICurrent
CORBA: :Object var current obj = info->resolve initial references ("PICurrent");
PortableInterceptor::Current var pic =

PortableInterceptor::Current:: narrow (current obj.in());

A CORBA: :Boolean serves as our recursion flag. Initially there is no
recursion, so we set a false value in the PICurrent slot and finish installing
the interceptor.

// set recurion flag

CORBA: :Any flag;

CORBA::Boolean x = false;

flag <<= CORBA::Any::from boolean (x);

pic->set slot(slot, flag);

// Create and register the request interceptors.
PortableInterceptor::ClientRequestInterceptor var ci =
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new ClientInterceptor (messenger, pic.in(), slot);
info->add client request interceptor (ci.in());

}

In the client interceptor, the code pertinent to
Messenger: :send message () is unchanged.

void ClientInterceptor::send request (
PortableInterceptor::ClientRequestInfo ptr ri)

{
std::cout << "Calling send request()." << std::endl;

IOP::ServiceContext sc;
sc.context id = service ctx id;

const char user name[] = "Ron K