
o c i w e b . c o m i

TAO Developer’s Guide

OCI TAO Version 2.2a
updated for patch 7

OCI Part Number 621-01

ii o c i w e b . c o m

Summary Of Changes In Patch 7

Section 13.4, added description of new IOR “refresh” feature of the
IORTable.

Section 17.13.54, explain new behavior for explicit
ORBPreferIPV6Interfaces 0.

Sections 18.2.12 and 18.6.15 added description of new resource factory option
for initialization of the IORTable refresh feature.

Section 27.6.2, Reordered and reformatted options list, added new options
SSLCheckHost, SSLPassword, and SSLVersionList.

Sections 27.10.1 through 27.10.15, Freshened the option descriptions and
added missing options.

Section D.1.5 updated the information about generating build files for
supported Visual C++ versions.

Summary Of Changes In Patch 5

Section 3.3.2.1, added parameters to example tao_idl command line.

Section 3.3.6, modified example mpc file.

Summary Of Changes In Patch 4

Section 17.13.32, added ORBIIOPClientPortBase option description.

Section 17.13.33, added ORBIIOPClientPortSpan option description.

Section 22.9.1, added -l command line parameter description to table.

Section 22.9.3, added paragraph explaining the -l parameter.

Section 22.9.7, updated text of various examples to show "random" as a
supported strategy along with round-robin.

Section 28.2, provide an overview of new ImR capabilities.

Section 28.3, clarify startup behavior description.

o c i w e b . c o m iii

Section 28.5, added text noting the ping interval and timeout values are
configurable.

Section 28.12.1, added new command line options for ping timeout and
lockout.

Summary Of Changes In Patch 1

Section 15.3, dynamic thread pool added to the list of ORB threading
strategies.

Sections 15.3.7, 15.3.10, refactored the discussion of dynamic thread pool
usage to include a discussion of applying thread pools to ORBs as well as
POAs.

Section 17.12, add link to ORBId option.

Section 17.13.14, add description of ORBDynamicThreadPoolName option.

Section 17.13.17, add description of ORBForwardDelay option.

Sections 17.13.18 - 17.13.27, make the section names consistent, fix example

Section 17.13.30, add description of ORBId option.

Section 17.13.55, clarified the description and added more examples.

Section 20.2.3, update table to include ORBDefaultSyncScope option.

Section 20.3.3, add description of ORBDefaultSyncScope strategy setting.

Section 28.2, provide an overview of new ImR capabilities.

Section 28.11.1, update command table.

Section 28.11.1.4 add detailed description of kill command

Section 28.11.1.5, add detailed description of link command

Section 28.11.1.6, expand description of list command

iv o c i w e b . c o m

© 2015 Object Computing, Inc.
All rights reserved. No part of this document may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior, written permission of Object
Computing, Inc.

Whereas every effort has been made to ensure the technical accuracy of this
document, Object Computing, Inc. assumes no responsibility for errors or omissions.
This document and technologies described herein are subject to change without
notice.

OMG is a registered trademark and Object Request Broker, ORB, OMG IDL, and
CORBA are trademarks of Object Management Group, Inc.

Sun, Sun Microsystems, Solaris, Sun Workshop Compiler, Forte, UltraSPARC, and
Java are trademarks or registered trademarks of Oracle Corporation in the United
States and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the United States
and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Oracle Corporation.

UNIX is a registered trademark of The Open Group.

SGI and IRIX are registered trademarks of Silicon Graphics, Inc.

AIX is a registered trademark of IBM.

HP-UX and Tru64 are registered trademarks of Hewlett-Packard Company.

Microsoft, Windows, Windows NT, Windows 2000, Windows 95, Windows 98,
Windows XP, Win32, Windows Vist, and Windows 7 are trademarks of Microsoft
Corporation in the U.S. and other countries.

Borland C++ Builder is a registered trademark of Borland Software Corporation.

VxWorks and Tornado are registered trademarks of WindRiver Systems.

LynxOS is a registered trademark of LynuxWorks.

OS-9 is the registered trademark of RadiSysCorporation.

All other products or services noted in this guide are covered by the registered
trademarks, service marks, or product names of their respective holders.

o c i w e b . c o m v

Your feedback on, or your submission of content to, this documentation is
appreciated. Please contact us at either office location via phone or fax, or e-mail your
feedback to: techpubs@ociweb.com.

How to contact us:

Object Computing, Inc. (Corporate Office)
12140 Woodcrest Executive Drive, Suite 250
St. Louis, MO 63141
+1.314.579.0066 Voice
+1.314.579.0065 Fax

Support: support@ociweb.com
Training: training@ociweb.com
Sales: sales@ociweb.com
Internet: www.ociweb.com

vi o c i w e b . c o m

o c i w e b . c o m vii

C o n t e n t s

Contents

Summary Of Changes In Patch 7 .ii

Summary Of Changes In Patch 5 .ii

Summary Of Changes In Patch 4 .ii

Summary Of Changes In Patch 1 . iii

Contents . vii

Foreword . xix

Preface . xxv

viii o c i w e b . c o m

C o n t e n t s

Detailed Licensing Terms . xxxvii

Part 1 Introduction to TAO Programming 1

Chapter 1 Introduction . 3

Design Goals . 4

Development History . 6

Architecture of TAO . 8

CORBA Compliance . 13

High Performance and Real-Time Support . 15

Relationship Between ACE and TAO . 16

Chapter 2 Building ACE and TAO . 19

Introduction . 19

Where to Get ACE and TAO . 20

System Requirements . 20

Steps to Build ACE and TAO . 21

Chapter 3 Getting Started . 25

Introduction . 25

Setting Up Your Environment . 26

A Simple Example . 27

Summary . 35

Part 2 Features of TAO 37

Chapter 4 TAO IDL Compiler . 39

Introduction . 39

Executables . 40

Output Files Generated . 40

Using TAO IDL Compiler Options . 42

Preprocessing Options . 42

Output File Options . 45

Starter Implementation Files . 46

o c i w e b . c o m ix

C o n t e n t s

Additional Code Generation Options . 48

OpenDDS-related Options . 50

Operation Lookup Strategy Options . 50

Collocation Strategy Options . 51

Back End Options . 52

Suppression Options . 54

Options Used Internally by TAO . 55

Output and Reporting Options . 56

Chapter 5 Error Handling . 59

Introduction . 59

CORBA System Exceptions . 61

CORBA User Exceptions . 66

TAO Minor Codes . 68

Summary . 74

Chapter 6 CORBA Messaging . 75

Introduction . 75

AMI Callback Model . 76

Quality of Service Policies . 102

Bi-Directional GIOP . 115

Endpoint Policy . 119

Specifying Differentiated Services with TAO . 121

Chapter 7 Asynchronous Method Handling . 125

Introduction . 125

Participants in an AMH Servant . 128

Generating AMH Related Code . 130

An AMH Example Program . 131

AMH and Advanced CORBA Features . 139

Combining AMH with AMI . 142

Chapter 8 Real-Time CORBA . 149

Introduction . 149

x o c i w e b . c o m

C o n t e n t s

Real-Time CORBA Overview . 150

Real-Time CORBA Architecture . 153

Dynamic Scheduling . 173

TAO’s Implementation of Real-Time CORBA . 185

Client-Propagated Priority Model . 205

Server-Declared Priority Model . 208

Using the RTScheduling::Current . 212

Real-Time CORBA Examples . 217

Chapter 9 Portable Interceptors . 219

Introduction . 219

Using TAO Request Interceptors . 220

Marshaling and the Service Context . 237

IOR Interceptors . 243

The PortableInterceptor::Current . 249

Interceptor Policy . 255

Summary . 256

Chapter 10 Value Types . 259

Introduction . 259

Uses for Value Types . 260

Defining Value Types in IDL . 261

A Value Type Example . 262

An Example using Value Types as Events . 267

Value Types and Inheritance . 269

Value Boxes . 274

TAO Compliance . 274

Chapter 11 Smart Proxies . 277

Introduction . 277

Smart Proxy Use Cases . 279

TAO’s Smart Proxy Framework . 280

Writing and Using Smart Proxy Classes . 286

Linking Your Application . 289

o c i w e b . c o m xi

C o n t e n t s

A Smart Proxy Example . 289

Chapter 12 Local Interfaces . 299

Introduction . 299

C++ Mapping for LocalObject . 300

Changing Existing Interfaces to Local Interfaces . 301

Example: ServantLocator . 302

Chapter 13 IOR Table . 311

Introduction . 311

IOR Table . 312

Locator . 314

IOR Refresh . 316

Chapter 14 Using Pluggable Protocols . 319

Introduction . 319

Protocol Introduction . 320

Protocols Provided with TAO . 321

Building the Protocol Libraries . 323

Loading Pluggable Protocols . 323

IIOP . 324

UIOP . 328

SHMIOP . 330

DIOP . 333

SSLIOP . 335

MIOP/UIPMC . 337

HTIOP . 341

SCIOP . 344

ZIOP . 347

COIOP . 348

Combining Protocols . 349

TAO and IPv6 . 350

Developing Pluggable Protocols . 351

xii o c i w e b . c o m

C o n t e n t s

Chapter 15 Multithreading with TAO . 357

Introduction . 357

Overview of Client/Server Roles in CORBA . 359

Multithreading in the Server . 363

Multithreading in the Client . 412

Summary . 429

Part 3 Run-time Configuration of TAO 431

Chapter 16 Configuring TAO Clients and Servers . 433

Introduction . 433

Patterns and Components for Configuring TAO Clients and Servers 434

The ACE Service Configurator . 436

Service Configurator Control Options . 439

The ACE Service Configurator Framework . 440

XML Service Configurator . 445

Service Objects . 448

ACE Service Manager . 457

Summary . 458

Chapter 17 ORB Initialization Options . 459

Introduction . 459

Interface Definition . 460

Controlling Service Configurator Behavior . 463

Controlling Debugging Information . 464

Optimizing Request Processing . 465

Connection Management and Protocol Selection . 466

Socket Configuration Options . 467

Service Location Options . 467

IPv6-Related Options . 468

Multiple Invocation Retry Options . 469

Implementation Repository Options . 471

Miscellaneous Options . 472

Option Descriptions . 473

o c i w e b . c o m xiii

C o n t e n t s

Chapter 18 Resource Factory . 549

Introduction . 549

Interface Definition . 551

Resource Factory for Qt GUI Toolkit . 568

Resource Factory for X Windowing Toolkit . 569

Advanced Resource Factory . 571

Resource Factory Options . 574

Advanced Resource Factory Options . 588

Chapter 19 Server Strategy Factory . 595

Introduction . 595

Interface Definition . 596

Default Server Strategy Factory Options . 604

Chapter 20 Client Strategy Factory . 617

Introduction . 617

Interface Definition . 618

Client Strategy Factory Options . 624

Part 4 TAO Services 633

Chapter 21 TAO Services Overview . 635

Introduction . 635

Customizing Access to the Services . 636

TAO’s ORB Services Libraries . 637

Locating Service Objects . 640

Chapter 22 Naming Service . 645

Introduction . 645

Resolving the Naming Service . 647

Naming Service Example . 648

Object URLs . 655

The NamingContextExt Interface . 660

TAO-Specific Naming Service Classes . 663

xiv o c i w e b . c o m

C o n t e n t s

Naming Service Utilities . 667

Naming Service Command Line Options . 672

Fault Tolerant Naming Service . 678

Using the NT Naming Service . 690

Chapter 23 Event Service . 693

Introduction . 693

Overview of the Event Service . 694

TAO’s Event Channel Implementation . 695

How to Use the Event Service . 695

tao_cosevent Command Line Options . 713

Event Channel Resource Factory . 715

Chapter 24 Real-Time Event Service . 741

Introduction . 741

Overview of the TAO Real-Time Event Service . 741

Using the TAO Real-Time Event Service . 744

tao_rtevent Command Line Options . 783

Event Channel Resource Factory . 784

The IIOP Gateway Factory . 818

Chapter 25 Notification Service . 827

Introduction . 827

Notification Service Architecture . 828

Notification Service Features . 829

Using the Notification Service . 864

Compatibility with the Event Service . 909

tao_cosnotification Command Line Options . 909

Notification Service Configuration Options .911

Chapter 26 Interface Repository . 945

Introduction . 945

Using the Interface Repository . 946

TAO’s Interface Repository Implementation . 947

o c i w e b . c o m xv

C o n t e n t s

Example IFR Client . 951

Chapter 27 TAO Security . 961

Preface . 961

Introduction . 963

Introduction to CORBA Security . 964

Secure Sockets Layer Protocol . 983

Working with Certificates . 994

Building ACE and TAO Security Libraries . 1001

Security Unaware Application . 1005

Security Policy Controlling Application . 1012

Security Policy Enforcing Application . 1018

Mixed Security Model Applications . 1026

SSLIOP Factory Options . 1029

Chapter 28 Implementation Repository . 1037

Introduction . 1037

New for patched OCI TAO 2.2a . 1039

The Operation of the ImR . 1040

Basic Indirection Example . 1043

Server Start-up . 1046

Activation Modes . 1051

Using the ImR and the IOR Table . 1053

ImR and IOR Table Example . 1054

Advanced Examples . 1060

Repository Persistence . 1060

ImR Utility . 1061

tao_imr_locator . 1070

tao_imr_activator . 1076

JacORB Interoperability . 1079

Part 5 Appendices 1081

Appendix A Configuring ACE/TAO Builds . 1083

xvi o c i w e b . c o m

C o n t e n t s

System Requirements . 1084

Generating Makefiles and Project Files . 1085

GNU Make Build Flags . 1090

Using the Build Flags . 1094

Appendix B Choosing How To Build ACE and TAO .1103

Appendix C Building ACE and TAO on UNIX .1105

Building ACE and TAO on a UNIX System .1105

Customizing ACE and TAO Builds .1111

Appendix D Building ACE and TAO Using Visual C++ .1115

Building ACE and TAO .1115

Build Notes .1120

Appendix E Using ACE and TAO with VxWorks .1123

Kernel and System Configuration .1124

Environment Setup .1125

Appendix F Using ACE and TAO with Android .1129

Android Development Kits .1130

Setup ACE/TAO Workspaces .1130

Build The Host Tools .1131

Build The Target Libraries .1132

Appendix G Using ACE and TAO with LynxOS .1135

Cross-Compilation .1135

Appendix H Testing ACE and TAO on VxWorks and LynxOS 1139

Building the Tests .1139

Running the Tests .1140

Appendix I CORBA Compliance .1145

Introduction .1145

o c i w e b . c o m xvii

C o n t e n t s

CORBA 3.1 . 1146

CORBA for Embedded . 1149

Real-Time CORBA . 1151

C++ Language Mapping . 1152

Naming Service . 1153

Notification Service . 1154

Security Service . 1154

References .1157

Index .1161

xviii o c i w e b . c o m

C o n t e n t s

o c i w e b . c o m xix

Foreword

Institute for Software Integrated Systems
Department of Electrical Engineering and Computer Science
Vanderbilt University
Nashville, Tennessee
USA

August 2011

For the past two decades I've led many R&D groups and projects on distributed object
computing (DOC), service-oriented architecture (SOA), and publish/subscribe (pub/sub)
middleware in academia, industry, and government. Many middleware technologies have
come and gone during this time. For example, ToolTalk, SOM, DCOM, or proprietary
message-oriented middleware from the 90's have vanished from all but the most stubborn
legacy systems.

An important technology advance over the past two decades has been the evolution and
maturation of DOC, SOA, and pub/sub middleware based on open standards, such as the
OMG Common Object Request Broker Architecture (CORBA) and the OMG Data
Distribution Service (DDS). This middleware resides between applications and the
underlying operating systems, network protocol stacks, and hardware. At the heart of DOC

xx o c i w e b . c o m

and SOA middleware is the object request broker (ORB), whose primary role is to bridge the
gap between application programs and the lower-level hardware and software infrastructure
to

1. extend the scope of portable software via common industry-wide standards,

2. coordinate how parts of applications are connected and how they interoperate across
networked nodes, and

3. ease the integration and interoperability of software artifacts developed by multiple
technology suppliers and application developers..

When developed and deployed properly, DOC, SOA and pub/sub middleware can reduce the
cost and risk of developing distributed applications and systems. The right middleware helps
to simplify the development of distributed applications in several ways, including:

• Providing a consistent set of capabilities that are closer to application design-level
abstractions than to the underlying mechanisms in the computing platforms and
communication networks. These higher-level abstractions shield application developers
from lower-level, tedious, and error-prone platform details (such as socket-level network
programming and multithreading) and help application developers effectively manage
system resources (such as memory, network, and CPU resources).

• Helping application developers amortize software lifecycle costs by (1) leveraging
previous development expertise and capturing implementations of key patterns in
reusable frameworks, rather than rebuilding them manually for each use and (2)
providing a wide range of reusable application-oriented services (such as logging, event
notification, naming, and security) that have proven necessary to operate effectively in
distributed environments.

This documentation set from Object Computing, Inc. (OCI) is the seventh installment of an
ever growing and continually improving body of knowledge describing the capabilities and
effective usage of The ACE ORB (TAO), which is a highly portable, open-source,
high-performance, and real-time implementation of the OMG CORBA specification using
the C++ frameworks and wrapper facade classes provided by the popular ACE open-source
toolkit.

In this seventh release from OCI, the TAO middleware---and the agile open-source
community development process that drives it---show a remarkable ability to evolve steadily
and continue to lead the field in implementing the latest OMG CORBA specifications and
span of supported operating system platforms and C++ compilers. Crucial to the success and
longevity of TAO is its robust design based on the patterns and frameworks in ACE that
substantially improve its efficiency, predictability, and scalability. Much of the R&D
activities over the past several years since the previous OCI release have focused on

o c i w e b . c o m xxi

optimizing the time and space overhead of ACE and TAO so they can meet more stringent
application quality-of-service (QoS) requirements in a wider range of domains.

The figure above illustrates where optimizations and enhancements have been applied to the
following TAO components:

• TAO includes a highly optimized CORBA IIOP protocol engine and an IDL compiler
that generates compiled stubs and skeletons that apply a wide range of time and space
optimizations. TAO's IDL compiler supports OMG IDL 2.x and 3.x features, including
CORBA's object-by-value features.

• TAO's ORB Core supports high-performance and real-time concurrency and dispatching
strategies that minimize context switching, synchronization, dynamic memory allocation,
and data movement.

• TAO's Portable Object Adapter (POA) implementation uses active demultiplexing and
perfect hashing optimizations that associate client requests with target objects in constant
time, regardless of the number of objects, operations, or nested POAs.

�������

�	

������

�	

��

	��	�	���

�������

���������	

���
���������

���
	���	

������

�������

���
	�������

������
������
�	�������

�����������

�����	

����	����

��������	

��
	��	�	���

�������

�������

���	��������

�����

��������
�
��	��������

����

�������

�

������

����������

����������

����������

�	

������

�	

��

	��	�	���

�������

���������	

���
���

����������
��������
���	��������

	�����
�
�������

	���������

��������
���������

��������	

���

������������
���������

��������	

xxii o c i w e b . c o m

• TAO can be configured to use non-multiplexed connections that avoid priority inversion
and behave predictably when used with multi-rate distributed real-time and embedded
applications. It can also be configured to use multiplexed connections, which make it
more scalable when run in large-scale Internet or enterprise application environments.

• TAO's pluggable protocols framework supports a wide range of transport mechanisms,
such as standard TCP/IP protocols, UDP, IP multicast, UNIX-domain sockets, secure
sockets (SSL), and shared memory. This framework also allows users to develop
end-to-end fault tolerant systems, where network reliability may require special purpose
protocols, such as the Stream Control Transmission Protocol (SCTP), which is also
supported by TAO. TAO also supports the HTTP Tunneling Inter-ORB Protocol
(HTIOP) that layers GIOP messages over HTTP packets and allows inter-ORB
communication across firewalls.

• TAO's Real-time Event Service, Notification Service, and Naming Service integrate the
capabilities of the TAO ORB described above to support performance-driven
requirements for many application domains and projects.

The OCI TAO 2.2a release provides all these optimizations within the standard CORBA
object model and API. The OCI TAO 2.2a documentation set contains over 1,300 pages of
text, examples, tables, and figures that explain the strategies and tactics for applying these
and many other TAO features and services to address your middleware and application
needs. The size of the OCI TAO documentation set is testimony to the inherent value of their
product, which will positively impact your project schedule and software development costs.
The OCI TAO documentation set and the OCI's website dedicated to TAO (http://
www.theaceorb.com) are key community repositories of best practices for developing
effective distributed real-time and embedded applications.

We are fortunate that OCI has committed itself to supporting TAO using a truly open-source
business model. Many commercial developers would not have received management support
to use TAO without the assurance of commercial quality products and services. Now that
open-source software has achieved critical mass, commercial users are not just accepting it,
but are recognizing its importance in the mix of software development models. Moreover,
many government agencies and programs are now mandating the use of standards-based
open-source software to avoid proprietary vendor lock-in.

As a result of these trends, users are no longer restricted to choosing between one-size-fits-all
commercial-off-the-shelf toolkits vs. custom development. There is now a third way in
which users participate heavily in the open-source process and sponsor the fulfillment of their
unmet needs as feature additions. Many of OCI’s contributions to ACE and TAO during the
past two decades have been at their clients’ behest for features or ports in a timely manner.
By adding JacORB (an open-source Java ORB), OpenDDS (an open-source implementation

o c i w e b . c o m xxiii

of OMG DDS), CIAO (an open-source CORBA Component Model implementation), and
JBoss (an open-source J2EE implementation) to its supported products, OCI has met the
needs of many TAO users who require a broad and deep range of open-source middleware to
support their mission-critical applications.

In closing, it is important to recognize the extent to which the success of TAO has benefited
from OCI's open-source development model. I'm proud that so many bright students, staff,
OCI engineers, and members of the ACE+TAO open-source community have worked
together closely over the past two decades. As you work with TAO please feel free to
experiment with, dissect, repair, and improve it. We accept bug reports, appreciate bug fixes/
enhancements, and strive to integrate correct bug fixes quickly using our online problem
tracking system. We look forward to seeing your name in subsequent releases of our
software!

Douglas C. Schmidt

xxiv o c i w e b . c o m

o c i w e b . c o m xxv

Preface

What Is TAO?

TAO (The ACE ORB) is an open source, advanced, CORBA-compliant,
real-time Object Request Broker (ORB). Its research-guided and
industry-driven middleware architecture is designed to meet the stringent
Quality of Service (QoS) requirements of real-time applications. This focus on
QoS requirements has resulted in TAO’s superior end-to-end predictability,
efficiency, and scalable performance. TAO has been built with components
from the ACE (ADAPTIVE Communication Environment) framework
allowing for a highly extensible architecture. Although TAO was designed to
meet the demanding requirements of real-time applications, it is also
well-suited for general-purpose CORBA applications that do not have
stringent QoS requirements.

Licensing Terms

TAO is made available under the open source software model. The source
code may be freely downloaded and is open for inspection, review, comment,

xxvi o c i w e b . c o m

and improvement. Copies may be freely installed across all your systems and
those of your customers. There is no charge for development or run-time
licenses. The source code is designed to be compiled, and used, across a wide
variety of hardware and operating systems architectures. You may modify it
for your own needs, within the terms of the license agreements. You must not
copyright ACE/TAO software. For details of the licensing terms, as specified
by the Center for Distributed Object Computing, please refer to “Detailed
Licensing Terms” on page xxxvii.

TAO also utilizes, and is distributed with, two other open source software
products; GPERF and MPC. The open source license for MPC is similar to
that of ACE and TAO. GPERF is under the GNU Public License (GPL),
Version 2. Detailed licensing terms for GPERF are found on page xxxix.
Detailed licensing terms for MPC are found on page page xlii.

TAO utilizes two software products obtained/derived from Sun Microsystems.
The first product implements the OMG’s Internet Inter-ORB Protocol (IIOP).
You may copy, modify, distribute, or sublicense the licensed product without
charge, as part of a product or software program developed by you, so long as
you preserve the interoperability specified by the OMG’s IIOP.

The second Sun Microsystems product implements an OMG Interface
Definition Language (IDL) compiler front-end. You may also include this
product freely in any distribution, and may modify it, as long as you do not
remove functionality.

In both cases, you must not use the Sun Microsystems name, logo, or
copyrighted material in any subsequent distribution or promotion of your
product. In addition, you must include the Sun Microsystems licensing terms,
which can be found in their entirety on page xxxix and page xl.

TAO is open source and the development group welcomes code contributions.
Active participation by users ensures a robust implementation. Before you
send code, please refer to the terms and conditions relating to software
submissions on the DOC group’s TAO web site, accessible via
<http://www.theaceorb.com/references/>. Incorporation of your
code into TAO means that it is now “open.” The ACE/TAO copyright and
terms protect the user community from legal infringement or violation.

o c i w e b . c o m xxvii

About This Guide

This Developer’s Guide is the sixth edition and corresponds to OCI’s
Distribution of TAO Version 2.2a. It extends the previous edition which
corresponded to OCI’s Distribution of TAO Version 2.0a. The publication and
release of this edition does not mean the previous edition is obsolete. Much of
the information in the previous edition still applies to the TAO 2.2a release.
However, some features/options described in the previous edition are
deprecated in TAO 2.2a and are so noted in the text.

This guide focuses on the aspects of TAO that make it unique from other
ORBs. It is not meant to be a comprehensive CORBA developer’s guide.
Please refer to Advanced CORBA Programming with C++ by Michi Henning
and Steve Vinoski or Pure CORBA by Fintan Bolton for a more complete
treatment of general-purpose CORBA programming topics.

Highlights of the TAO 2.2a Release

OCI’s Distribution of TAO Version 2.2a includes new features and
improvements over the previous release. This section highlights some of the
more important and visible changes and describes how they may impact your
existing TAO applications.

Performance Enhancements

• Dynamic Thread Pooling in POAs—A new Dynamic Thread Pool and
Queuing strategy was created for POA usage. It leverages the existing
Custom Servant Dispatching framework for invocation and activation.
The strategy dynamically adjusts the number of threads using
configuration parameters similar to the ORB Dynamic Thread Pool. Using
a thread pool for request processing is useful for avoiding nested upcalls
and for ensuring efficient request dequeuing. However, static thread pools
made too small may result in request processing back logs, or made too
large waste resources. A dynamic thread pool can grow to accommodate
timely execution of requests when a surge happens, but will taper off
releasing resources when activity is reduced. See 15.3.10 for further
details.

xxviii o c i w e b . c o m

Reliability Enhancements

• Fault Tolerant Implementation Repository— The Implementation
Repository Locator now supports a dual-redundant fault tolerant
configuration which provides replication and seamless failover between
the primary and backup locator servers. See 28.12.2 for further details.

• High performance Implementation Repository— The Implementation
Repository Locator has been re-implemented using AMI/AMH to avoid
the problem of nested upcalls under heavy load.

• Fault Tolerant Naming Service— A new Fault Tolerant Naming Service
(tao_ft_naming), provides dual-redundant fault tolerant servers
which utilize replication and seamless failover between the primary and
backup server. The Fault Tolerant Naming Service can be used to provide
load balancing capabilities through the use object groups. This feature is
supported by a separate utility for managing the object groups
(tao_nsgroup) as well as a programmatic interface via IDL. See 22.9
for further details.

• Multiple Invocation Retry Support—Extended TAO to support multiple
retries in the presence of COMM_FAILURE, INV_OBJREF,
OBJECT_NOT_EXIST, and TRANSIENT exceptions. This feature is
used to support fault tolerant services (specifically the Fault Tolerant
Naming and Implementation Repository services described earlier). The
new invocation retry support allows configuration on how many times to
try to connect to each server and the delay between tries. See 17.10 for
further details.

Interoperability

• JacORB—TAO’s Implementation Repository has been extended to allow
it to manage JacORB application servers. See 28.14 for further details.

Important Bug Fixes

• Many other bug fixes or work-arounds appear in this release. See
$ACE_ROOT/OCIReleaseNotes.html for details.

o c i w e b . c o m xxix

Structure of the Guide

Part 1, “Introduction to TAO Programming”
This section discusses the design goals, development history, and architecture
of TAO. It also describes TAO’s support for various aspects of the OMG
CORBA specifications and discusses TAO’s extensions to these specifications
to improve predictability and performance. It addresses how to obtain, build,
and install the TAO source code distribution. (Detailed instructions for
building in specific environments are presented in the appendices.) This
section will also help you quickly get started writing and building applications
with TAO. Getting started with TAO on different platforms is simpler than in
the past with the help of MPC, which is also described in this section. We also
introduce a simple Messenger example that is used throughout the guide to
illustrate features of TAO as they are discussed.

Part 2, “Features of TAO”
This section describes several features of TAO, including: TAO’s IDL
compiler; dealing with errors and exceptions; TAO’s implementation of the
CORBA Messaging specification, including Asynchronous Method
Invocation (AMI); TAO’s Asynchronous Method Handling (AMH) feature;
Real-Time CORBA; Portable Interceptors, Value Types, and Smart Proxies;
using local objects; using TAO’s IOR Table feature; using Pluggable
Protocols with TAO; and multithreading with TAO.

Part 3, “Run-time Configuration of TAO”
The role of the ACE Service Configurator in configuring TAO at run time is
discussed in detail in this section. This section describes several initialization
options and environment variables for configuring the ORB and fully
describes configuration options for TAO’s internal resource and strategy
factories.

Part 4, “TAO Services”
This section describes the various services that TAO offers to CORBA
applications. These services include some of the standard CORBA services
(e.g., Naming, Events, Notification, Interface Repository, Implementation
Repository, Security), as well as the TAO-specific Real-Time Event Service.

xxx o c i w e b . c o m

Part 5, “Appendices”
This section includes appendices describing how to configure, build, test, and
use TAO, including detailed information for specific operating environments.
Also included is an appendix that details TAO’s level of compliance with
particular OMG specifications. Following the appendices is a list of important
references.

Conventions

This guide uses the following conventions:

Coding Examples

Throughout this guide, we illustrate topics with coding examples. The
examples in this guide are intended for illustration purposes and should not be
considered to be “production-ready” code. In particular, error handling is
sometimes kept to a minimum to help the reader focus on the particular feature
or technique that is being presented in the example. The source code for all
these examples is available as part of the ACE and TAO source code
distribution in the $TAO_ROOT/DevGuideExamples and
$TAO_ROOT/orbsvcs/DevGuideExamples directories. The example files
are arranged in subdirectories by chapter name. MPC files are provided with
all the examples for generating build-tool specific files, such as GNU
Makefiles or Visual C++ project and solution files. See
$TAO_ROOT/DevGuideExamples/readme.txt for instructions on building

Fixed pitch text Indicates example code or information a user
would enter using a keyboard.

Bold fixed pitch text
Indicates example code that has been modified
from a previous example or text appearing in a
menu or dialog box.

Italic text Indicates a point of emphasis.

... A horizontal ellipsis indicates that the statement
is omitting text.

.

.

.
A vertical ellipsis indicates that a segment of code
is omitted from the example.

o c i w e b . c o m xxxi

the examples. A Perl script named run_test.pl is provided with each
example so you can easily run it.

OMG Specification References

Throughout this guide, we refer to various specifications published by the
Object Management Group (OMG). These references take the form
group/number where group represents the OMG working group responsible
for developing the specification, or the keyword formal if the specification
has been formally adopted, and number represents the year, month, and serial
number within the month the specification was released. For example, Part 1
of the OMG CORBA 3.1 specification is referenced as formal/08-01-04.

You can download any referenced OMG specification directly from the OMG
web site by prepending <http://www.omg.org/cgi-bin/doc?> to the
specification’s reference. Thus, the specification formal/08-01-04
becomes <http://www.omg.org/cgi-bin/doc?formal/08-01-04>.
Providing this destination to a web browser should take you to a site from
which you can download the referenced specification document.

Additional Documents

In several places throughout the text, we refer to information found in the
following books:

Michi Henning and Steve Vinoski. 1999. Advanced CORBA
Programming with C++. Reading, MA: Addison-Wesley.

Fintan Bolton. 2002. Pure CORBA: A Code-Intensive Premium
Reference. Sams Publishing.

The above books provide extensive coverage of general-purpose CORBA
programming topics and techniques that are not covered in this book. We
strongly recommend that you obtain copies of these books if you do not
already have access to them.

OCI will continue to produce documentation for TAO. In addition, we will
publish any corrections or errata to the existing documentation on the OCI
web site at <http://www.theaceorb.com/references/> as necessary.

xxxii o c i w e b . c o m

Finally, be sure to visit the TAO Frequently Asked Questions (FAQ) pages at
<http://www.theaceorb.com/faq/>.

Product Version Numbering Scheme

Version numbers for OCI’s Distribution of TAO are different from those of the
code base maintained by the “DOC group,” even though OCI’s Distribution of
TAO is derived from that code base. For example, TAO 2.2a is based on the
TAO 2.2 micro release kit distributed by the DOC group with patches
carefully applied to fix specific problems.

Also, note that neither distribution’s version has any relationship to OMG
specification version numbers. Neither group could ever hope to keep up with
the other.

See “What's the relationship between OCI's TAO and DOC's TAO?” in the
OCI TAO FAQ at <http://www.theaceorb.com/faq/> for more
information about the relationship between OCI’s Distribution of TAO and the
DOC group’s distribution.

Note Check <http://www.theaceorb.com/references/> to find source code
patches to OCI’s distributions of TAO.

Note Mixing OCI patches and DOC group patches is untested and unlikely to work
correctly. Neither group supports this configuration.

Supported Platforms

TAO has been ported to a wide variety of platforms, operating systems, and
C++ compilers. We continually update TAO to support additional platforms.
Please visit <http://www.theaceorb.com> for the most recent platform
support information.

o c i w e b . c o m xxxiii

Customer Support

Enterprises are discovering that it takes considerable experience, knowledge,
and money to design and build a complex distributed application that is robust
and scalable. OCI can help you successfully architect and deliver your
solution by drawing on the experience of seasoned architects who have
extensive experience in today's middleware technologies and who understand
how to leverage the power of CORBA.

Our service areas include systems architecture, large-scale distributed
application architecture, and object oriented design and development. We
excel in technologies such as CORBA (ACE+TAO and JacORB), DDS
(OpenDDS), J2EE, FIX (QuickFIX), and FAST (QuickFAST).

Support offerings for TAO include:

• Consulting services to aid in the design of extensible, scalable, and robust
CORBA solutions, including the validation of domain-specific
approaches, service selection, ORB customization and extension, and
migrating your applications to TAO or JacORB from other ORBs.

• 24x7 support that guarantees the highest response level for your
production-level systems.

• On-demand service agreement for identification and assessment of minor
bugs and issues that may arise during the development and deployment of
CORBA-based solutions.

Our architects have specific and extensive domain expertise in security,
telecommunications, defense, financial, and other real-time distributed
applications.

We can provide professionals who can assist you on short-term engagements,
such as architecture and design review, rapid prototyping, troubleshooting,
and debugging. Alternatively, for larger engagements, we can provide
mentors, architects, and programmers to work alongside your team, providing
assistance and thought leadership throughout the life cycle of the project.

Contact us at +1.314.579.0066 or <sales@ociweb.com> for more
information.

xxxiv o c i w e b . c o m

Object Technology Training

OCI provides a rich program of more than 50 well-focused courses designed
to give developers a solid foundation in a variety of technical topics, such as
Object Oriented Analysis and Design, C++ Programming, Java Programming,
Distributed Computing Technologies, Patterns, XML, and UNIX/Linux. Our
courses clearly explain major concepts and techniques, and demonstrate,
through hands-on exercises, how they map to real-world applications.

Note Our training offerings are constantly changing to meet the latest needs of our
clients and to reflect changes in technology. Be sure to check out our web site
at <http://www.ociweb.com> for updates to our Educational Programs.

On-Site Classes

We can provide the following courses at your company’s facility, integrating
them seamlessly with other employee development programs. For more
information about these or other courses in the OCI curriculum, visit our
course catalog on-line at <http://www.ociweb.com/training/>.

Introduction to CORBA
In this one-day course, you will learn the benefits of distributed object
computing; the role CORBA plays in developing distributed applications;
when and where to apply CORBA; and future development trends in CORBA.

CORBA Programming with C++
In this hands-on, four-day course, you will learn: the role CORBA plays in
developing distributed applications; the OMG’s Object Management
Architecture; how to write CORBA clients and servers in C++; how to use
CORBAservices such as Naming and Events; using CORBA exceptions; and
basic and advanced features of the Portable Object Adapter (POA). This
course also covers the specification of interfaces using OMG Interface
Definition Language (IDL) and details of the OMG IDL-to-C++ language
mapping, and provides hands-on practice in developing CORBA clients and
servers in C++ (using TAO).

o c i w e b . c o m xxxv

Advanced CORBA Programming Using TAO
In this intensive, hands-on, four-day course, you will learn: several advanced
CORBA concepts and techniques and how they are supported by TAO; how to
configure TAO components for performance and space optimizations; and
how to use TAO’s various concurrency models to meet your application’s
end-to-end QoS guarantees. The course covers recent additions to the CORBA
specifications and to TAO to support real-time CORBA programming,
including Real-Time CORBA. It also covers TAO’s Real-Time Event Service,
Notification Service, and Implementation Repository, and provides extensive
hands-on practice in developing advanced TAO clients and servers in C++.
This course is intended for experienced and serious CORBA/C++
programmers.

Using the ACE C++ Framework
In this hands-on, four-day course, you will learn how to implement
Interprocess Communication (IPC) mechanisms using the ACE (ADAPTIVE
Communication Environment) IPC Service Access Point (SAP) classes and
the Acceptor/Connector pattern. The course will also show you how to use a
Reactor in event demultiplexing and dispatching; how to implement
thread-safe applications using the ACE thread encapsulation class categories;
and how to identify appropriate ACE components to use for your specific
application needs.

Object-Oriented Design Patterns and Frameworks
In this three-day course, you will learn the critical language and terminology
relating to design patterns, gain an understanding of key design patterns, learn
how to select the appropriate pattern to apply in a given situation, and learn
how to apply patterns to construct robust applications and frameworks. The
course is designed for software developers who wish to utilize advanced
object oriented design techniques and managers with a strong programming
background who will be involved in the design and implementation of object
oriented software systems.

OpenDDS Programming with C++
In this three-day course, you will learn to build applications using OpenDDS,
the open source implementation of the OMG’s Data Distribution Service
(DDS) for Real-Time Systems. You will learn how to build data-centric
systems that share data via OpenDDS. You will also learn to configure

xxxvi o c i w e b . c o m

OpenDDS to meet your application’s Quality of Service requirements.This
course if intended for experienced C++ developers.

C++ Programming Using Boost
In this four-day course, you will learn about the most widely used and useful
libraries that make up Boost. Students will learn how to easily apply these
powerful libraries in their own development through detailed expert
instructor-led training and by hands-on exercises. After finishing this course,
class participants will be prepared to apply Boost to their project, enabling
them to more quickly produce powerful, efficient, and platform independent
applications.

For information about training dates, contact us by phone at
+1.314.579.0066, via electronic mail at training@ociweb.com, or visit our
web site at <http://www.ociweb.com> to review the current course
schedule.

o c i w e b . c o m xxxvii

Detailed Licensing Terms

The ACE ORB source code is copyrighted by Dr. Douglas C. Schmidt and his research group
at Washington University, University of California, Irvine, and Vanderbilt University. The
actual terms are reproduced below. TAO is made available by means of an open source model.
TAO may be used without the payment of development license or run-time fees. The TAO
source may be made available along with any added value products that utilize TAO. The
acknowledgement of the use of TAO should conform to its copyright terms. You may
reference the OCI version number and OCI web site as a location of the source code. OCI is
an authorized distributor of TAO products and services. The use of the ACE, The ACE ORB
and TAO trade or service marks is by permission of Dr. Douglas C. Schmidt.

TAO, under certain circumstances, also uses a software program called GPERF. This software
was also written by Dr. Schmidt and is licensed under the terms of the Free Software
Foundation’s GNU Public License (GPL). Details on this license may be found in this section.

TAO also includes software from Sun Microsystems. This software is related to the IDL
compiler and IIOP. This software may also be freely distributed without fees. The licensing
details are also published in this section.

Please read this section carefully to understand your obligations as a user.

The following are the terms and conditions of The ACE ORB source code:

Copyright and Licensing Information for ACE(TM), TAO(TM),

CIAO(TM), DAnCE(TM), and CoSMIC(TM)

ACE(TM), TAO(TM), CIAO(TM), DAnCE(TM), and CoSMIC(TM) (henceforth referred to as
“DOC software”) are copyrighted by Douglas C. Schmidt and his research group at
Washington University, University of California, Irvine, and Vanderbilt University Copyright
(c) 1993-2013, all rights reserved. Since DOC software is open-source, freely available
software, you are free to use, modify, copy, and distribute--perpetually and irrevocably--the
DOC software source code and object code produced from the source, as well as copy and
distribute modified versions of this software. You must, however, include this copyright
statement along with any code built using DOC software that you release. No copyright
statement needs to be provided if you just ship binary executables of your software products.

Usage
You can use DOC software in commercial and/or binary software releases and are under no
obligation to redistribute any of your source code that is built using DOC software. Note,
however, that you may not do anything to the DOC software code, such as copyrighting it
yourself or claiming authorship of the DOC software code, that will prevent DOC software
from being distributed freely using an open-source development model. You needn't inform
anyone that you're using DOC software in your software, though we encourage you to let

xxxviii o c i w e b . c o m

<doc_group@cs.wustl.edu> us know so we can promote your project in the DOC software
success stories <http://www.cs.wustl.edu/~schmidt/ACE-users.html>.

Warranty
DOC software is provided as is with no warranties of any kind, including the warranties of
design, merchantability, and fitness for a particular purpose, noninfringement, or arising from
a course of dealing, usage or trade practice.

Support
DOC software is provided with no support and without any obligation on the part of
Washington University, UC Irvine, Vanderbilt University, their employees, or students to
assist in its use, correction, modification, or enhancement. A number of companies around the
world provide commercial support for DOC software, however.

Year 2000
DOC software is Y2K-compliant, as long as the underlying OS platform is Y2K-compliant.
Likewise, DOC software is compliant with the new US daylight savings rule passed by
Congress as “The Energy Policy Act of 2005,” which established new daylight savings times
(DST) rules for the United States that expand DST as of March 2007. Since DOC software
obtains time/date and calendaring information from operating systems users will not be
affected by the new DST rules as long as they upgrade their operating systems accordingly.

Liability
Washington University, UC Irvine, Vanderbilt University, their employees, and students shall
have no liability with respect to the infringement of copyrights, trade secrets or any patents by
DOC software or any part thereof. Moreover, in no event will Washington University, UC
Irvine, or Vanderbilt University, their employees, or students be liable for any lost revenue or
profits or other special, indirect and consequential damages.

Submissions
The ACE, TAO, CIAO, DAnCE, and CoSMIC web sites are maintained by the DOC Group at
the Institute for Software Integrated Systems (ISIS) and the Center for Distributed Object
Computing of Washington University, St. Louis for the development of open-source software
as part of the open-source software community. Submissions are provided by the submitter
``as is'' with no warranties whatsoever, including any warranty of merchantability,
noninfringement of third party intellectual property, or fitness for any particular purpose. In
no event shall the submitter be liable for any direct, indirect, special, exemplary, punitive, or
consequential damages, including without limitation, lost profits, even if advised of the
possibility of such damages.

Trademarks
The names ACE(TM), TAO(TM), CIAO(TM), DAnCE(TM), CoSMIC(TM), Washington
University, UC Irvine, and Vanderbilt University, may not be used to endorse or promote
products or services derived from this source without express written permission from
Washington University, UC Irvine, or Vanderbilt University. This license grants no

o c i w e b . c o m xxxix

permission to call products or services derived from this source ACE(TM), TAO(TM),
CIAO(TM), DAnCE(TM), or CoSMIC(TM), nor does it grant permission for the name
Washington University, UC Irvine, or Vanderbilt University to appear in their names.

Contact
If you have any suggestions, additions, comments, or questions, please let me
<d.schmidt@isis.vanderbilt.edu> know.

Douglas C. Schmidt <http://www.dre.vanderbilt.edu/~schmidt/>

Copyright and Licensing Information for GPERF
GPERF is a standalone software program. GPERF generates perfect hash functions for
lookups based on a set of key words when the key words are known in advance. They are
called perfect hash functions because only a single access into the data structure is needed to
perform a lookup. When the set of IDL operations is known in advanced TAO uses the perfect
hash functions generated by GPERF to perform the operation lookup in constant time.

GPERF was originally developed by Dr. Douglas C. Schmidt. Dr. Schmidt subsequently
signed the copyright over to the Free Software Foundation, causing gperf to be licensed under
the GPL (GNU General Public License) Version 2. The FSF still maintains that version of
gperf. When perfect hashing was added as an option to TAO, gperf was selected to provide
that function. It was extended and enhanced to meet the more demanding needs of TAO and a
derived version was placed in the ACE application libraries, ace_gperf. When using
TAO under certain circumstances you may elect to use that version of ace_gperf, which
is part of the ACE distribution of examples and optional programs. Both the current FSF gperf
and ace_gperf are based on the original implementation. Since ace_gperf is derived
from the original GPL'ed version, it too is licensed under the GPL Version 2.

The following terms are found in the source files for gperf:

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA, or visit their web site www.gnu.ai.mit.edu.

IDL Compiler Front End
This product is protected by copyright and distributed under the following license restricting
its use.

The Interface Definition Language Compiler Front End (CFE) is made available for your use
provided that you include this license and copyright notice on all media and documentation
and the software program in which this product is incorporated in whole or part. You may
copy and extend functionality (but may not remove functionality) of the Interface Definition

xl o c i w e b . c o m

Language CFE without charge, but you are not authorized to license or distribute it to anyone
else except as part of a product or program developed by you or with the express written
consent of Sun Microsystems, Inc. (“Sun”).

The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used
in advertising or publicity pertaining to distribution of Interface Definition Language CFE as
permitted herein.

This license is effective until terminated by Sun for failure to comply with this license. Upon
termination, you shall destroy or return all code and documentation for the Interface
Definition Language CFE.

INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS IS WITH NO
WARRANTIES OF ANY KIND INCLUDING THE WARRANTIES OF DESIGN,
MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEALING, USAGE OR
TRADE PRACTICE.

INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED WITH NO SUPPORT AND
WITHOUT ANY OBLIGATION ON THE PART OF Sun OR ANY OF ITS
SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORRECTION,
MODIFICATION OR ENHANCEMENT.

SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO LIABILITY
WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR
ANY PATENTS BY INTERFACE DEFINITION LANGUAGE CFE OR ANY PART
THEREOF.

IN NO EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE
LIABLE FOR ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT
AND CONSEQUENTIAL DAMAGES, EVEN IF SUN HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems and the Sun logo are trademarks or registered trademarks of Oracle
Corporation.

Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065

NOTE:

SunOS, SunSoft, Sun, Solaris, Sun Microsystems or the Sun logo are trademarks or registered
trademarks of Oracle Corporation.

IIOP Engine
This notice applies to all files in this software distribution that were originally derived from
SunSoft IIOP code (these files contain Sun Microsystems copyright notices).

COPYRIGHT AND LICENSING

Copyright 1995 Sun Microsystems, Inc. Printed in the United States of America. All Rights
Reserved.

o c i w e b . c o m xli

This software product (LICENSED PRODUCT), implementing the Object Management
Group’s “Internet Inter-ORB Protocol”, is protected by copyright and is distributed under the
following license restricting its use. Portions of LICENSED PRODUCT may be protected by
one or more U.S. or foreign patents, or pending applications.

LICENSED PRODUCT is made available for your use provided that you include this license
and copyright notice on all media and documentation and the software program in which this
product is incorporated in whole or part.

You may copy, modify, distribute, or sublicense the LICENSED PRODUCT without charge
as part of a product or software program developed by you, so long as you preserve the
functionality of interoperating with the Object Management Group’s “Internet Inter-ORB
Protocol” version one. However, any uses other than the foregoing uses shall require the
express written consent of Sun Microsystems, Inc.

The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may not be used
in advertising or publicity pertaining to distribution of the LICENSED PRODUCT as
permitted herein.

This license is effective until terminated by Sun for failure to comply with this license. Upon
termination, you shall destroy or return all code and documentation for the LICENSED
PRODUCT.

LICENSED PRODUCT IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND
INCLUDING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM A
COURSE OF DEALING, USAGE OR TRADE PRACTICE.

LICENSED PRODUCT IS PROVIDED WITH NO SUPPORT AND WITHOUT ANY
OBLIGATION ON THE PART OF SUN OR ANY OF ITS SUBSIDIARIES OR
AFFILIATES TO ASSIST IN ITS USE, CORRECTION, MODIFICATION OR
ENHANCEMENT.

SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO LIABILITY
WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR
ANY PATENTS BY LICENSED PRODUCT OR ANY PART THEREOF.

IN NO EVENT WILL SUN OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE
LIABLE FOR ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT
AND CONSEQUENTIAL DAMAGES, EVEN IF SUN HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 and FAR 52.227-19.

SunOS, SunSoft, Sun, Solaris, Sun Microsystems and the Sun logo are trademarks or
registered trademarks of Oracle Corporation.

Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065

xlii o c i w e b . c o m

Make Project Creator (MPC)
ACE and TAO are delivered with an easy to use, open source, freely available, build
environment called MPC. The following are the terms for its usage.

Copyright and Licensing Information for MPC
MPC (Licensed Product) is protected by copyright, and is distributed under the following
terms.

MPC (Make, Project, and Workspace Creator) is an open-source tool developed by OCI and
written in Perl. It is designed to generate a variety of tool-specific project files from a common
baseline. Through the powerful combination of inheritance and defaults, MPC is able to
reduce the maintenance burden normally associated with keeping multiple target platforms,
their unique build tools, and inconsistent feature sets current. It is also easily extensible to
support new build environments. The objective is to solve the prevalent problem of fragile
build environments usually experienced by developer groups by replacing it with a singular,
robust build environment and an active community of users committed to its evolution.

Since MPC is open source and free of licensing fees, you are free to use, modify, and
distribute the source code, as long as you include this copyright statement.

In particular, you can use MPC to build proprietary software and are under no obligation to
redistribute any of your source code that is built using MPC. Note, however, that you may not
do anything to the MPC code, such as copyrighting it yourself or claiming authorship of the
MPC code, that will prevent MPC from being distributed freely using an open-source
development model.

Warranty
LICENSED PRODUCT IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND
INCLUDING THE WARRANTIES OF DESIGN, MERCHANTIBILITY, AND FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR ARISING FROM A
COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

Support
LICENSED PRODUCT IS PROVIDED WITH NO SUPPORT AND WITHOUT ANY
OBLIGATION ON THE PART OF OCI OR ANY OF ITS SUBSIDIARIES OR
AFFILIATES TO ASSIST IN ITS USE, CORRECTION, MODIFICATION, OR
ENHANCEMENT.

Support may be available from OCI to users who have agreed to a support contract.

Liability
OCI OR ANY OF ITS SUBSIDIARIES OR AFFILIATES SHALL HAVE NO LIABILITY
WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS, OR
ANY PATENTS BY LICENSED PRODUCT OR ANY PART THEREOF.

IN NO EVENT WILL OCI OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE
LIABLE FOR ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT

o c i w e b . c o m xliii

AND CONSEQUENTIAL DAMAGES, EVEN IF OCI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

MPC copyright OCI. St. Louis MO USA, 2003-2013.

xliv o c i w e b . c o m

o c i w e b . c o m 1

Part 1

Introduction to TAO
Programming

2 o c i w e b . c o m

o c i w e b . c o m 3

CHAPTER 1

Introduction

TAO (The ACE ORB) is an open source, advanced, CORBA-compliant,
real-time Object Request Broker (ORB) that has been developed under the
direction of Dr. Douglas C. Schmidt by members of the Distributed Object
Computing (DOC) Group. The DOC Group is a distributed research
consortium lead by Dr. Schmidt and consisting of the DOC group in the
Institute for Software Integrated Systems (ISIS) at Vanderbilt University,
Nashville, the Center for Distributed Object Computing in the Computer
Science department at Washington University, and the Laboratory for
Distributed Object Computing in the Electrical Engineering and Computer
Science department at the University of California, Irvine. The DOC Group
also includes members of several companies and organizations all over the
world, including Object Computing, Inc., Siemens ZT, University of
Maryland, Remedy IT, Riverace Corporation, PrismTech, LMCO-ATL,
Qualcomm, Hewlett-Packard, and Automated Trading Desk.

The purpose of the DOC group is “to support advanced research and
development (R&D) on middleware and modeling tools using an open source
software development model, which allows academics, developers, and
end-users to participate in leading-edge R&D projects driven by the free
market of ideas, requirements, and resources.”

4 o c i w e b . c o m

I n t r o d u c t i o n

In addition to supporting advanced R&D projects, TAO is being used in many
commercial and government distributed applications in the areas of defense,
telecommunications, multimedia, finance, manufacturing, information and
systems management, and many others. Such users benefit from (and
contribute to) ACE and TAO’s open source model, yet demand stable, well
documented, and commercially supported releases of TAO.

OCI meets the needs of this demanding TAO user community through the
publication of this guide, a controlled release cycle, free source code plus
inexpensive binary distributions, commercial support (including 24x7 support
for organizations using TAO in their deployed applications), training for
beginning through advanced users, and participation in the OMG.

To learn more, visit OCI’s web site at <http://www.ociweb.com> or
<http://www.theaceorb.com>, or contact <sales@ociweb.com>.

1.1 Design Goals

The design goals of TAO include the following:

• Well-suited for real-time environments.

TAO’s design includes real-time requirements considerations, including
avoiding end-to-end priority inversion, maintaining upper bounds on
latency and jitter, and providing bandwidth guarantees. In particular, TAO
improves the predictability of many intra-ORB functions, such as
endpoint and request demultiplexing, concurrency control, and operation
dispatching. Moreover, TAO enables applications to specify their quality
of service (QoS) requirements to ORB endsystems.

• Well-suited for conventional environments.

TAO is well-suited for conventional (i.e., non real-time) environments,
and may be used as a general-purpose ORB without leveraging any of its
real-time features. This allows developers already familiar with CORBA
to get up to speed quickly using TAO and later take advantage of its
real-time QoS support as needed.

• Exhibits high-performance characteristics.

TAO meets the stringent throughput requirements that are necessary to
support performance-sensitive industrial-strength applications. TAO

o c i w e b . c o m 5

1 . 1 D e s i g n G o a l s

optimizes many of the key determinants of ORB performance, including
request demultiplexing and operation dispatching, presentation layer
conversions, synchronization, context switching, memory management,
and data copying. As a result, TAO’s performance is very competitive
with lower-level networking APIs, such as sockets.

• Complies with open standards.

TAO was designed to be compliant with OMG CORBA specifications. In
general, the current version of TAO is compliant with the CORBA 3.0
specification. Because of its compliance with OMG specifications, TAO
is interoperable with other ORBs, and TAO application code written in
accordance with the OMG’s IDL to C++ language mapping is portable to
other compliant ORBs. See Appendix I for complete information on
TAO’s level of compliance with various specifications.

• Configurable.

When used in special purpose (e.g., embedded) environments, software
must often be tailored to meet the special demands imposed by that
environment. TAO’s modular architecture and run-time configurability
allow developers to tailor it to meet the specific needs of their
application’s operating environment (e.g., to reduce the run-time memory
footprint or to strategize request demultiplexing for more deterministic
performance). In addition, TAO fully supports the standard CORBA
policy framework that allows developers to control ORB behavior
programmatically. TAO is designed to give the developer a great deal of
control over the run-time environment.

• Extensible.

TAO comes with default resource and strategy factories for configuring
clients and servers, and default pluggable protocol factories for choosing
among certain transport protocols. These default factories are designed to
provide enough flexibility to meet the needs of the vast majority of
applications, even for very demanding environments. However, in cases
where the default factories cannot satisfy a project’s special needs, you
can develop custom resource, strategy, and protocol factories that can be
“plugged in” to TAO’s core framework-based architecture with no impact
on application code.

TAO also supports the OMG Portable Interceptors specification. Portable
Interceptors provide hooks that are invoked at predefined points in the

6 o c i w e b . c o m

I n t r o d u c t i o n

request and reply paths of an operation invocation or during the
generation of an IOR. Interceptors are registered with the ORB via ORB
initializers. Developers can define their own code to be executed at each
interception point to perform application-specific tasks such as logging,
debugging, or security and authentication. See Chapter 9 for more
information on Portable Interceptors.

TAO also supports Smart Proxies, which allow developers to replace the
normal proxy implementations, generated by the IDL compiler, with
application-specific proxies for customizing the behavior of client request
invocations. See Chapter 11 for more information on Smart Proxies.

In addition, because TAO is open source, you are free to modify it in
almost any way to meet your project’s unique requirements.

• Portable.

For an ORB to be an effective tool, it must be implemented on all the
platforms on which it is needed. TAO is built on top of the ADAPTIVE
Communication Environment (ACE) framework, which is a C++
framework that provides object-oriented abstractions to operating system,
networking, and interprocess communications facilities, as well as higher
level patterns that encapsulate common communications mechanisms. By
utilizing ACE, the TAO source code is more easily ported to diverse target
platforms than would be the case if specific APIs were utilized. Moreover,
the use of ACE mitigates the least common denominator approach of
typical porting solutions. Thus, TAO can be optimized for any platform.

1.2 Development History

Since the early 1990s, Dr. Schmidt has led teams conducting advanced
research and development on distributed-object computing middleware using
an open source software development model. The open source model is a very
pragmatic way of evolving software in a rapidly changing environment. It
harnesses the collective wisdom, experiences, expertise, and requirements of
its most demanding users to ensure that their needs are rapidly met.

Traditionally, ORBs have implemented only best-effort service models. Many
corporate and government organizations have sponsored the development of
TAO because they need both standards-based middleware and the ability to
meet and enforce QoS for their applications and distributed systems. These

o c i w e b . c o m 7

1 . 2 D e v e l o p m e n t H i s t o r y

organizations require not just classic hard real-time characteristics, but soft
real-time and best-effort support, as well. A partial list of these industries and
government organizations, and their applications, includes:

• Telecommunications—switching, network management, software-defined
radio, and mobile/hand-held systems.

• Medical—imaging, integrated patient monitoring, and tele-medicine.

• Aerospace and Defense—avionics, signal processing, simulation,
command and control, and training.

• Financial Services—trading services, portfolio analysis, real-time risk
analysis, and simulation.

• Manufacturing—machine tools, robotics, and process control.

• Information and Systems Management—storage management, systems
and data recovery, customer information management, asset management,
capacity management, and infrastructure and application control.

In addition to requirements for real-time and high-performance systems,
TAO’s sponsors require close conformance to the OMG specifications to
ensure that their developers can design compliance into their baseline systems
architecture. Moreover, there are often specific customer-application-
generated requirements that ensure a pragmatic set of extensions to the OMG
specifications. These extensions must meet the needs of real-time developers
who typically demand complete control of all the system resources to
guarantee success.

Original contributors to TAO’s technical architecture, strategies and
techniques include senior developers from sponsoring organizations who have
extensive experience with first generation ORBs, understand real-time issues,
and come from diverse industry backgrounds. The result of such wide-ranging
inputs is an ORB with a highly adaptable architecture, well-suited for a
diverse and demanding customer base. When combined with the thousands of
contributors from the ACE and TAO open source community, it is fair to say
that no other ORB has had such a signficant degree of participation from its
users and sponsors.

Note You can see a full list of contributors to ACE/TAO (over 2000 individuals) at
<http://www.cs.wustl.edu/~schmidt/ACE-members.html>. This list

8 o c i w e b . c o m

I n t r o d u c t i o n

indicates the size and diversity of the open source community that has grown
around these products.

1.3 Architecture of TAO

In this section, we describe the architecture of TAO. If you are new to
CORBA, you should read Advanced CORBA Programming with C++,
Chapter 2 (especially sections 2.4 and 2.5) before reading this section.

o c i w e b . c o m 9

1 . 3 A r c h i t e c t u r e o f T A O

Figure 1-1 shows the relationships among TAO’s ORB endsystem
components. An ORB endsystem is an endsystem (e.g., PC, workstation,

embedded processor board) that contains one or more network interfaces, an
I/O subsystem (e.g., containing the operating system’s protocol stacks like
TCP/IP), an ORB, and possibly various standard services (e.g., Naming and
Event). As a developer, you will typically write the client and servant (shaded

Figure 1-1: TAO Architecture

10 o c i w e b . c o m

I n t r o d u c t i o n

components in Figure 1-1). Components of the TAO architecture are
described below.

1.3.1 Client
A CORBA client has two responsibilities: (1) obtain object references to
CORBA objects and (2) invoke operations on them. The client is unaware of
where or how the CORBA object is implemented. The only operations the
client is able to invoke are those defined in the object’s interface, expressed in
OMG Interface Definition Language (IDL).

1.3.2 CORBA Object
CORBA objects are abstract entities. Each CORBA object has a unique
identity and an interface, defined in IDL. A CORBA object is associated with
a concrete implementation of the interface at run time by an Object Adapter.

1.3.3 Servant
A servant provides a concrete implementation for a CORBA object. In
object-oriented programming languages such as C++, servants are
implemented as objects and live within a server process or task. Normally, you
will create an implementation class for each IDL interface and your servant
objects will be instances of this class. The client is completely unaware of how
an interface is implemented and has no knowledge of servants. A servant is
associated with a CORBA object at run time via an Object Adapter.

1.3.4 IDL Stubs and Skeletons
The TAO IDL compiler generates C++ stubs and skeletons from IDL interface
definitions. Stubs are used on the client side to provide a strongly typed, static
invocation interface (SII) that converts C++ function calls into CORBA
requests, including marshaling operation parameters into a common binary
representation. The generated stubs can also optimize operation invocations
when the target object is collocated with (i.e., in the same address space as)
the client. Skeletons provide a static skeleton interface (SSI) that demarshals
the binary data back into C++ types that are meaningful to servant
implementations. You will normally compile and link the generated stubs and
skeletons into your application code. See Chapter 4 for more information on
TAO’s IDL compiler.

o c i w e b . c o m 11

1 . 3 A r c h i t e c t u r e o f T A O

In addition to the SII and SSI model described above, TAO also supports the
Dynamic Invocation Interface (DII) and Dynamic Skeleton Interface (DSI),
defined by the CORBA specification.

1.3.5 Portable Object Adapter
The Portable Object Adapter (POA) specification, introduced in CORBA 2.2,
replaces the Basic Object Adapter (BOA) defined in earlier versions of the
CORBA specification. An Object Adapter associates servants with CORBA
object references, demultiplexes incoming requests, and dispatches these
requests to servants.

TAO fully implements the POA specification, including support for multiple
nested POAs per ORB, applying policies to POAs at creation time, and
portability of server implementation code. In addition, TAO's POA, by
default, optimizes request demultiplexing and operation dispatching, using
active demultiplexing and perfect hashing. These optimizations improve the
predictability of CORBA applications by ensuring constant O(1) time
operation dispatches, regardless of the number of active client connections,
the number of activated servants, and the number of operations defined in an
IDL interface. Alternative lookup strategies are configurable, such as linear
search, binary search, and dynamic hashing.

The RTPortableServer extension to the POA interface, which is part of the
real-time CORBA specification, adds operations that permit the application to
associate priorities with object activations and to define thread pools for
operation dispatching. The RT CORBA specification also defines a system of
portable priorities that can be mapped to native operating system priorities.
Thus, RT CORBA provides a single, “global” priority model that simplifies
system design and improves code portability and extensibility. RT CORBA
provides a standard mechanism for servers to allocate, partition, and manage
thread resources and control dispatching of requests onto threads according to
priority, thereby helping to ensure end-to-end predictability. In addition, RT
CORBA gives the developer control over the allocation and selection of
communication resources via explicit binding, protocol configuration, and
protocol selection. See Chapter 8 for more information on TAO’s
implementation of real-time CORBA.

12 o c i w e b . c o m

I n t r o d u c t i o n

1.3.6 ORB Core
A client ORB communicates with a server ORB to deliver client request
messages and return responses, if any, to the client. On the server side, the
ORB Core delivers the request to the appropriate Object Adapter and returns a
reply message to the client-side ORB. ORBs also actively manage the
transport-level connections that are used to transmit these request and reply
messages.

The OMG defines the General Inter-ORB Protocol (GIOP) for enabling
interoperable communications among disparate ORB implementations.
TAO’s ORB Core supports GIOP version 1.2 (and its realization atop the TCP
transport protocol, known as the Internet Inter-ORB Protocol or IIOP). In
addition, TAO’s pluggable protocols framework allows GIOP messaging to
operate over a wide range of transport protocols, including user-defined
transports. In addition to IIOP, TAO provides alternate pluggable transport
protocols, such as: UIOP, for inter-ORB communications over local IPC (or
UNIX domain sockets); SHMIOP, for inter-ORB communications via shared
memory; DIOP, for limited but highly-efficient inter-ORB communications
using UDP; SSLIOP, for secure inter-ORB communications using Secure
Sockets Layer (SSL); MIOP, for inter-ORB communications over unreliable
multicast protocol; SCIOP, for inter-ORB communications over the Stream
Control Transmission Protocol (SCTP); and HTIOP, which tunnels inter-ORB
communications over Hypertext Transfer Protocol (HTTP). Each pluggable
transport protocol must provide a protocol factory that is loaded and
configured at run time. See Chapter 14 for more information on using TAO’s
pluggable protocols.

In addition to the pluggable protocols framework, TAO’s ORB Core employs
various strategies to configure certain aspects of the ORB’s behavior for both
the client and server sides. For example, on the client side, strategies are used
to affect concurrency, to determine if multiple requests are allowed to share a
communication channel, to control connection management by the ORB core,
and various other behaviors. On the server side, strategies are used to control
how the object adapter demultiplexes requests and to control concurrency. To
obtain these strategies, the ORB core uses strategy factories that are loaded
and configured at run time via the ACE Service Configurator framework. See
Part 3, “Run-time Configuration of TAO,” for more information on
configuring the ORB’s strategy factories.

o c i w e b . c o m 13

1 . 4 C O R B A C o m p l i a n c e

1.3.7 ACE
TAO is implemented atop ACE, which is infrastructure middleware that
implements the core concurrency and distribution patterns for communication
software. ACE provides reusable C++ wrapper façades and framework
components that support the QoS requirements of high-performance, real-time
applications. ACE is a highly portable, multiplatform framework that spans
both real-time and general-purpose operating systems.

1.4 CORBA Compliance

It is not necessary to use TAO as a real-time ORB. In fact, TAO provides
out-of-the-box standard CORBA conformance. TAO was designed to be
compliant with OMG CORBA specifications, as summarized below and as
detailed in Appendix I.

• TAO is mainly compliant with the OMG CORBA 3.1 specifications
(OMG Documents formal/08-01-04, formal/08-01-06, and
formal/08-01-08).

• TAO implements the CORBA for embedded specification (OMG
Document formal/08-11-06).

• TAO implements the real-time CORBA 1.2 specification (OMG
Document formal/05-01-04).

• TAO is compliant with the CORBA C++ Language Mapping
specification, version 1.2 (OMG Document formal/08-01-09).

• TAO complies with the Internet Inter-ORB Protocol (IIOP) specification,
version 1.2, including support for bi-directional communications over a
single connection. Therefore, TAO can interoperate seamlessly with other
ORBs that use the standard IIOP (including ORBs that use IIOP versions
1.0 and 1.1). TAO does not technically support IIOP 1.3 or 1.4, but does
support many of the component-related and IPv6 features of these
versions through its IIOP 1.2 implementation.

• TAO supports the static invocation interface (SII) and static skeleton
interface (SSI), as well as the dynamic invocation interface (DII) and
dynamic skeleton interface (DSI) models.

14 o c i w e b . c o m

I n t r o d u c t i o n

• TAO fully implements the Portable Object Adapter (POA) specification,
including advanced POA features, such as servant managers and adapter
activators.

• TAO provides many of the standard CORBA services, as follows:

- Audio/Video Streaming Service—implements the Control and
Management of Audio/Video Streams specification.

- Concurrency Control Service—allows objects in a distributed
system to acquire and release locks.

- Event Service—decouples communication between objects by
providing an asynchronous supplier/consumer style of event
propagation among objects.

- Interface Repository—maintains a repository of information about
IDL interfaces and types and provides lookup capabilities to clients.

- Life Cycle Service—provides a standard means to locate, move,
copy, and remove objects.

- Load Balancing Service—provides random, round-robin, and
least-loaded load balancing strategies to forward requests to
registered replica services.

- Logging Service—provides event-based logging and log-record
query capabilities.

- Naming Service—maps names to object references, organized in a
hierarchy.

- Notification Service—extends the CORBA Event Service with the
addition of features such as event filtering and structured events.

- Property Service—allows applications to associate properties with
objects dynamically.

- Security Service—provides a comprehensive treatment of security
as it relates to distributed object systems and applications.

- Time Service—provides globally-synchronized time to distributed
objects.

- Trading Service—maps properties to object references and
provides constraint-based object lookup capabilities to clients.

o c i w e b . c o m 15

1 . 5 H i g h P e r f o r m a n c e a n d R e a l - T i m e S u p p o r t

In addition, TAO provides the following additional service that demonstrates
TAO's capabilities in various real-time environments:

• TAO Real-Time Event Service—augments the standard CORBA Event
Service model by providing source- and type-based event filtering, event
correlation, priority-based dispatching, and event channel federation.

See Part 4, “TAO Services,” for more information on the various services
implemented by TAO.

1.5 High Performance and Real-Time Support

Historically, CORBA has supported only “best-effort” quality of service to
applications. Developers with stringent QoS or performance requirements
could not rely on CORBA to provide the level of performance or predictability
they needed.

TAO was designed from the beginning with support for real-time and other
demanding applications in mind. Because this kind of support was lacking
from the CORBA specifications, TAO supplied extensions to the CORBA
specifications to support applications that required higher performance,
real-time determinism, and end-to-end priority propagation.

Because the CORBA specification now supports more demanding
applications, ORB implementations can now provide much greater QoS and
performance guarantees without sacrificing CORBA compliance. TAO is in
the forefront of support for these latest aspects of the CORBA specification as
follows:

• TAO implements the CORBA policy framework as defined by the
CORBA Messaging specification and supports the creation of policies for
controlling request/reply timeouts, synchronization scope for oneway
requests, support for bi-directional GIOP communications, and other
aspects of inter-ORB communications.

• TAO implements the real-time CORBA specification, including the
real-time ORB and real-time PortableServer features, such as portable
priorities, client-propagated and server-declared priority models, RT
CORBA threadpools, and priority-banded connections. In addition, TAO
provides an implementation of RT CORBA dynamic scheduling.

16 o c i w e b . c o m

I n t r o d u c t i o n

TAO also provides the following extensions to the CORBA specifications to
support specific application needs:

• TAO’s ORB Core provides an efficient and predictable communication
infrastructure for high-performance and real-time applications. It provides
a range of client and server concurrency models.

• TAO’s ORB Core supports nested upcalls with several of its concurrency
models.

• TAO’s implementation of RT CORBA thread pools with lanes provides a
reactor-per-lane configuration that requires no context switches
throughout the life of an upcall, thereby greatly decreasing the likelihood
of priority inversions.

• TAO’s ORB Core allows custom transport protocols to be plugged into
the ORB without affecting standard CORBA application programming
interfaces.

• Some custom transport protocols supported by TAO improve request
transmission performance relative to the standard IIOP protocol under
certain conditions.

• TAO’s implementation of the POA and generated skeletons are designed
using patterns that provide an extensible and highly optimized set of
request demultiplexing and operation dispatching strategies, such as
perfect hashing and active demultiplexing. These strategies allow for
constant-time lookup of nested POAs and servants, based on object keys,
and operation names contained in CORBA requests.

1.6 Relationship Between ACE and TAO

Many components in TAO, such as its ORB Core, POA, and generated stubs
and skeletons, are based on patterns and components provided by the ACE
framework. Key patterns used in TAO include the Acceptor, Connector,
Reactor, Active Object, Half-Sync/Half-Async, Service Configurator,
Thread-Specific Storage, Strategy, Proxy, Adapter, Bridge, and Abstract
Factory.

To improve portability, TAO uses ACE’s high-performance, small-footprint
operating system adaptation layer for all operating system access, rather than

o c i w e b . c o m 17

1 . 6 R e l a t i o n s h i p B e t w e e n A C E a n d T A O

invoking non-portable system calls directly. Because ACE supports numerous
operating systems, porting TAO to a new platform is simplified considerably.

For more on these patterns and concepts, see the following references, found
in the References section near the end of this guide.

• Design Patterns: Elements of Reusable Object-Oriented Software, by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (GoF).

• Pattern-Oriented Software Architecture: Patterns for Concurrent and
Networked Objects (POSA2), by Doug Schmidt, Michael Stal, Hans
Rohnert, and Frank Buschmann.

• C++ Network Programming, Volume 1: Mastering Complexity with ACE
and Patterns (C++NPv1), by Doug Schmidt and Steve Huston.

• C++ Network Programming, Volume 2: Systematic Reuse with ACE and
Frameworks (C++NPv2), by Doug Schmidt and Steve Huston.

• The ACE Programmer’s Guide: Practical Design Patterns for Network
and Systems Programming, by Steve Huston, James CE Johnson, and
Umar Syyid.

Also, for more information on ACE, visit the ACE home page via
<http://www.theaceorb.com/references/>.

Chapter 0

18 o c i w e b . c o m

I n t r o d u c t i o n

o c i w e b . c o m 19

CHAPTER 2

Building ACE and TAO

2.1 Introduction

This chapter walks you through the steps to build ACE and TAO for two
common system/compiler combinations: Linux with GNU C++ and Windows
Visual C++. Although TAO supports a variety of operating systems and
platforms, in this chapter we will walk through a build using these common
system/compilers using the default build options. This will allow you to
quickly build the necessary libraries and executables so that you try the
examples provided in this book.

Note Appendix A discusses the full details on configuring ACE/TAO builds and
some of the options available via each mechanism.The detailed instructions
for building ACE and TAO for various operating systems and compilers are
provided in other appendices.

20 o c i w e b . c o m

B u i l d i n g A C E a n d T A O

2.2 Where to Get ACE and TAO

The source code for ACE and TAO that this book is based on can be
downloaded from <http://download.ociweb.com/TAO-2.2a/>.
There you will find both the zip file ACE+TAO-2.2a.zip and compressed
tar file ACE+TAO-2.2a.tar.gz. These archives contain the GNU
makefiles and Visual Studio projects files that we will use to build ACE and
TAO in this chapter.

Also in these archives you will find the source to the examples in this book.
The examples using core TAO are in directory
$TAO_ROOT/DevGuideExamples and examples using TAO’s ORB
services are in directory $TAO_ROOT/orbsvcs/DevGuideExamples.

Note For other OCI releases of ACE and TAO, and additional information about
OCI’s support of ACE and TAO, visit OCI’s TAO web site:
<http://www.theaceorb.com>.

Note The link to the DOC group ACE and TAO source code repository, which
OCI’s version of ACE and TAO is based on, can be found at
<http://www.theaceorb.com/references/>.

2.3 System Requirements

You should have at least 512 MB of memory, but more memory will improve
build times. You’ll want to have several GB of free space on your drive to
hold the build results. For both Windows and Linux, TAO can be built on 32
and 64 bit Intel and AMD processors.

For building under Windows, you will need Visual C++ 7.1 or later (TAO
2.2a has been tested using up to Visual C++ 10).

For building using Linux, you will need GNU C++ 3.3.x or later, although
version 4.2 is the recommended version. You will also need to have the GNU
Make program installed.

For either compiler, you will want to have perl installed to run example and
test scripts.

o c i w e b . c o m 21

2 . 4 S t e p s t o B u i l d A C E a n d T A O

Further details about system requirements can be found in A.1.

2.4 Steps to Build ACE and TAO

2.4.1 Building on Windows using Visual Studio
Extract the ACE+TAO archive to a path that does not contain spaces. For the
discussion that follows we will assume the zip file was extracted to C:\, which
places the files under C:\ACE_wrappers.

In C:\ACE_wrappers\ace, create the file config.h and add the
following line to it:

#include "ace/config-win32.h"

Now open the solution file corresponding to the version of Visual Studio you
are using as given in Table 2-1.
Table 2-1 Visual Studio Solution Files

In Visual Studio build the Naming_Service project. This will build all
dependent projects as needed.

Note Building the Naming_Service project ensures that the essential libraries
and executables that we need will be built. However, to save compile time and
storage space, the tests and examples are not built.

In Chapter 3 you will learn how to set up your environment to run the
examples in this book.

For information on generating custom solution files and building with various
compiler options, see Appendix D.

Visual Studio Version Solution File

7.1 TAO_ACE.sln

8 TAO_ACE_vc8.sln

9 TAO_ACE_vc9.sln

10 TAO_ACE_vc10.sln

22 o c i w e b . c o m

B u i l d i n g A C E a n d T A O

2.4.2 Building on Linux using GNU C++
For the discussion that follows we will assume the distribution archive was
extracted to /opt/ACE_wrappers.

In /opt/ACE_wrappers/ace, create the file config.h and add the following line
to it:

#include "ace/config-linux.h"

The ACE and TAO GNU makefiles requires the presence of certain
environment variables to work properly. These are shown in the following
table.
Table 2-2 TAO Environment Variables

For our case, if using the bash shell we can set them as follows:

export ACE_ROOT=/opt/ACE_wrappers
export TAO_ROOT=$ACE_ROOT/TAO
export PATH=$PATH:$ACE_ROOT/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ACE_ROOT/lib

Now we need to specify certain GNU Make variables needed for building on
Linux. This is done by creating the file
$ACE_ROOT/include/makeinclude/platform_macros.GNU and adding the
following:

debug=1
optimize=0
include $(ACE_ROOT)/include/makeinclude/platform_linux.GNU

This will give us a build that we can use for debugging code under Linux that
uses TAO.

You should now be able to start a build as follows:

Environment Variable Definition

ACE_ROOT The root directory of the ACE files

TAO_ROOT The root directory of the TAO files.

PATH
List of directories to search for executables
that should include $ACE_ROOT/bin.

LD_LIBRARY_PATH
List of directories for the executable to find
libraries that should include $ACE_ROOT/lib.

o c i w e b . c o m 23

2 . 4 S t e p s t o B u i l d A C E a n d T A O

cd $TAO_ROOT
make

For information on generating custom makefiles and building with various
compiler options, see Appendix C.

24 o c i w e b . c o m

B u i l d i n g A C E a n d T A O

o c i w e b . c o m 25

CHAPTER 3

Getting Started

3.1 Introduction

This chapter guides you through the process of building and running a simple
client/server application using TAO. You should already have TAO installed
(from binaries supplied by OCI or another vendor) or built (from source code)
on your system. If not, see Chapter 2. If you are new to CORBA, you may find
it helpful to read Chapter 3 of Advanced CORBA Programming with C++
before proceeding.

TAO uses a tool that makes using TAO essentially identical on all platforms.
MakeProjectCreator (MPC) is capable of generating build files for each
platform from simple text data files. So, whether you are getting started with
TAO on Linux, Windows, Solaris, or one of the other many platforms
supported by TAO, the steps are essentially the same.

3.1.1 Road Map
In this chapter, you will learn how to:

• Set up your environment for using TAO (see 3.2).

26 o c i w e b . c o m

G e t t i n g S t a r t e d

• Develop a simple server and client using TAO (see 3.3).

Full source code for the example presented in this chapter can be found in the
TAO 2.2a source code distribution in the directory
$TAO_ROOT/DevGuideExamples/GettingStarted.

3.2 Setting Up Your Environment

Certain environment variables are required during the compilation and
run-time phases of TAO applications. These environment variables are
presented here. If you built TAO yourself, these variables are probably already
set and you may skip this section. The environment variables are shown first
using UNIX syntax, with Windows syntax shown in parentheses.

• ACE_ROOT

The base directory where you installed ACE and TAO, such as
/usr/local/ACE_wrappers (C:\ACE_wrappers).

• TAO_ROOT

The base path for all TAO-related code, normally $ACE_ROOT/TAO
(%ACE_ROOT%\TAO).

• PATH

Scripts and executables for TAO will be installed in $ACE_ROOT/bin
(%ACE_ROOT%\bin). You should add this location to your PATH
environment variable.

• Library path

All required libraries will be installed in $ACE_ROOT/lib
(%ACE_ROOT%\lib). You should add this location to your
LD_LIBRARY_PATH environment variable or its equivalent. (On
Windows, add this directory to your PATH so DLLs can be located at run
time.)

o c i w e b . c o m 27

3 . 3 A S i m p l e E x a m p l e

3.3 A Simple Example

In this section, we guide you step-by-step through the creation of a simple
TAO example. We create our IDL files, implement our servants, create client
and server applications, generate build files, build, and run the application.

Our example consists of a server called MessengerServer that implements a
simple Messenger interface, plus a client called MessengerClient that
accesses and uses a Messenger CORBA object that the MessengerServer
provides. Imagine that a full implementation of the MessengerServer might
send e-mail, access a pager, or even make a phone call using voice synthesizer
technology. To keep our example simple, we just write the client’s message to
standard output. In later chapters, we will expand on this example to illustrate
various TAO and CORBA features.

Full source code for this example is in the TAO source code distribution in the
directory $TAO_ROOT/DevGuideExamples/GettingStarted.

3.3.1 Create a Workspace
First, create a working directory for our example. We will place all of our code
in a single directory for this example, but in larger projects you may use a
different directory structure. For example, you may wish to separate code for
libraries, servers, and clients into separate subdirectories.

mkdir Messenger
cd Messenger

3.3.2 Messenger Interface Definition Language (IDL) File
Create a new file called Messenger.idl to contain the interface definition
for our simple Messenger. This interface simply defines an operation that we
will use to send text messages between a client and server. A reply may be
returned in the last parameter, and the return value indicates whether the
message was accepted.

interface Messenger
{
 boolean send_message(in string user_name,
 in string subject,
 inout string message);
};

28 o c i w e b . c o m

G e t t i n g S t a r t e d

3.3.2.1 Run the IDL Compiler
The IDL compiler (tao_idl) generates stub and skeleton code from the IDL
interface definitions contained in Messenger.idl. Details about using the
IDL compiler are found in Chapter 4. We use the -GI option to cause
tao_idl to generate starter implementation (servant) files. We then modify
the generated starter code for our actual implementation. Using the -GI option
to automatically generate starter code is a convenient way to make sure our
implementation class function signatures are correct.

tao_idl -Sa -St -GI Messenger.idl

After running the IDL compiler as shown, our starter implementation class for
the Messenger interface will be in files named MessengerI.*. Client-side
stubs will be in files named MessengerC.* and server-side skeletons will be
in files named MessengerS.*. Other files may also be generated, but they do
not concern us for this simple example.

3.3.3 Create the Messenger_i Implementation Class
Normally, you will want to rename the generated starter implementation files
MessengerI.h and MessengerI.cpp to Messenger_i.h and
Messenger_i.cpp. That way, you will not inadvertently overwrite existing
files if you run the IDL compiler with the -GI option again.

UNIX
mv MessengerI.h Messenger_i.h
mv MessengerI.cpp Messenger_i.cpp

Windows
ren MessengerI.h Messenger_i.h
ren MessengerI.cpp Messenger_i.cpp

3.3.3.1 C++ Header for the Messenger_i Class
Our Messenger_i implementation class inherits from the POA_Messenger
skeleton class found in MessengerS.h. We have removed some comments
and an unneeded constructor and destructor from the generated starter
implementation files.

#include "MessengerS.h"

o c i w e b . c o m 29

3 . 3 A S i m p l e E x a m p l e

class Messenger_i : public virtual POA_Messenger
{
public:
 virtual CORBA::Boolean send_message (
 const char* user_name,
 const char* subject,
 char*& message);
};

3.3.3.2 C++ Implementation of the Messenger_i Class
The file Messenger_i.cpp already contains much of the code we need for
implementing the Messenger_i class. Here is the file with our additions and
changes shown in bold text. Once again, we have removed the unneeded
constructor, destructor, and some generated comments.

#include "Messenger_i.h" // renamed from MessengerI.h
#include <iostream>

CORBA::Boolean Messenger_i::send_message (
 const char* user_name,
 const char* subject,
 char*& message)
{
 std::cout << "Message from: " << user_name << std::endl;
 std::cout << "Subject: " << subject << std::endl;
 std::cout << "Message: " << message << std::endl;
 CORBA::string_free(message);
 message = CORBA::string_dup("Thanks for the message.");
 return true;
}

3.3.4 C++ Implementation of the MessengerServer
We next create a MessengerServer to give our Messenger object a place to
live. In main(), we create an instance of our Messenger_i implementation
class, activate it in the RootPOA, and wait for requests from clients.

Create MessengerServer.cpp with the following contents:

#include "Messenger_i.h"
#include <iostream>
#include <fstream>

int main(int argc, char* argv[])
{

30 o c i w e b . c o m

G e t t i n g S t a r t e d

 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 //Get a reference to the RootPOA.
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj.in());

 // Activate the POAManager.
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();

 // Create a servant.
 PortableServer::Servant_var<Messenger_i> servant = new Messenger_i();

 // Register the servant with the RootPOA, obtain its object
 // reference, stringify it, and write it to a file.
 PortableServer::ObjectId_var oid = poa->activate_object(servant.in());
 obj = poa->id_to_reference(oid.in());
 CORBA::String_var str = orb->object_to_string(obj.in());
 ofstream iorFile("Messenger.ior");
 iorFile << str.in() << std::endl;
 iorFile.close();
 std::cout << "IOR written to file Messenger.ior" << std::endl;

 // Accept requests from clients.
 orb->run();
 orb->destroy();

 return 0;
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "MessengerServer CORBA exception: " << ex << std::endl;
 }
 return 1;
}

3.3.5 C++ Implementation of the MessengerClient
We complete our example by creating a MessengerClient, which obtains
an object reference to the Messenger object and sends it a message via its
send_message() operation.

Create MessengerClient.cpp with the following contents:

#include "MessengerC.h"
#include <iostream>

o c i w e b . c o m 31

3 . 3 A S i m p l e E x a m p l e

int main(int argc, char* argv[])
{
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Read and destringify the Messenger object's IOR.
 CORBA::Object_var obj = orb->string_to_object("file://Messenger.ior");
 if(CORBA::is_nil(obj.in())) {
 std::cerr << "Could not get Messenger IOR." << std::endl;
 return 1;
 }

 // Narrow the IOR to a Messenger object reference.
 Messenger_var messenger = Messenger::_narrow(obj.in());
 if(CORBA::is_nil(messenger.in())) {
 std::cerr << "IOR was not a Messenger object reference." << std::endl;
 return 1;
 }

 // Send a message the the Messenger object.
 CORBA::String_var msg = CORBA::string_dup("Hello!");
 messenger->send_message("TAO User", "Test", msg.inout());

 // Print the Messenger's reply.
 std::cout << "Reply: " << msg.in() << std::endl;

 return 0;
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "MessengerClient CORBA exception: " << ex << std::endl;
 }
 return 1;
}

3.3.6 Create Build Files for the Example
Originally, creating the necessary files for building TAO projects involved
manually creating separate build tool files for each platform. For example, to
build the above example on UNIX using GNU Make and on Windows using
Visual C++ required building and maintaining both Makefiles and Visual C++
project/solution files. In such cross-platform environments, creating and
maintaining different build files for different build tools was tedious and
error-prone. This process has been greatly simplified with the introduction of
a tool called MakeProjectCreator (MPC). With MPC, multiple build
environments can now be supported very simply. All we have to do is create a

32 o c i w e b . c o m

G e t t i n g S t a r t e d

simple mpc file with the information that is unique to our project. We then run
MPC to generate build files for use with GNU Make (gmake), Microsoft
Visual Studio (V7.1, V8, V9, V10), Microsoft nmake, Borland make and
others. For more information on MPC see
<http://www.ociweb.com/products/MPC>.

To support builds of our Messenger example, we create a file called
GettingStarted.mpc with the following contents:

project(*idl): taoidldefaults {
 IDL_Files {
 Messenger.idl
 }
 custom_only = 1
}

project(*Server): taoserver {
 exename = MessengerServer
 after += *idl
 Source_Files {
 Messenger_i.cpp
 MessengerServer.cpp
 }
 Source_Files {
 MessengerC.cpp
 MessengerS.cpp
 }
 IDL_Files {
 }
}

project(*Client): taoclient {
 exename = MessengerClient
 after += *idl
 Source_Files {
 MessengerClient.cpp
 }
 Source_Files {
 MessengerC.cpp
 }
 IDL_Files {
 }
}

The GettingStarted.mpc defines three projects: one for the IDL
processing, one for the server, and one for the client. This mpc file relies on
various settings (such as include paths and link libraries) inherited from base

o c i w e b . c o m 33

3 . 3 A S i m p l e E x a m p l e

projects. The IDL processing project inherits from taoidldefaults which
supplies the necessary defaults to process the IDL file for this example. This is
broken into a separate project as it is required by both the client and server.
Our server project inherits from taoserver which provides all the necessary
project attributes to build a TAO server executable. In a similar manner, the
client project inherits from taoclient which enables it to be a pure TAO
client (with no server-side CORBA functionality). The projects will be named
GettingStarted_Idl, GettingStarted_Client and
GettingStarted_Server, because we used the ’*’ wild card character in
our project name declarations. The output files will be named
MessengerClient and MessengerServer, because these are the names of
the source files in each project that contain main(). To prevent MPC from
automatically detects the existence of our IDL files and implicitly adding
these to our source files, we keep the IDL_Files group empty in the client
and server projects. In our client project we explicitly add MessengerC.cpp
to the list of source files to prevent MPC from implicitly adding
MessengerS.cpp, which we do not want to build into our client.

Note To use MPC, you must have Perl version 5.6.1 or greater.

The next step depends upon your development environment:

• UNIX with GNU Make

On UNIX or UNIX-like systems, run mwc.pl in the project directory to
generate GNU makefiles for use with the ACE+TAO make system:

mwc.pl -type gnuace

The above command will generate the following files for use with GNU
Make:

- GNUmakefile

- GNUmakefile.GettingStarted_Idl

- GNUmakefile.GettingStarted_Client

- GNUmakefile.GettingStarted_Server

• Windows with Visual Studio (2003 and later)

34 o c i w e b . c o m

G e t t i n g S t a r t e d

On Windows, using Visual Studio, run mwc.pl in the project directory to
generate solution and project files:

mwc.pl -type vc10

Replace vc10 with vc71, vc8, or vc9 for targeting VC++ 7.1,
VC++ 8, or VC++ 9 respectively.

The above command will generate the following files:
GettingStarted.sln, GettingStarted_Idl.vcproj,
GettingStarted_Client.vcproj, and
GettingStarted_Server.vcproj for use with Visual Studio.

Visual C++ 7.0 and older are not recommended for use with ACE and TAO.

3.3.7 Build the MessengerServer and MessengerClient
Once the build files are generated, you can build the test applications.

Using GNU Make:

gmake (or make)

Using Visual Studio:

devenv GettingStarted.sln /build debug

Using Visual C++ Express Editions:

msbuild /p:Configuration=Debug GettingStarted.sln

3.3.8 Running the Application
You are now ready to run the MessengerServer and MessengerClient.
The server must be running before the client is started.

Run the MessengerServer in one terminal window with the following
command:

./MessengerServer

o c i w e b . c o m 35

3 . 4 S u m m a r y

Wait for the message “IOR written to file Messenger.ior”, then run
the MessengerClient from a different terminal window in the same
directory with the following command:

./MessengerClient

You should see the following messages from the MessengerServer:

 Message from: TAO User
 Subject: Test
 Message: Hello!

In the MessengerClient’s terminal, you should see:

 Reply: Thanks for the message.

indicating that the client has received a reply from the server. The client then
exits and your normal command prompt reappears.

Note that the MessengerServer will still be running, waiting for more client
requests. You can run the client again if you like. To kill the
MessengerServer, just type Ctrl-C in its terminal window or use the
kill(1) command to terminate it.

3.4 Summary

In this chapter, you have seen how to develop a simple server and client using
TAO. Topics covered included: how to set up your environment for building
applications that use TAO; how to set up a working directory for a simple
example and the files to create therein; creating and using a simple mpc file
for building the example; and running the example.

You are now ready to explore other chapters of this guide that expand on this
simple example to illustrate various features of TAO and various services that
can be used by TAO applications. Have fun!

36 o c i w e b . c o m

G e t t i n g S t a r t e d

o c i w e b . c o m 37

Part 2

Features of TAO

38 o c i w e b . c o m

o c i w e b . c o m 39

CHAPTER 4

TAO IDL Compiler

4.1 Introduction

To use IDL interfaces with the static invocation approach, you must generate
skeleton and stub C++ code so requests can traverse from a client to a servant.
TAO includes an IDL compiler, tao_idl, that generates C++ skeletons and
stubs from your IDL file.

Note The generated code is only usable by TAO. The output from IDL-to-C++
compilers cannot be interchanged among CORBA implementations. However,
the code generated by TAO’s IDL compiler is platform-independent, making it
possible to use TAO in cross-compilation environments

TAO’s IDL compiler maps IDL files to C++ according to the CORBA C++
mapping specification (OMG Document formal/08-01-09). The basic C++
mapping uses C++ exceptions to report system and user exceptions. An
alternate mapping for environments that do not use native C++ exceptions is
defined in the specification but is no longer supported by the TAO IDL
compiler.

40 o c i w e b . c o m

T A O I D L C o m p i l e r

The IDL compiler is modularized into a top-level executable, plus libraries for
the front- and back-ends. This modular design allows the front-end lexing and
parsing engine to be reused and different back-ends to be “plugged in” to
produce different outputs (e.g., to populate the Interface Repository).

4.2 Executables

UNIX and UNIX-like Systems

The IDL compiler executable is $TAO_ROOT/TAO_IDL/tao_idl, with a
symbolic link in $ACE_ROOT/bin.

Windows Systems

The IDL compiler executable is %ACE_ROOT%\bin\tao_idl.exe.

General Usage

The general usage of the TAO IDL compiler is as follows:

tao_idl <options> IDL-file(s)

IDL file names must be listed after the options. The options will apply to all of
the IDL files. For example:

tao_idl -GI hello.idl Messenger.idl

4.3 Output Files Generated

By default, six files are generated for every IDL file the tao_idl compiler
processes. Three of these files provide the stub code used by the client, and
three files provide the skeleton code used by the server. The generation of
these files ensures that the generated code is portable and optimized for a wide
variety of C++ compilers. However, your client and server applications only
need to include two header files directly.

For an IDL file named Messenger.idl, running the command

tao_idl Messenger.idl

o c i w e b . c o m 41

4 . 3 O u t p u t F i l e s G e n e r a t e d

generates the following files (we show how to customize these names later):

4.3.1 Tips for Working with the Output Files
• The client includes MessengerC.h and links to MessengerC.o. The

server includes MessengerS.h and links to both MessengerC.o and
MessengerS.o.

• The stubs and skeletons are decoupled. The client implementation need
not include the *S.h file or link with *S.o. However, the server requires
knowledge of the stub classes and IDL types found in the *C.h files.
Therefore, the generated *S.h files that you include in your server code
include the corresponding *C.h files. In addition, your server
implementation needs to link with the object code produced from both the
*C.cpp and *S.cpp files.

• The compiler interprets the functions in the *.inl files as inline code
only if the build defines the preprocessor macro __ACE_INLINE__. This
makes it possible to build applications with inlining disabled (e.g., to
facilitate debugging) or with inlining enabled (e.g., to improve
performance). You can find the definition of this preprocessor option by
looking for the __ACE_INLINE__ macro in
$ACE_ROOT/ace/config.h.

Table 4-1 C++ Files Generated

File Name Contents

MessengerC.h Stub class definitions.

MessengerC.inl Inline stub member function definitions.

MessengerC.cpp Stub member function definitions.

MessengerS.h Skeleton class definitions.

MessengerS.inl Inline skeleton member function definitions.

MessengerS.cpp Skeleton member function definitions.

42 o c i w e b . c o m

T A O I D L C o m p i l e r

4.4 Using TAO IDL Compiler Options

We discuss command line options available with the IDL compiler in 4.5
through 4.14. To see a complete list of the IDL compiler’s options, enter the
following:

tao_idl -u

The file $TAO_ROOT/docs/compiler.html also contains information on
IDL compiler options.

You can specify IDL compiler options directly on the command line, or you
can specify them in an MPC file by adding your IDL compiler options to the
idlflags keyword. For example:

idlflags += -I$(TAO_ROOT)/orbsvcs -GI

4.5 Preprocessing Options

As required by the CORBA specification, IDL files can contain directives
defined by the C++ preprocessor. This means, for example, that one IDL file
can include another IDL file by using the #include directive. Likewise,
conditional compilation can be done by using the #ifdef or #if defined
directives. TAO’s IDL compiler does not include a preprocessor, rather it
invokes an external preprocessor. By default, the preprocessor is specified by
the TAO_IDL_PREPROCESSOR environment variable. This variable is defined
when tao_idl is built. The C++ compiler’s preprocessor is used if this
variable is not defined. See 4.5.1 for information on how to override the
default and specify the preprocessor during IDL compilation.

Some common preprocessor options can be passed to the IDL compiler, which
will then pass them through to the preprocessor. The IDL compiler also

o c i w e b . c o m 43

4 . 5 P r e p r o c e s s i n g O p t i o n s

supports the passing of any option to the preprocessor via its -Wp option.
Table 4-2 provides details of the options related to preprocessing.

The -D, -U, -I, and -A options are all passed directly through to the
preprocessor. If the preprocessor you are using is the same as your C++
preprocessor (the likely case), then you should see your C++ compiler
documentation for details about these options. The -Wp option will only pass
the text between the commas to the preprocessor (stripping off the leading
“-Wp” and all commas).

In addition to accepting preprocessor directives such as #define, #include,
and #if, TAO’s IDL compiler recognizes and handles the following
preprocessor directives:

Table 4-2 Preprocessing Options

Option Definition Example

-E
Run the preprocessor on
the IDL file, but do not
generate any C++ code.

tao_idl -E Messenger.idl

-D macro-def Defines a macro. tao_idl -D CORBA_IMPL=tao
Messenger.idl

-U macro-def Undefines a macro. tao_idl -U unix Messenger.idl

-I include-path
Add include-path to
the list of paths searched
for include files.

tao_idl -I /idl/exceptions -I
$TAO_ROOT/orbsvcs/orbsvcs
Messenger.idl

-A assertion Make an assertion. -A system(gnu)

-Yp,preproc-loc
Tells the TAO IDL
compiler to use a
specific preprocessor.

tao_idl -Yp,/usr/bin/cpp
Messenger.idl

-Wp,arg1,arg2,...
Passes arguments to the
preprocessor. -Wp,-undef

Table 4-3 Additional Preprocessor Directives

Directive Definition Example

#file "file name"

Identifies the name of the
file being preprocessed.
These directives are inserted
by some preprocessors. The
IDL compiler simply
ignores them.

#file "Messenger.idl"

44 o c i w e b . c o m

T A O I D L C o m p i l e r

4.5.1 Environment Variables Affecting Preprocessing
Environment variables that impact the preprocessing stage of the IDL
compiler are described in Table 4-4.

#pragma ident "id string"

Provides an identification
string for source code
control or other purposes.
The IDL compiler simply
copies the entire line,
unmodified, to the top of
each output file.

#pragma ident "Id"

#pragma prefix "prefix
string"

Provides a prefix string used
in generating RepositoryIds.
The typeprefix keyword
can also be used to set the
prefix (as described in the
CORBA specification).

#pragma prefix
"omg.org"

#pragma version name
major.minor

Provides major and minor
version numbers used in
generating RepositoryIds.

#pragma version
Messenger 1.1

#pragma ID name id

Assigns a user-specified
repository ID to the IDL
type with the given name.
The typeid keyword can
also be used to set the prefix
(as described in the CORBA
specification).

#pragma ID Messenger
“IDL:Messenger:1.1”

Table 4-3 Additional Preprocessor Directives

Directive Definition Example

Table 4-4 Preprocessing Environment Variables

Environment Variable Description Default Behavior

TAO_IDL_PREPROCESSOR
Specifies the command to
access the C++ preprocessor.

Uses the preprocessor
used to build the IDL
compiler itself.

TAO_IDL_PREPROCESSOR_ARGS
Provides additional options
for the IDL compiler to pass
to the preprocessor.

Always passes -DIDL
and -I, in addition to
any specified options.

INCLUDE
If set, append its contents to
the include path. Not passed.

TAO_ROOT
If set, passes
-I$(TAO_ROOT)/tao. Not passed.

o c i w e b . c o m 45

4 . 6 O u t p u t F i l e O p t i o n s

Either ACE_ROOT or TAO_ROOT must be defined for tao_idl to find the file
orb.idl when it is included by another IDL file (e.g., #include
<orb.idl>). If neither ACE_ROOT nor TAO_ROOT is defined, the IDL
compiler will display a warning message.

4.6 Output File Options

The TAO IDL compiler has an option that allows you to specify a target
directory for the output files. In addition, there are options to control the file
names of the C++ source code generated. These file names always start with
the base name of the IDL file being processed. You can change the suffix of
the file names that are generated by using the options listed in Table 4-5.

ACE_ROOT
If set, passes
-I$(ACE_ROOT)/TAO/tao. Not passed.

Table 4-4 Preprocessing Environment Variables

Environment Variable Description Default Behavior

Table 4-5 Output File Options

Option Description Default

-o output-directory
Directory in which to place the generated stub
and skeleton files.

Current
directory

-oS output-directory
Directory in which to place the generated *S.*
files.

Current
directory
or value of
-o option

-oA output-directory
Directory in which to place the generated *A.*
files.

Current
directory
or value of
-o option

-iC path
Overrides the default include path for *C.h files
included in generated *A.h files

$TAO_ROOT/
tao

-hc filename-ending Stub header suffix. C.h

-ci filename-ending Stub inline functions suffix. C.inl

-cs filename-ending Stub non-inline functions suffix. C.cpp

-hs filename-ending Skeleton header file name suffix. S.h

-si filename-ending Skeleton inline functions file name suffix. S.inl

-ss filename-ending Skeleton non-inline functions file name suffix. S.cpp

46 o c i w e b . c o m

T A O I D L C o m p i l e r

As an example of these options, suppose you are migrating from a different
CORBA implementation to TAO. When processing an IDL file named
Messenger.idl, this implementation generates files named Messenger.hh
and Messenger.cc for the stub code, and files named MessengerS.hh and
MessengerS.cc for the skeleton code.

For TAO to emulate these naming conventions, invoke the IDL compiler as:

tao_idl -hc .hh -ci .i -cs .cc -hs S.hh -si S.i -ss S.cc Messenger.idl

This will produce header and source file names consistent with the other
CORBA implementation.

4.7 Starter Implementation Files

To help you start writing implementation code, tao_idl optionally generates
starter servant implementation files. The starter files contain empty C++
member function definitions that you must fill in with your implementation
code. If you are new to CORBA or have a lot of operations to implement, this
can be a great time saver. Table 4-6 lists the options related to this feature.

Note Running the IDL compiler with the starter implementation options overwrites
any existing implementation files of the same names. Any modifications will be

-hT filename-ending Skeleton template header file name suffix. S_T.h

-sT filename-ending
Skeleton template non-inline functions file
name suffix. S_T.cpp

-hI filename-ending
Starter implementation header file name suffix
(use with -GI). I.h

-sI filename-ending
Starter implementation file name suffix (use
with -GI). I.cpp

Table 4-5 Output File Options

Option Description Default

o c i w e b . c o m 47

4 . 7 S t a r t e r I m p l e m e n t a t i o n F i l e s

lost unless you rename the starter implementation files after they are
generated (recommended)!

Note The -GIh and -GIs options have the same effect as the -hI and -sI options
presented in Table 4-5.

For example, consider the following:

// Messenger.idl
interface Messenger {
 boolean send_message(in string user_name,
 in string subject,
 inout string message);
};

Suppose the convention you use includes implementation files that end with
_i.h and _i.cpp. Then invoking the IDL compiler with:

tao_idl -GIh _i.h -GIs _i.cpp Messenger.idl

Table 4-6 Starter Implementation Generation Options

Option Description Default

-GI
Generate starter implementation
code.

Do not generate starter
implementation code.

-GIh file-ending
Sets the starter implementation
header file suffix to file-ending. I.h

-GIs file-ending
Sets the starter implementation
source file suffix to file-ending. I.cpp

-GIb class-prefix
Prefix with which to begin the
starter implementation class names. No default prefix.

-GIe class-prefix
Suffix with which to end the starter
implementation class names. _i

-GIc Create an empty copy constructor. No copy constructor
defined.

-GIa
Create an empty assignment
operator.

No assignment operator
defined.

-GId
Generate debug information (source
file name and line number) in the
starter implementation.

No debug information
generated.

48 o c i w e b . c o m

T A O I D L C o m p i l e r

creates the Messenger_i.h and Messenger_i.cpp starter files.

Note The -GI option was not needed in this case since using -GIh and -GIs
implies -GI.

The generated starter implementations of operations and attributes contain no
code, only comments of the form "//Add your implementation here."
For example:

CORBA::Boolean Messenger_i::send_message (
 const char* user_name,
 const char* subject,
 char*& message
)

{
 //Add your implementation here
 }

To implement the interface, search for these comments and replace them with
your own code. However, the IDL compiler does not generate comments for
constructors and destructors; do not forget to fill in these functions as well.

4.8 Additional Code Generation Options

In addition to generating starter implementation classes, the TAO IDL
compiler provides options for generating reply handler classes for use with the
Asynchronous Method Invocation (AMI) callback model, servant and
response handler classes for use with Asynchronous Method Handling
(AMH), smart proxy factory and default smart proxy classes, optimized
TypeCodes, servant tie classes, and explicit template instantiations. Options
for using the above features are shown in Table 4-7. For more information on

o c i w e b . c o m 49

4 . 8 A d d i t i o n a l C o d e G e n e r a t i o n O p t i o n s

AMI callbacks, see 6.2. For more information on AMH, see Chapter 7. For
more information on smart proxies, see Chapter 11.

Table 4-7 Additional Code Generation Options

Option Description Default

-GC
Generate AMI callback reply-handler
classes.

AMI callback classes not
generated.

-GH
Generate AMH servant and
response-handler classes.

AMH classes not
generated.

-Gsp
Generate smart proxy factory and default
smart proxy classes.

Smart-proxy-related
classes not generated.

-Gt Generate optimized TypeCodes. TypeCodes not optimized.

-GA
Generate any operators and TypeCodes into
a separate *A.cpp stub file.

Generate any operators
and TypeCodes into
the*C.cpp stub file

-GT

Generate the TIE classes, and the *S_T.h
and *S_T.cpp files that contain them. Use
this option only if your application uses the
“tie” class to implement servants.

TIE classes are not
generated.

-Guc

If an IDL constant is declared at module
scope, assign its value in the stub’s .cpp
file rather than inline in the stub’s header
file.

A constant with module
scope is assigned its value
inline in the stub’s header
file.

-Gos

Generates iostream-style insertion operators
(operator<<) for IDL-defined types. If
your IDL-defined types depend on types
included via orb.idl, TAO must also be
built with the gen_ostream MPC feature
enabled.

No operators are
generated.

-Gse

Generates an explicit export of any
sequence's template base class. This is
sometimes required as a workaround for
bugs in certain versions of Visual Studio
(.Net 2002, .Net 2003, 2005).

Do not generate explicit
exports for sequence base
classes.

-Gce
Limit the code generated to that specified
by the CORBA/e (CORBA for embedded)
configuration.

Generate the normal
CORBA-specified code.

-Gmc
Limit the code generated to that specified
for the minimum CORBA configuration.

Generate the normal
CORBA-specified code.

-in Generate #includes within “<>" Uses "" by default.

-ic Generate #includes within “” Uses "" by default.

50 o c i w e b . c o m

T A O I D L C o m p i l e r

4.9 OpenDDS-related Options

OpenDDS uses ACE, TAO, and the TAO IDL compiler as part of its
underlying architecture. The TAO IDL compiler has two options related to
OpenDDS which are listed in Table 4-8. For normal TAO users, these options
can be ignored. For further information related to OpenDDS see
<http://www.opendds.org/>.

4.10 Operation Lookup Strategy Options

When a server receives a request from a client, the POA needs to find the
skeleton function associated with the operation name in the request. This step
involves looking up an operation, based on a string contained in the client
request. There are many ways to do this; each has its strengths and
weaknesses. Table 4-9 shows the operation lookup strategies for which the
IDL compiler can generate code. For most cases we recommend that you use

-b

Generates code to allow cloning of
arguments on oneway calls. This greatly
speeds up some scenarios when using
Custom Servant Dispatching (CSD). There
is a small cost of increased footprint when
using this option.

Arguments and return
values are marshalled and
demarshalled when using
CSD.

Table 4-7 Additional Code Generation Options

Option Description Default

Table 4-8 Additional Code Generation Options

Option Description

-Gdcps
Generate appropriate marshaling and instance key support code for
OpenDDS DCPS-enabled types.

-Gdcpsonly
Only generate DCPS-related code for OpenDDS (for internal OpenDDS
use).

o c i w e b . c o m 51

4 . 1 1 C o l l o c a t i o n S t r a t e g y O p t i o n s

the default strategy, perfect hashing, which is usually optimal in both time and
space.

To support the perfect hashing operation lookup strategy, the TAO IDL
compiler relies on ace_gperf, a general purpose perfect hashing function
generator that is a separate application program distributed in source code
form with ACE and TAO. It is invoked by the TAO IDL compiler when the
perfect hashing operation lookup strategy is selected. The default path for
ACE’s ace_gperf is $ACE_ROOT/bin/ace_gperf. To override this value,
use the -g option and specify the full path to the location of the ace_gperf
executable. For example, if ace_gperf is installed in /usr/local/bin
instead of $ACE_ROOT/bin, you should invoke the IDL compiler as follows:

$TAO_ROOT/TAO_IDL/tao_idl -g /usr/local/bin/ace_gperf Messenger.idl

4.11 Collocation Strategy Options

The use of collocated stubs allows requests on collocated servants to be
dispatched more directly by permitting requests to bypass several layers of
marshaling, networking, demultiplexing, demarshaling, and dispatching logic.

TAO provides two strategies for generating and using collocated stubs.

• The thru_poa collocation strategy delivers the request through the
servant’s POA and is considered the standard collocated stub.

Table 4-9 Operation Lookup Strategies

Option Type Lookup time

-H perfect_hash (default)
Perfect
hashing Constant. Suitable for hard real-time systems.

-H linear_search
Linear
search

Proportional to the number of operations.
Represents a worst-case strategy for
comparison purposes.

-H binary_search
Binary
search

Proportional to the log of the number of
operations. Adding more operations has
minimal impact on lookup time.

-H dynamic_hash
Dynamic
hash

Constant for the average case. Worst case
similar to linear search. Inappropriate for hard
real-time systems.

52 o c i w e b . c o m

T A O I D L C o m p i l e r

• The direct collocation strategy delivers the request directly from the
stub to the servant as a normal C++ virtual function call, thereby
bypassing the POA completely.

Collocation strategy options are shown in Table 4-10. For more details on
using these collocation strategies at run time, see 17.13.5.

Note The run-time ORB initialization options that affect collocation must be
compatible with the types of generated collocated stubs. For example, using
the -Gd option at compile time, then using the -ORBCollocationStrategy
thru_poa option at run time, is inconsistent and results in a run-time
exception.

4.12 Back End Options

The -Wb option can be used to pass options to the TAO-IDL-compiler back
end that generates the C++ code. The general format for these options is as
follows:

 -Wb,option_list

The option list is a comma-separated list that may contain any of the options
shown in Table 4-11. These options mainly control platform-specific behavior
of the back end.

Currently, the majority of the supported back end options are related to export
macros. Export macros help control what symbols are visible external to
libraries. These macros are required on Windows platforms and are also used
by default in GCC versions 4.0 and later.

When defining your own libraries, header files that define export macros can
be generated using the %ACE_ROOT\bin\generate_export_file.pl
script. IDL code that will be included in your library needs to use the export
macros that you generate for that library. The back-end options that end in

Table 4-10 Collocation Strategy Options

Option Description

-Gp (default) Generate collocated stubs that use thru_poa collocation strategy.

-Gd Generate collocated stubs that use direct collocation strategy.

o c i w e b . c o m 53

4 . 1 2 B a c k E n d O p t i o n s

export_include are used to identify the export macro header file to use for
a given generated file type. The actual macro to use is identified by the
corresponding back-end option that ends in export_macro. For example:

generate_export_file.pl Messenger > MessengerExport.h

The header file is used by export_include as follows:

tao_idl -Wb,export_macro=Messenger_Export
-Wb,export_include=MessengerExport.h Messenger.idl

The export_macro triggers the inclusion of these macros in the class
definition, which is necessary on platforms that control visibility. These
macros allow the export of symbols from the library.

Table 4-11 Back End Options for -Wb

Option Description

export_macro=macro
IDL compiler will emit the macro after each class or
extern keyword (both stub and skeleton).

export_include=path
IDL compiler will include the file specified by path at
the top of the client header.

skel_export_macro=macro
IDL compiler will emit the macro after each class or
extern keyword in the skeleton code.

skel_export_include=path
IDL compiler will include the file specified by path at
the top of the server headers.

stub_export_macro=macro
IDL compiler will emit the macro after each class or
extern keyword in the stub code.

stub_export_include=path
IDL compiler will include the file specified by path at
the top of the client header.

pch_include=path
IDL compiler will include the file specified by path
in all generated files (used to support pre-compiled
header mechanisms).

pre_include=file
IDL compiler will include the file specified by file at
the beginning of the generated header file.

post_include=file
IDL compiler will include the file specified by file at
the end of the generated header file.

obv_opt_accessor
IDL compiler will generate code to optimize access to
base class data for valuetypes.

anyop_export_macro=macro
IDL compiler will emit the macro before each Any
operator or extern typecode declaration in the
generated stub code.

54 o c i w e b . c o m

T A O I D L C o m p i l e r

Here is an example showing how to use the back end options export_macro
and export_include. This example shows how the IDL compiler is invoked
when building the TAO_CosNaming shared library:

tao_idl -Wb,pch_include=CosNaming_pch.h -Wb,export_macro=TAO_Naming_Export
-Wb,export_include=Naming/naming_export.h -I../.. -I../../orbsvcs
-Wb,pre_include=ace/pre.h -Wb,post_include=ace/post.h CosNaming.idl

4.13 Suppression Options

Table 4-12 shows options you can use to suppress the generation of code that
corresponds to certain CORBA features particular applications may not need.
Suppressing some of the code normally generated for these features may
produce smaller skeletons and stubs, which is important for
memory-constrained systems.

anyop_export_include=path

When using the -GA option to generate separate files
for any operators, the use of this option causes the IDL
compiler to include the file specified by path at the
top of the any such headers.

include_guard=path
Only for internal TAO use. This option causes the IDL
compiler to add code to the headers that prevent users
from including the generated files.

safe_include=file
Only for internal TAO use. This option causes the IDL
compiler to use the specified file in place of the
normal generated file (*C.h).

unique_include=file
Only for internal TAO use. Include this file in the *C.h
file instead of the normal TAO includes.

Table 4-11 Back End Options for -Wb

Option Description

Table 4-12 Suppression Options

Option Description Restrictions

-Sa
Suppress generation of the any
operators.

The application cannot use the any data
type in operation parameter lists.

-Sal
Suppress generation of the any
operators for local interfaces
only.

The application cannot store local
objects in a CORBA::Any

o c i w e b . c o m 55

4 . 1 4 O p t i o n s U s e d I n t e r n a l l y b y T A O

Note The run-time ORB initialization options that affect collocation must be
compatible with the types of generated collocated stubs. For example, using
the -Sp option at compile time, then using the -ORBCollocationStrategy
thru_poa option at run time, is inconsistent and results in a run-time
exception.

4.14 Options Used Internally by TAO

Table 4-13 lists options used internally by TAO. These are documented and
described for the sake of completeness but should not generally be used by
applications.

-St

Suppress generation of
TypeCodes for IDL-defined
types. Automatically implies
-Sa.

The application can neither use the any
data type in operation parameter lists
nor use a TypeCode for any type
declared in the IDL file.

-Sp
Suppress generation of
thru_poa collocated stubs.

Collocation must be disabled or the
direct collocation strategy must be
used (see 17.5).

-Sd
Suppress generation of direct
collocation stubs.

Collocation must be disabled or the
thru_poa collocation strategy must be
used (see 17.5).

-Sm
Disable processing of IDL3
constructs.

IDL interfaces cannot use IDL3
constructs (See Chapter 32, the CORBA
Component Model).

-Se

Suppresses use of custom header
extension for TAO’s IDL files.
This allows applications to
specify their custom header
extensions via -hc and -hs while
existing TAO IDL files can be
included and keep their existing
extension.

Table 4-12 Suppression Options

Option Description Restrictions

Table 4-13 Output Used Internally by TAO

Option Description

-Sorb Suppress generation of the ORB.h include in generated files.

56 o c i w e b . c o m

T A O I D L C o m p i l e r

4.15 Output and Reporting Options

Table 4-14 lists options you can use to control the output of various warning,
error, and informational messages, as well as the location of temporary files
generated by the IDL compiler.

-Sci Suppress generation of the client inline file (*C.inl).

-Scc Suppress generation of the client stub file (*C.cpp).

-Ssi Suppress generation of the server inline file (*S.inl).

-Ssc Suppress generation of the server stub file (*S.cpp).

-SS
Suppresses generation of skeleton (server) files. Only an empty *S.h
file is generated.

-GX Causes generation of empty *A.h files.

Table 4-13 Output Used Internally by TAO

Option Description

Table 4-14 Output and Reporting Options

Option Description Default

-t dir
Directory used by the IDL
compiler for temporary files.

In UNIX, uses the value of the TMPDIR
environment variable, if set, or /tmp
by default. In Windows, uses the value
of the TMP environment variable, if set,
or the TEMP environment variable, if
set, or the WINNT directory (on NT).

-v
Verbose flag. IDL compiler will
print progress messages after
completing major phases.

No progress messages displayed.

-d
Print the Abstract Syntax Tree
(AST) to stdout. AST is not displayed.

-w Suppress warnings. All warnings displayed.

-V
Print version information for
front end and back end. No version information displayed.

-Cw
Output a warning if two
identifiers in the same scope
differ in spelling only by case.

Error output is default.

o c i w e b . c o m 57

4 . 1 5 O u t p u t a n d R e p o r t i n g O p t i o n s

-Ce
Output an error if two
indentifiers in the same scope
differ in spelling only by case.

Error output is default.

Table 4-14 Output and Reporting Options

Option Description Default

58 o c i w e b . c o m

T A O I D L C o m p i l e r

o c i w e b . c o m 59

CHAPTER 5

Error Handling

5.1 Introduction

The inherent complexity of distributed applications increases the opportunity
for errors to occur. To handle errors, distributed computing middleware needs
a mechanism to communicate errors between components. Likewise, clients
must be able to handle the error conditions communicated to them by servers.

Distributing an application across several processes and/or several hosts
creates more opportunities for errors to occur. Figure 5-1 illustrates a
distributed application with several objects distributed across three processes
on two hosts. Possible errors include a hardware failure on one of the hosts,
the loss of a network connection between the hosts, and a software failure in
one of the server processes.

60 o c i w e b . c o m

E r r o r H a n d l i n g

Before getting into TAO specifics, we first summarize the error-handling
mechanisms common to all CORBA ORBs. There are two types of errors that
may occur in a distributed system:

• System-level errors: These error conditions can happen in any distributed
system. For example, a server can exit unexpectedly, thereby causing a
loss of communication. Likewise, a client may send a request to an object
that does not exist.

• User-level errors: These are application- and domain-specific error
conditions defined by the architects and designers of a distributed system
during application design and development. For example, a bank
customer may attempt to withdraw more money from her bank account
than is in the account.

By default, C++ exceptions are used by the CORBA IDL-to-C++ mapping to
communicate error conditions between the client and server components. For
more details on error handling in CORBA, see Advanced CORBA
Programming with C++, 7.15.

Sometimes C++ exceptions are not available or desired. For instance, some
platforms and compilers do not support C++ exceptions. Moreover, some
applications cannot tolerate the performance impact or increase in code size
that using C++ exceptions causes. The OMG defines an alternate mapping for
such systems that passes error information through a CORBA::Environment
parameter with each invocation. Older versions of TAO supported the
alternate mapping, but TAO 2.2a no longer does. If your application requires

Figure 5-1 Sample Distributed Application

operating system

host1 host2

operating system

network

process1a process1b process2a

o c i w e b . c o m 61

5 . 2 C O R B A S y s t e m E x c e p t i o n s

the alternate mapping you will need to use an older release of TAO, such as
TAO 1.4a.

5.2 CORBA System Exceptions

By default, CORBA uses C++ exceptions to communicate error conditions
between clients and servers. System-level errors automatically communicate
with clients through a set of standard CORBA system exceptions. A system
exception can be raised during any remote invocation. Table 5-1 lists some
common system exceptions. For a complete list of system exceptions, please
see Advanced CORBA Programming with C++, 7.15.

In C++, all CORBA exceptions derive from the class CORBA::Exception.
All system exceptions derive from CORBA::SystemException, as shown in
Figure 5-2.

Table 5-1 Common System Exceptions

Name Description

CORBA::COMM_FAILURE
The client’s request was accepted, but a failure occurred
(e.g., unexpected server termination) while processing
the request.

CORBA::INV_OBJREF
The client attempted to invoke an operation on an invalid
object reference.

CORBA::OBJECT_NOT_EXIST
The client attempted to invoke an operation on a
non-existent object (e.g., not activated in the POA).

CORBA::TRANSIENT
The request was not able to reach its destination because
a critical resource needed to carry out the request (e.g.,
the POA, the server, a connection) was not available.

CORBA::TIMEOUT
A request could not be completed within the specified
time-to-live period as defined by the effective messaging
quality of service (QoS) policies.

62 o c i w e b . c o m

E r r o r H a n d l i n g

A client must catch system exceptions raised by remote operations. CORBA
system exceptions contain information that can aid in debugging.

Table 5-2 lists several operations you can use to get information from a
CORBA exception.

Figure 5-2 System Exception Hierarchy

Table 5-2 CORBA::Exception Operations

Operation Description

const char* _rep_id()
Returns the Interface Repository ID of the
exception.

const char* _name() Returns the name of the exception.

void _raise() Throws the exception.

static CORBA::Exception*
_downcast(CORBA::Exception*)

“Downcast” an exception to a more-derived
type. (Similar to _narrow() for object
references.)

TAO Extensions

CORBA::TypeCode_ptr _type() Returns the typecode of the exception.

int _is_a (const char* rep_id)
Returns non-zero if Repository ID of exception
matches rep_id.

CORBA::Exception

CORBA::SystemException

COMM_FAILURE

NO_PERMISSION

INV_OBJREF

...

...

o c i w e b . c o m 63

5 . 2 C O R B A S y s t e m E x c e p t i o n s

The following examples illustrate the use of system exceptions in client code.
Both of these examples are based on a simple interface of a hotel with guest
rooms. In these examples, the client makes the following remote invocations:

• Getting the object reference from the Naming Service.

• Obtaining the hotel name with hotel->name().

• Acquiring a reference to a guest room via hotel->checkIn().

• Obtaining the room number using room->roomNumber().

Any one of these invocations has the potential to raise a system exception.

Here is the IDL for our simple hotel:

interface GuestRoom
{
 readonly attribute short roomNumber;
 readonly attribute float balance;

 void checkOut();
};

interface Hotel
{
 readonly attribute string name;

 GuestRoom checkIn(in short numNights);
};

void _tao_print_exception (const
char *info, FILE *f = stdout)

Print helpful debugging information about the
exception to f, prepended by info.

ACE_CString _info()
Returns information printed by
_tao_print_exception() as a string.

CORBA::SystemException Operations

CORBA::ULong minor()
Returns an ORB-specific error code that
conveys additional information about the error.
See 5.4 for the TAO minor codes.

CORBA::CompletionStatus
completed()

Returns an enumerated value that indicates
whether the operation completed or not before
the exception was raised. Valid values are YES,
NO, and MAYBE.

Table 5-2 CORBA::Exception Operations

Operation Description

64 o c i w e b . c o m

E r r o r H a n d l i n g

Example Here is an example of a client that catches system exceptions generically.
Note that the catch code is highlighted.

#include <corba.h>
#include <iostream>

int main(int argv, char* argc[])
{
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 Hotel_var hotel = // get a Hotel proxy, possibly through the Naming Service

 CORBA::String_var name = hotel->name();
 std::cout << "The name of the hotel is " << name << std::endl;

 CORBA::Short numNights = 5;
 GuestRoom_var room = hotel->checkIn(numNights);

 std::cout << "The room number is " << room->roomNumber() << std::endl;
 orb->destroy();
 }
 catch (CORBA::SystemException& ex) {
 std::cerr << "A CORBA System Exception was caught: ";
 std::cerr << "ID = " << ex._rep_id()
 << "; minor code = " << ex.minor() << std::endl;
 }
 // catch all CORBA non-system exceptions
 catch (CORBA::Exception& ex) {
 std::cerr << "A CORBA Exception was caught: ";
 std::cerr << "ID = " << ex._rep_id() << std::endl;
 }
}

In addition to printing specific fields of the exception with the _rep_id()
and minor() member functions, it is possible to simply insert the entire
exception into an output stream, such as std::cerr. For instance, the catch
clauses of the above example can be rewritten as follows:

 catch (CORBA::SystemException& ex) {
 std::cerr << "A CORBA System Exception was caught: " << ex << std::endl;
 }
 // catch all CORBA non-system exceptions
 catch (CORBA::Exception& ex) {
 std::cerr << "A CORBA Exception was caught: " << ex << std::endl;
 }

o c i w e b . c o m 65

5 . 2 C O R B A S y s t e m E x c e p t i o n s

In TAO, the output stream insertion operator <<() has been overloaded for
CORBA exceptions to print some details of the exception, such as its
unqualified type name and its interface repository id. Here is what is printed
by the first catch clause above if a CORBA:TRANSIENT exception is raised:

A CORBA System Exception was caught: TRANSIENT (IDL:omg.org/CORBA/TRANSIENT:1.0)

Example Here is an example of a client performing the same remote invocations but
catching specific system exceptions.

#include <corba.h>
#include <iostream>

int main(int argv, char* argc[])
{
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 Hotel_var hotel = // get a Hotel proxy, possibly through the Naming Service

 CORBA::String_var name = hotel->name();
 std::cout << "The name of the hotel is " << name << std::endl;

 CORBA::Short numNights = 5;
 GuestRoom_var room = hotel->checkIn(numNights);

 std::cout << "The room number is " << room->roomNumber() << std::endl;
 orb->destroy();
 }
 catch (CORBA::COMM_FAILURE& ex) {
 std::cerr << "A communication failure occurred: "
 << "; minor code = " << ex.minor() << std::endl;
 }
 catch (CORBA::TRANSIENT& ex) {
 std::cerr << "A transient failure occurred: "
 << "; minor code = " << ex.minor() << std::endl;
 }
 // catch all other system exceptions
 catch (CORBA::SystemException& ex) {
 std::cerr << "A CORBA System Exception was caught: ";
 std::cerr << "ID = " << ex._rep_id()
 << "; minor code = " << ex.minor() << std::endl;
 }
 // catch all CORBA non-system exceptions
 catch (CORBA::Exception& ex) {
 std::cerr << "A CORBA Exception was caught: ";
 std::cerr << "ID = " << ex._rep_id() << std::endl;

66 o c i w e b . c o m

E r r o r H a n d l i n g

 }
}

5.3 CORBA User Exceptions

Distributed system designers can use exceptions to communicate
application-defined error conditions by specifying IDL modules and interfaces
that contain CORBA User Exceptions. As shown in Figure 5-3, in C++, all
user exceptions derive from CORBA::UserException, which itself derives
from CORBA::Exception.

A user exception is similar to an IDL struct in that it can contain data
members. For example, you can extend the GuestRoom interface as follows:

interface GuestRoom
{
 exception Unoccupied
 {
 short daysEmpty;
 string lastOccupant;
 };

 readonly attribute short roomNumber;
 readonly attribute float balance;

Figure 5-3 User Exceptions

CORBA::Exception

CORBA::SystemException CORBA::UserException

Hotel::Occupied

GuestRoom::Unoccupied

...
...

o c i w e b . c o m 67

5 . 3 C O R B A U s e r E x c e p t i o n s

 void checkOut() raises (Unoccupied);
};

The client can catch the Unoccupied exception whenever
GuestRoom::checkOut() is called:

 GuestRoom_var room = // get a proxy to a GuestRoom;
 try {
 room->checkOut();
 }
 catch (GuestRoom::Unoccupied& ex) {
 std::cerr << "Cannot check out. Room "
 << room->roomNumber() << " has been empty for "
 << ex.daysEmpty << " days. The last occupant was "
 << ex.lastOccupant << std::endl;
 }
 // catch all other user-defined CORBA exceptions
 catch (CORBA::UserException& ex) {
 std::cerr << "A CORBA User Exception was caught: ";
 std::cerr << "ID = " << ex._rep_id() << std::endl;
 }
 catch (CORBA::SystemException& ex) {
 std::cerr << "A CORBA System Exception was caught: ";
 std::cerr << "ID = " << ex._rep_id()
 << "; minor code = " << ex.minor() << std::endl;
 }
 // should never be reached, because all CORBA exceptions are
 // either system exceptions or user exceptions.
 catch (CORBA::Exception& ex) {
 std::cerr << "A CORBA Exception was caught: ";
 std::cerr << "ID = " << ex._rep_id() << std::endl;
 }

On the server side, the server’s implementation of the checkOut() operation
throws an Unoccupied exception if a checkOut() is attempted on an empty
room. For example, suppose GuestRoom_i is the name of the server-side
class that implements the GuestRoom interface:

void GuestRoom_i::checkOut()
{
 if (/* the room is occupied */) {
 // check the guest out of the room
 }
 else { // the room is unoccupied; ERROR
 CORBA::Short daysEmpty = // # of days room is empty
 CORBA::String_var lastOccupant = // name of last occupant

 throw GuestRoom::Unoccupied (daysEmpty,lastOccupant);
 }
}

68 o c i w e b . c o m

E r r o r H a n d l i n g

Conceptually, the exception is thrown “across the wire” to the client. Actually,
what happens is a little more complicated. First, the exception thrown by the
implementation is caught by the CORBA infrastructure (skeleton or ORB) on
the server side, marshalled, and returned to the client in the reply message.
The client-side CORBA infrastructure (ORB and stub) unmarshals the reply
body into a C++ exception, then throws it. Finally, the client code can catch
the exception and handle it in an application-specific manner. Conceptually,
therefore, the exception appears to be thrown directly from the server to the
client.

5.4 TAO Minor Codes

A CORBA system exception includes information about the problem that
occurred. You can obtain this information by calling
CORBA::Exception::minor(). The value returned from minor() is a
32-bit value known as the minor code value. The minor code value contains
several pieces of information about the exception in the following groups of
bits:

• The high order 20 bits of the minor code value define the particular ORB
implementation that is transmitting the exception. The OMG assigns this
value to the ORB vendor or other responsible party to ensure it is unique
for all ORB implementations. TAO’s unique identifier is the hexadecimal
value 0x54410 (represented by ASCII "TA" followed by 0x0).

• The low order 12 bits are assigned no special significance by the OMG.
These bits comprise the implementation-specific minor code. For TAO,
the low order 12 bits are further divided as follows:

- The first 5 bits comprise the location code that identifies the location
in TAO where the exception was raised.

- The remaining 7 bits encode an error number (errno) associated
with the exception.

TAO’s location codes are described in 5.4.1 and the meanings of various error
numbers are described in 5.4.2.

o c i w e b . c o m 69

5 . 4 T A O M i n o r C o d e s

5.4.1 Location Codes
Each location code is assigned a preprocessor macro definition for improved
source code readability. The file $TAO_ROOT/tao/ORB_Constants.h
contains the definitions of these macros. To determine why an exception is
being thrown, you can step through the TAO source code in a debugger.
However, that can be time consuming. Instead, you can search the TAO
source code for these macro definitions and examine the code that detected the
failure. Doing so often leads to insights as to the exact cause of the error.

0x01U TAO_INVOCATION_LOCATION_FORWARD_MINOR_CODE
If a client attempts to connect to a server and receives a LOCATION_FORWARD
reply, it retries the connection at the address contained in the reply. If the retry
fails, the client ORB raises a CORBA::TRANSIENT exception with the minor
code set to TAO_INVOCATION_LOCATION_FORWARD_MINOR_CODE.

0x02U TAO_INVOCATION_SEND_REQUEST_MINOR_CODE
If a client attempts to send a request to a server for the current profile and fails,
the client ORB raises a CORBA::TRANSIENT exception with the minor code
set to TAO_INVOCATION_SEND_REQUEST_MINOR_CODE.

0x03U TAO_POA_DISCARDING
A POAManager in the PortableServer::POAManager::DISCARDING
state causes the associated POAs to discard all incoming requests. Requests
for which processing has already begun are allowed to continue. When a
request is discarded, the POA will raise a CORBA::TRANSIENT exception to
indicate that the client should retry the request. The POA will set the minor
code to TAO_POA_DISCARDING.

0x04U TAO_POA_HOLDING
A POAManager in the PortableServer::POAManager::HOLDING state
may cause the POAs associated with it to queue incoming requests, up to an
implementation-defined limit. If this limit is exceeded, the POA may discard
requests and raise the CORBA::TRANSIENT exception with minor code of
TAO_POA_HOLDING to indicate to the client that it should retry the request.

Note TAO’s implementation of the POA does not support queuing of requests, so
requests are immediately rejected with a CORBA::TRANSIENT exception if the
POAManager is in the HOLDING state.

70 o c i w e b . c o m

E r r o r H a n d l i n g

0x05U TAO_UNHANDLED_SERVER_CXX_EXCEPTION
If a servant implementation throws a native C++ exception that is not handled
within the application code, the server ORB cannot propagate the exception to
the client. Because the CORBA specification provides no standards for
marshaling or demarshaling native C++ exceptions, the server ORB raises a
CORBA::UNKNOWN exception with the minor code set to
TAO_UNHANDLED_SERVER_CXX_EXCEPTION.

0x06U TAO_INVOCATION_RECV_REQUEST_MINOR_CODE
If a client sends a request to a server and detects an error (other than a timeout)
while waiting for a reply, the client ORB raises a CORBA::COMM_FAILURE
exception with a TAO_INVOCATION_RECV_REQUEST_MINOR_CODE minor
code.

0x07U TAO_CONNECTOR_REGISTRY_NO_USABLE_PROTOCOL
If none of the connector objects in the ORB’s Connector_Registry are
able to parse a particular URL-style stringified IOR (e.g., it may not be
formatted properly or it may specify an unrecognized protocol), the ORB
raises a CORBA::INV_OBJREF exception with the minor code set to
TAO_CONNECTOR_REGISTRY_NO_USABLE_PROTOCOL. See Chapter 14 for
more information on using TAO’s pluggable protocols and 17.13.43 for more
information on specifying URL-style object references.

0x08U TAO_MPROFILE_CREATION_ERROR
If the ORB, in attempting to parse a string (e.g., a stringified IOR), encounters
an error creating the MProfile (the list of profiles contained within the object
reference), it raises a CORBA::INV_OBJREF exception with the minor code
set to TAO_MPROFILE_CREATION_ERROR.

0x09U TAO_TIMEOUT_CONNECT_MINOR_CODE
If a client fails to connect to a server within a specified timeout period, the
client ORB raises a CORBA::TIMEOUT exception with the minor code set to
TAO_TIMEOUT_CONNECT_MINOR_CODE.

0x0AU TAO_TIMEOUT_SEND_MINOR_CODE
If a client attempts to invoke an operation on a CORBA object, but the
invocation can not be completed within a specified timeout period, the client
ORB raises a CORBA::TIMEOUT exception with the minor code set to
TAO_TIMEOUT_SEND_MINOR_CODE.

0x0BU TAO_TIMEOUT_RECV_MINOR_CODE
If a client sends a request to a server but fails to receive a reply within a
specified timeout period, the client ORB raises a CORBA::TIMEOUT exception
with the minor code set to TAO_TIMEOUT_RECV_MINOR_CODE.

o c i w e b . c o m 71

5 . 4 T A O M i n o r C o d e s

0x0CU TAO_IMPLREPO_MINOR_CODE
General-purpose code indicating an error related to the TAO Implementation
Repository (IMR). For example, a server could not notify the IMR of its start
up, the IMR could not forward a client request to a server, or a server is not
running and the server’s activation mode does not allow the IMR to
automatically start it. In all cases, a CORBA::TRANSIENT exception is raised
with the minor code set to TAO_IMPLREPO_MINOR_CODE.

0x0DU TAO_ACCEPTOR_REGISTRY_OPEN_LOCATION_CODE
A server ORB opens an acceptor to allow it to accept client connections on
one or more endpoints. Endpoints can be specified when the ORB is
initialized (e.g., via the -ORBListenEndpoints option). If no endpoints are
specified, the ORB will attempt to open acceptors on default endpoints for the
loaded transports protocols. Opening an acceptor can fail for a variety of
reasons, including: The ORB is unable to create or open an acceptor, the ORB
is unable to add an acceptor to its acceptor registry, an invalid endpoint was
specified, no usable transport protocol has been loaded, or a specified
endpoint is already in use by another service. Such errors usually result in a
CORBA::BAD_PARAM exception being raised with the minor code set to
TAO_ACCEPTOR_REGISTRY_OPEN_LOCATION_CODE, usually during POA
activation.

0x0EU TAO_ORB_CORE_INIT_LOCATION_CODE
An error can occur during ORB core initialization for a variety of reasons,
including: An invalid argument was supplied to an -ORBInitRef option, an
unrecognized argument starting with "-ORB" was passed to
CORBA::ORB_init(), or an invalid endpoint was specified. In these cases,
the ORB will raise CORBA::BAD_PARAM. Other reasons ORB initialization
can fail include internal errors in TAO’s configuration causing the ORB to fail
to load a resource factory or server strategy factory. In these cases, the ORB
will raise CORBA::INTERNAL. Other errors during ORB initialization, such as
failure to initialize a codeset manager, reactor, pluggable protocol factories, or
default policies, will result in a CORBA::INITIALIZE exception. In all these
cases, the exception’s minor code will be set to
TAO_ORB_CORE_INIT_LOCATION_CODE.

0x0FU TAO_POLICY_NARROW_CODE
Not applicable.

0x10U TAO_GUARD_FAILURE
TAO’s POA and Real-Time POA maintain internal locks using the scoped
locking idiom, commonly known as a guard or lock monitor. If the POA or

72 o c i w e b . c o m

E r r o r H a n d l i n g

the RT CORBA thread pool mechanism fails to acquire its internal lock via
the guard, a CORBA::INTERNAL exception will be raised with the minor code
set to TAO_GUARD_FAILURE.

0x11U TAO_POA_BEING_DESTROYED
An attempt to use the POA after it has been destroyed or as it is being
destroyed can result in a CORBA::BAD_INV_ORDER exception with the minor
code set to TAO_POA_BEING_DESTROYED.

0x12U TAO_POA_INACTIVE
An attempt to use the POA after it as been deactivated via its POA manager
will result in a CORBA::OBJ_ADAPTER exception with the minor code set to
TAO_POA_INACTIVE.

0x13U TAO_CONNECTOR_REGISTRY_INIT_LOCATION_CODE
If an invocation (such as the first invocation on an object reference) requires a
new connection, but initialization of the ORB core’s connector registry fails, a
CORBA::INITIALIZE exception will be raised with the minor code set to
TAO_CONNECTOR_REGISTRY_INIT_LOCATION_CODE.

0x14U TAO_AMH_REPLY_LOCATION_CODE
In an application using TAO’s Asynchronous Method Handling (AMH)
feature, if the response handler is deleted before a reply as been sent to the
client, a CORBA::NO_RESPONSE exception will be generated and sent to the
client. In other cases, if the application attempts to use a response handler
incorrectly, a CORBA::BAD_INV_ORDER exception will be raised. In both
cases, the minor code will be set to TAO_AMH_REPLY_LOCATION_CODE.

0x15U TAO_RTCORBA_THREAD_CREATION_LOCATION_CODE
If an error occurs during thread creation in an RT CORBA thread pool, a
CORBA::INTERNAL exception will be raised with the minor code set to
TAO_RTCORBA_THREAD_CREATION_LOCATION_CODE.

5.4.2 Error Number Codes
Many system exceptions are the result of a failure when accessing a system
function. Most system functions set a global error number, known as errno,
that identifies the reason for the failure. Table 5-3 gives the TAO preprocessor

o c i w e b . c o m 73

5 . 4 T A O M i n o r C o d e s

macro definition and a short description associated with each possible error
number value included in the minor code.

Table 5-3 Minor Code Error Numbers

Hex
Value Macro Definition Description

0x0U TAO_UNSPECIFIED_MINOR_CODE
No error number associated with the
exception.

0x1U TAO_ETIMEDOUT_MINOR_CODE Connection timed out.

0x2U TAO_ENFILE_MINOR_CODE System file table is full.

0x3U TAO_EMFILE_MINOR_CODE Process has too many open files.

0x4U TAO_EPIPE_MINOR_CODE No process to read the data from a pipe.

0x5U TAO_ECONNREFUSED_MINOR_CODE Target machine refused a connection.

0x6U TAO_ENOENT_MINOR_CODE A file or directory does not exist.

0x7U TAO_EBADF_MINOR_CODE
A file descriptor refers to a file that is not
open, or trying to read from a file opened
only for writing.

0x8U TAO_ENOSYS_MINOR_CODE Operation not applicable.

0x9U TAO_EPERM_MINOR_CODE Not the super user.

0xAU TAO_EAFNOSUPPORT_MINOR_CODE
Address not compatible with requested
protocol.

0xBU TAO_EAGAIN_MINOR_CODE System process table is full.

0xCU TAO_ENOMEM_MINOR_CODE Not enough memory.

0xDU TAO_EACCES_MINOR_CODE File access denied.

0xEU TAO_EFAULT_MINOR_CODE Attempting to access a bad address.

0xFU TAO_EBUSY_MINOR_CODE Device busy or lock is held.

0x10U TAO_EEXIST_MINOR_CODE File not expected to exist.

0x11U TAO_EINVAL_MINOR_CODE An invalid argument was used.

0x12U TAO_ECOMM_MINOR_CODE Communication error on send.

0x13U TAO_ECONNRESET_MINOR_CODE Connection reset by peer.

0x14U TAO_ENOTSUP_MINOR_CODE Function not implemented.

74 o c i w e b . c o m

E r r o r H a n d l i n g

5.5 Summary

• Exceptions provide a mechanism to communicate error information
between CORBA clients and servers. Exceptions are mapped to native
C++ exceptions.

• A set of CORBA::SystemException exceptions is defined for
system-level errors.

• Domain- or application-specific exceptions are defined in IDL. The
generated C++ exception classes inherit from CORBA::UserException.

• When a CORBA system exception is thrown, a minor code is provided to
help identify the reason for the failure. Decoding this minor code can help
in identifying the cause of the failure.

o c i w e b . c o m 75

CHAPTER 6

CORBA Messaging

6.1 Introduction

The OMG introduced a CORBA Messaging specification to facilitate the
development of portable CORBA code that efficiently supports the following:

• Making requests that do not require a client to block while waiting for a
reply from a server. This is referred to as Asynchronous Method
Invocation (AMI).

• Handling replies that are returned after the client process that submitted
the associated request has terminated. This is referred to as Time
Independent Invocation (TII).

• Allowing Quality of Service (QoS) to be specified for method invocations
at the application level.

This functionality is now part of the CORBA specification (OMG Document
formal/08-01-04, Chapter 17).

TAO supports the callback model of AMI and a subset of the Messaging
specification’s QoS policies. TAO does not support Time-Independent
Invocation of requests. The AMI callback model is described in 6.2. The QoS

76 o c i w e b . c o m

C O R B A M e s s a g i n g

policies are described in 6.3. A Bi-Directional GIOP policy is described in 6.4.
Bi-Directional GIOP is defined in Part 2 of the CORBA Core specification
(OMG Document formal/08-01-06) sections 9.8 and 9.9.

6.2 AMI Callback Model

The Problem
When a synchronous CORBA operation is invoked, the invoking client is
blocked until it receives the reply to the operation request. A client cannot,
however, always afford to spend its time exclusively waiting for the reply.
Consider the following situations:

• During time-consuming invocations to distributed objects, the user is not
confident that the client is running properly. While waiting for a reply, it
may be desirable for the client application to provide periodic feedback to
the user, verifying that the program is still waiting for a reply from the
server.

• A client wishes to make concurrent, rather than consecutive, requests to
numerous servers. Suppose that to obtain the total inventory count for a
particular auto part, a number of warehouses must be queried. Whereas a
single query may not be very time consuming, the cumulative waiting
time for consecutive requests could be excessive. If all the queries are
made concurrently, the total inventory count will be less time consuming.

• The reply represents an event. A client may want to be informed when
some external event occurs, but does not want to block all other activities
while waiting for such an event.

Prior to the communication models defined in the Messaging specification,
the only models provided by CORBA for asynchronous communication were
the deferred synchronous and oneway models.

Because the deferred synchronous model requires the use of the Dynamic
Invocation Interface (DII), much more code is required for its implementation
than for the synchronous model. In addition, the DII is tedious to use, not
type-safe, and inefficient.

The oneway model requires the creation of a reply-handler object on the client
side for handling replies to oneway operations that the client invokes on the
server. An object reference to the reply handler is passed to the server in a

o c i w e b . c o m 77

6 . 2 A M I C a l l b a c k M o d e l

oneway operation. To reply to a oneway request, the server must invoke an
operation on this reply handler. There are several disadvantages to this
approach:

• The callback interface adds to the complexity of the IDL code.

• The interface for the server object must be altered to include the oneway
definition and the callback object reference parameter.

• The server code needs to be written to also play the role of a client, so that
it can invoke an operation on the callback object.

• Only the oneway operation is implemented. If the client application also
needs a synchronous version of this operation, it must be defined
separately.

• Traditional oneways guarantee neither non-blocking semantics nor
reliable delivery.

The AMI Callback Solution
The Asynchronous Method Invocation (AMI) callback1 model, defined by the
Messaging specification and fully implemented in TAO 1.6a, addresses the
above concerns by providing asynchronous operations that are not oneway
operations and do not use the DII. These operations are referred to as sendc_
operations throughout this chapter. A sendc_ operation is provided to the
client in addition to, rather than instead of, the corresponding synchronous
operation, so the client may invoke either one at any time.

A sendc_ operation has two purposes:

1. To cause the client ORB to send a request message to the server.

2. To provide the client ORB with an object reference to a reply handler.

AMI is a client-side language mapping issue, so enabling AMI does not alter
the CORBA interface, and changes to server implementations are normally
not required2. Thus, from the server’s perspective, a request message initiated
by a sendc_ operation invocation is identical to a request message initiated by
the corresponding synchronous operation invocation.

The client ORB is the workhorse of the AMI callback model. It transforms the
sendc_ operation invocations into request messages and internally maps the

1. An AMI polling model is also defined by the specification, but is not supported by TAO.
2. Servers may require changes to handle transactional asynchronous requests.

78 o c i w e b . c o m

C O R B A M e s s a g i n g

request ID to the reply-handler object reference. When it receives a reply to a
request message, it uses this internal mapping to invoke an operation on the
designated reply handler. A reply-handler skeleton class is implicitly
generated as part of the AMI callback model, so no explicit reply-handler
interface need be defined. The application developer simply writes a reply
handler that derives from this skeleton.

The AMI callback model is enabled by invoking the TAO IDL complier with
the -GC option. This produces the following additions to the resultant code for
each IDL interface:

1. A set of sendc_ member functions.

2. A reply-handler skeleton class.

These components are described in 6.2.1 through 6.2.3. The process of writing
a reply handler is covered in 6.2.4. The chain of events that is set in motion by
invoking a sendc_ operation is illustrated in Figure 6-1 and described in
detail in 6.2.5.

The Messaging specification makes use of a concept called implied-IDL to
define the implementation of these components in a language-independent
manner. To distinguish it from actual IDL code, all implied-IDL code in this
chapter is displayed in italic type.

Drawbacks to using AMI
There are some drawbacks to using AMI that are worth noting:

• Additional stub code is generated for every operation and attribute in an
interface. If only a small percentage of the operations and attributes are
accessed using asynchronous invocations, and executable size is an issue,
then it may make more sense to use alternative asynchronous techniques.

• Support for AMI callback is just beginning to appear in ORBs, so if client
application portability among different ORB implementations is desired,
it may be premature to deploy AMI-based application code. Since the use
of AMI callback does not alter the CORBA interface, this is a client-side
issue only. AMI callback clients are fully interoperable with non-AMI-
callback servers.

• Client programmers have to write more code to support the AMI callback
model than the normal synchronous invocation model. In particular, you
must implement the reply-handler class, and you must supply an event
loop on the client side to handle asynchronous replies. Also, exception

o c i w e b . c o m 79

6 . 2 A M I C a l l b a c k M o d e l

handling is considerably more complicated with the AMI callback model
than with normal synchronous invocations.

6.2.1 Asynchronous sendc_ Operations
When invoked with the -GC option, the TAO IDL complier generates sendc_
member functions for the proxy3 (stub) class in addition to the synchronous
member functions. These additional member functions can be thought of as
being generated from implied-IDL operations4 that are added to the IDL
interface. All sendc_ operations have a return type of void and are defined
as follows:

For each synchronous IDL operation opName, an implied-IDL operation
named sendc_opName is defined according to the following rules:

• The first parameter is an in parameter named ami_handler, a reference to
the designated reply handler.

• Each in and inout parameter in opName becomes an in parameter in
sendc_opName.

• If opName has a context expression (specifying which elements of the
client’s context may affect the performance of a request by the object),
then sendc_opName will have an identical context expression.

The return value and out parameters of opName are ignored because they are
handled by the reply handler.

For each IDL attribute attrName, an implied-IDL operation named
sendc_get_attrName is defined. Its only parameter is an in parameter named
ami_handler, a reference to its reply handler.

For each non-readonly IDL attribute attrName, an additional implied-IDL
operation named sendc_set_attrName is defined according to the following
rules:

• The first parameter is an in parameter named ami_handler, a reference to its
reply handler.

• There is a second in parameter named attrName that has the same type as
attrName and is used to set the attribute value.

3. See Advanced CORBA Programming with C++, 7.3 for more information about proxy classes.

4. These new operations are not considered to be real IDL because they do not correspond to entries
in the Interface Repository.

80 o c i w e b . c o m

C O R B A M e s s a g i n g

If a sendc_ operation is invoked with a nil ami_handler value, no response
will be returned for that invocation.

Suppose we have the following IDL definition for MyInterface:

exception UserExcep {string usr_exc;};

interface MyInterface {
 boolean opName(in short a_short,
 inout long a_long,
 out float a_float)
 raises(UserExcep);
 attribute short attrib1;
 readonly attribute short attrib2;
};

The implied-IDL sendc_ operations for MyInterface are:

 void sendc_opName(in AMI_MyInterfaceHandler ami_handler
 in short a_short,
 in long a_long);

 void sendc_get_attrib1(in AMI_MyInterfaceHandler ami_handler);
 void sendc_set_attrib1(in AMI_MyInterfaceHandler ami_handler,
 in short attrib1);

 void sendc_get_attrib2(in AMI_MyInterfaceHandler ami_handler);

The sendc_ member functions of the C++ proxy (stub) class are:

 virtual void sendc_opName (AMI_MyInterfaceHandler_ptr ami_handler,
 CORBA::Short a_short,
 CORBA::Long a_long);

 virtual void sendc_get_attrib1 (AMI_MyInterfaceHandler_ptr ami_handler);

 virtual void sendc_set_attrib1 (AMI_MyInterfaceHandler_ptr ami_handler,
 CORBA::Short attrib1);

 virtual void sendc_get_attrib2 (AMI_MyInterfaceHandler_ptr ami_handler);

6.2.2 The ExceptionHolder
When a sendc_ operation is invoked, the client ORB attempts to send a
request message to the server. If this attempt fails, the sendc_ operation raises

o c i w e b . c o m 81

6 . 2 A M I C a l l b a c k M o d e l

a system exception with a completion status of COMPLETED_NO. Otherwise, the
sendc_ operation returns normally and the client application continues.

If an exception occurs during the processing of a sendc_ request, the server
returns this exception to the client ORB in the reply message, just as in the
case of a synchronous operation. Unlike the synchronous case, however, the
sendc_ operation cannot raise an exception because it returns before the reply
is received.

When a reply to a sendc_ operation contains an exception, the client ORB
receiving the reply must deliver this exception to the designated reply handler.
Because CORBA exceptions cannot be passed as arguments in an IDL
interface, the exception is inserted into an ExceptionHolder for delivery to
the designated reply handler.

The CORBA specification defines the Messaging::ExceptionHolder
valuetype:

module Messaging
{
 typedef CORBA::OctetSeq MarshaledException;
 native UserExceptionBase;
 valuetype ExceptionHolder {
 void raise_exception() raises (UserExceptionBase);
 void raise_exception_with_list(in CORBA::ExceptionList exc_list)
 raises (UserExceptionBase);
 private boolean is_system_exception;
 private boolean byte_order;
 private MarshaledException marshaled_exception;
 };
};

TAO implements this valuetype with the Messaging::ExceptionHolder C++
class. When called back with an exception, AMI applications will typically
call the raise_exception() operation, which throws the corresponding
C++ exception. Applications then catch this exception like any C++
exception. The following section shows this behavior in the Reply Handler.

Note Earlier versions of TAO generate type-specific Exception Holder classes for
each interface that supports AMI as prescribed by the CORBA 2.6
specification (OMG Document formal/01-12-35).

82 o c i w e b . c o m

C O R B A M e s s a g i n g

6.2.3 Reply Handler Operations
When the TAO IDL compiler is invoked with the -GC option, it generates a
C++ reply-handler skeleton class for each interface on which it is invoked.
This class can be thought of as having been compiled from an implied-IDL
reply-handler interface. For an interface named MyInterface, the name of
the implied-IDL interface is AMI_MyInterfaceHandler and the name of the
generated skeleton class is POA_AMI_MyInterfaceHandler. The
application developer writes a reply-handler class that inherits from the
skeleton class and that is usually instantiated as a servant within the client.

However, the reply-handler servant does not have to be located within the
client application. It can be located in another process. For example, if
multiple instances of a client are instantiated, it may be desirable to handle all
replies in only one of the instances. It is important to understand, however,
that the client ORB that sends a request message will always receive the reply
to this message. It is the client ORB that then invokes the reply-handler
operation.

Reply-handler operations are invoked only by an ORB. They do not raise
exceptions because they are never invoked by a client and thus have no client
to respond to the exceptions. All reply-handler operations have a return type
of void because their only purpose is to pass information to the reply handler.

An implied-IDL reply-handler interface contains two reply-handler operations
for each sendc_ operation, one to handle normal (non-exception) replies and
another to handle exception replies. Thus there are two types of reply-handler
operations:

• Non-exception: Delivers sendc_ operation results.

• Exception: Delivers exceptions that occur during a sendc_ operation.

Non-Exception Replies
Non-exception reply-handler operations are defined as follows:

For each IDL operation opName, an implied-IDL reply-handler operation
named opName is defined according to the following rules:

• If the operation has a return value, then the first parameter is an in
parameter named ami_return_val which is the return value of the IDL
operation.

o c i w e b . c o m 83

6 . 2 A M I C a l l b a c k M o d e l

• Each inout and out parameter in opName (the IDL operation) becomes
an in parameter in opName (the reply-handler operation).

The in parameters of the IDL operation are ignored in the reply-handler
operation because they are not part of the reply.

For an IDL attribute attrName, the implied-IDL operation get_attrName is
defined. It has a single in parameter named ami_return_val of the same type as
the attribute.

For a non-readonly IDL attribute attrName, an additional implied-IDL
operation named set_attrName with no parameters is defined.

There are two cases where the above rules will result in a reply-handler
operation with no parameters:

• An IDL operation that has a return type of void and no inout or out
parameters.

• A non-readonly attribute (the set operation does not return a value).

In these cases, the reply-handler operation simply acknowledges a successful
completion of the IDL operation.

Exception Replies
When an exception occurs during the processing of a sendc_ operation, the
exception is returned to the client ORB in the reply message, just as it is in the
case of a synchronous operation. In the case of the sendc_ operation,
however, the client ORB inserts the exception into an ExceptionHolder
value and then invokes the designated reply-handler operation with this
ExceptionHolder as its parameter.

Reply-handler operations that deliver exceptions have a single in parameter
named excep_holder and are defined as follows:

For each IDL operation opName, an implied-IDL reply-handler operation
named opName_excep is defined.

For an IDL attribute attrName, an implied-IDL reply-handler operation
named get_attrName_excep is defined.

For a non-readonly IDL attribute attrName, an additional reply-handler
implied-IDL operation named set_attrName_excep is defined.

Applying the above rules to MyInterface from 6.2.1 yields

84 o c i w e b . c o m

C O R B A M e s s a g i n g

// Reply-handler implied-IDL
interface AMI_MyInterfaceHandler {
 void opName(in boolean ami_return_val,
 in long a_long,
 in float a_float);

 void opName_excep(in Messaging::ExceptionHolder excep_holder);

 void get_attrib1(in short ami_return_val);
 void get_attrib1_excep(in Messaging::ExceptionHolder excep_holder);

 void set_attrib1();
 void set_attrib1_excep(in Messaging::ExceptionHolder excep_holder);

 void get_attrib2(in short ami_return_val);
 void get_attrib2_excep(in Messaging::ExceptionHolder excep_holder);
};

The generated C++ reply-handler skeleton class for MyInterface is:

class POA_AMI_MyInterfaceHandler: public virtual POA_Messaging::ReplyHandler
{
public:
// AMI callback exception support and TAO implementation code not shown.

virtual void op(CORBA::Boolean ami_return_val,
 CORBA::Long a_long,
 CORBA::Float a_float) = 0;
virtual void opName_excep(Messaging::ExceptionHolder* excep_holder) = 0;

virtual void get_attrib1(CORBA::Short ami_return_val) = 0;
virtual void get_attrib1_excep(Messaging::ExceptionHolder* excep_holder) = 0;

virtual void set_attrib1() = 0;
virtual void set_attrib1_excep(Messaging::ExceptionHolder* excep_holder) = 0;

virtual void get_attrib2(CORBA::Short ami_return_val) = 0;
virtual void get_attrib2_excep(Messaging::ExceptionHolder* excep_holder) = 0;

};

6.2.4 Creating a Reply-Handler Class

6.2.4.1 Generate Starter Code
When the options -GC (generate stub code for AMI callback support) and -GI
(see 4.7) are simultaneously passed to the TAO IDL compiler, reply-handler
class starter code is automatically generated for each interface in an IDL file.
The two files generated are suffixed with I.h and I.cpp. For MyInterface,

o c i w e b . c o m 85

6 . 2 A M I C a l l b a c k M o d e l

the generated files are MyInterfaceI.h and MyInterfaceI.cpp. Since
these files also contain servant starter code that is only relevant to the server
side, the reply-handler code should be extracted and placed in separate files.
The following reply-handler code was extracted from MyInterfaceI.cpp
and inserted into the file MyReplyHandler.cpp.

// ACE exception code is not shown
void AMI_MyInterfaceHandler_i::opName (
 CORBA::Boolean ami_return_val,
 CORBA::Long a_long,
 CORBA::Float a_float)
 {
 //Add your implementation here
 }

void AMI_MyInterfaceHandler_i::opName_excep (
 Messaging::ExceptionHolder* excep_holder)
 {
 //Add your implementation here
 }

void AMI_MyInterfaceHandler_i::get_attrib1 (
 CORBA::Short ami_return_val)
 {
 //Add your implementation here
 }

void AMI_MyInterfaceHandler_i::get_attrib1_excep (
 Messaging::ExceptionHolder* excep_holder)
 {
 //Add your implementation here
 }

void AMI_MyInterfaceHandler_i::set_attrib1 ()
 {
 //Add your implementation here
 }

void AMI_MyInterfaceHandler_i::set_attrib1_excep (
 Messaging::ExceptionHolder* excep_holder)
 {
 //Add your implementation here
 }

void AMI_MyInterfaceHandler_i::get_attrib2 (
 CORBA::Short ami_return_val)
 {
 //Add your implementation here

86 o c i w e b . c o m

C O R B A M e s s a g i n g

 }

void AMI_MyInterfaceHandler_i::get_attrib2_excep (
 Messaging::ExceptionHolder* excep_holder
)
 {
 //Add your implementation here
 }

The AMI_MyInterfaceHandler_i reply-handler class inherits from the
POA_AMI_MyInterfaceHandler class shown in 6.2.3. To complete the
reply-handler class, the application developer needs to replace “Add your
implementation here” with the desired functionality in each member
function.

The type of functionality that is added to the starter code depends, first of all,
on where the reply handler is to reside. Remember that the reply handler is not
restricted to residing in the client process from which the sendc_ operation is
invoked. It may reside in any process. The only restrictions are that the client
must be able to obtain an object reference to the reply-handler object (to pass
it in the sendc_ invocation) and the client process from which the operation
was invoked must still be running when the reply is returned. (Remember that
even if the reply handler is not part of the client application, the client ORB
that invoked the request must receive the reply and invoke the reply-handler
operation.)

In 6.2.4.2 and 6.2.4.3, we describe how to add the needed functionality to the
reply-handler starter code.

6.2.4.2 Non-Exception Reply-Handler Functions
In general, if the reply handler resides within the client that invoked the
sendc_ function, the reply handler copies the return value and other out
parameters into appropriate variables and/or outputs a message. A common
way to store the return values and out parameters is to declare these variables
as private members of the reply-handler class.

First, we show an example using non-AMI invocations. Using the
MyInterface example again, the following client application makes use of
the synchronous form of opName (assume that the IOR of the MyInterface
object is stored in my_interface.ior):

#include "MyInterfaceC.h"

o c i w e b . c o m 87

6 . 2 A M I C a l l b a c k M o d e l

int main(int argc, char* argv[])
{
 try {
 CORBA::Boolean my_return_value;
 CORBA::Long my_long;
 CORBA::Float my_float;

 // Get an object reference to MyInterface object.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->string_to_object("file://my_interface.ior");
 MyInterface_var myInterface = MyInterface::_narrow(obj.in());

 my_return_value = myInterface->opName(10, my_long, my_float);

 // do other stuff...

 orb->destroy();
 }
 catch (CORBA::Exception&) {
 // Handle CORBA exceptions...
 }
}

In the above code segment:

• The return value of opName is stored in my_return_value.

• opName’s second variable, an inout variable, is stored in my_long.

• opName’s third variable, an out variable, is stored in my_float.

To achieve the same result using sendc_opName, first add the above three
variables to MyReplyHandler.h as private data members of the
AMI_MyInterfaceHandler_i class and add an accessor method for each.
You may also need to add a mutual exclusion (mutex) lock to ensure thread-
safe access to these private data members.

class AMI_MyInterfaceHandler_i : public virtual POA_AMI_MyInterfaceHandler
{
 public:
 AMI_MyInterfaceHandler_i (void);
 virtual ~AMI_MyInterfaceHandler_i (void);
 virtual void opName(CORBA::Boolean ami_return_val,
 CORBA::Long a_long,
 CORBA::Float a_float);
 virtual void opName_excep(Messaging::ExceptionHolder* excep_holder);
 virtual void get_attrib1(CORBA::Short ami_return_val);
 virtual void get_attrib1_excep(Messaging::ExceptionHolder* excep_holder);

88 o c i w e b . c o m

C O R B A M e s s a g i n g

 virtual void set_attrib1 ();
 virtual void set_attrib1_excep(Messaging::ExceptionHolder* excep_holder);
 virtual void get_attrib2(CORBA::Short ami_return_val);
 virtual void get_attrib2_excep(Messaging::ExceptionHolder* excep_holder);

 CORBA::Boolean get_my_return_value (void);
 CORBA::Long get_my_long (void);
 CORBA::Float get_my_float (void);

 private:
 CORBA::Boolean my_return_value_;
 CORBA::Long my_long_;
 CORBA::Float my_float_;

 ACE_Thread_Mutex lock_;
};

Now define the reply handler for opName() so that the reply variables are
loaded into these private data members:

ACE_Thread_Mutex AMI_MyInterfaceHandler_i::lock_;

void AMI_MyInterfaceHandler_i::opName(CORBA::Boolean ami_return_val,
 CORBA::Long a_long,
 CORBA::Float a_float)
{
 ACE_Guard<ACE_Thread_Mutex> guard(lock_);
 my_return_value_ = ami_return_val;
 my_long_ = a_long;
 my_float_ = a_float;
}

These data members can be accessed within the client application as follows:

#include "MyReplyHandler.h"
#include "MyInterfaceC.h"

// Assume that -1 is not an allowable return value for my_long
// Initialize my_long to -1 so we can check later to see if it has changed
CORBA::Long AMI_MyInterfaceHandler_i::my_long = -1;

int main (int argc, char* argv[])
{
 try {
 // Get an object reference to MyInterface object.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->string_to_object("file://my_interface.ior");
 MyInterface_var myInterface = MyInterface::_narrow(obj.in());

o c i w e b . c o m 89

6 . 2 A M I C a l l b a c k M o d e l

 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj.in());
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();

 // Create a reply-handler servant.
 PortableServer::Servant_var<AMI_MyInterfaceHandler_i>
 replyHandler_servant = new AMI_MyInterfaceHandler_i();
 PortableServer::ObjectId_var oid =
 poa->activate_object(replyHandler_servant.in());
 CORBA::Object_var handler_obj = poa->id_to_reference(oid.in());
 AMI_MyInterfaceHandler_var replyHandler =
 AMI_MyInterfaceHandler::_narrow(handler_obj.in());

 // Invoke the operation asynchronously.
 myInterface_obj->sendc_opName(replyHandler.in(), 10);

 // do other stuff...

 while(1) {
 // Check to see if reply has been returned.
 if(orb->work_pending()) {
 orb->perform_work(); // Client ORB will invoke reply handler here
 // If the value of my_long has been changed, break out of while loop.
 if (replyHandler_servant->get_my_long() != -1) {
 break;
 }
 }
 }

 orb->destroy();
 }
 catch (CORBA::Exception&) {
 // Handle CORBA exceptions...
 }
}

In the above client application, the ORB invokes the reply-handler function
opName() on the client after the orb->perform_work() call is made from
the client application. The result of this asynchronous client application differs
from the synchronous one only in that the variables are private members of the
reply-handler class. The variables will receive the same values in both cases.

90 o c i w e b . c o m

C O R B A M e s s a g i n g

6.2.4.3 Exception Reply-Handler Functions
We handle exceptions by adding try and catch blocks to each reply-handler
exception function. Using MyInterface again in the example below, we add
a try block and two catch blocks to the opName exception reply-handler:

void AMI_MyInterfaceHandler_i::opName_excep (
 Messaging::ExceptionHolder* excep_holder)
{
 try {
 excep_holder->raise_exception();
 }
 catch (CORBA::SystemException& e) {
 std::cout << "opName System Exception " << e << std::endl;
 }
 catch (CORBA::UserException& e) {
 std::cout << "opName user exception " << e.usr_exc << std::endl;
 }
}

The client ORB calls the opName_excep() reply handler when an exception
is thrown during the processing of opName(). This exception is inserted into
the Messaging::ExceptionHolder object and passed to the
opName_excep() reply-handler operation. The only way to gain access to
this exception is to call the Messaging::ExceptionHolder member
function raise_exception(). This function demarshals the exception and
throws it just as synchronous opName() does.

Calling the synchronous opName() from within a try block would have the
same effect, as shown below:

#include "MyInterfaceC.h"
#include <iostream>

int main (int argc, char* argv[])
{
 CORBA::Boolean return_value;
 CORBA::short a_short;
 CORBA::long a_long;
 // Get object reference to MyInterface object.
 try {
 return_value = myInterface_obj->opName(10, a_short, a_long);
 }
 catch (CORBA::SystemException& e) {
 std::cout << "opName System Exception exception " << e << std::endl;
 }
 catch (CORBA::UserException& e) {

o c i w e b . c o m 91

6 . 2 A M I C a l l b a c k M o d e l

 std::cout << "opName user exception " << e.usr_exc << std::endl;
 }
 // do other stuff
}

In the above code, the same exception is thrown and the same exception
message is printed as in the asynchronous example.

6.2.4.4 Associating Replies with Requests
Before invoking a sendc_ operation, a client must generate an object
reference for the reply handler. In most cases, this object reference is
generated once, then used repeatedly by the client application. However, there
are situations where a client application needs to associate a unique identifier
with each invocation of a sendc_ operation so that it can distinguish between
these requests at a later time. Also, there may be situations in which the client
side needs to instantiate more than one instance of a reply handler.

Using one reply-handler instance to handle all replies coming from multiple
server objects of the same type is technically correct, but not necessarily
useful, since there is no way to distinguish callbacks resulting from AMI calls
to different server objects. Here are some common strategies for addressing
this problem:

• Servant-per-AMI-call strategy: This strategy involves the instantiation
and activation of a separate reply-handler instance for each AMI call. The
drawback, of course, is that if there are many simultaneous asynchronous
calls, the memory footprint of the client will increase. This strategy is
simpler to implement programmatically than the activation-per-AMI
strategy and results in less data being marshaled/demarshaled and sent
over the wire than the server-differentiated-reply strategy.

• Activation-per-AMI-call strategy: One way to distinguish separate AMI
calls without using a separate reply-handler instance for each invocation is
to explicitly activate the same servant multiple times in the client’s POA.
Using the PortableServer::IdAssignmentPolicy of MULTIPLE_ID
with a non-root POA, you can activate a servant multiple times, each time
with a different user-chosen object id. The reply-handler callback methods
examine this object id to determine which request caused the reply.

Before making AMI calls, the application creates a POA with the
MULTIPLE_ID and USER_ID policies. For each AMI call, the application

92 o c i w e b . c o m

C O R B A M e s s a g i n g

creates a special object id and maps the object id to the reply-handler
servant using the PortableServer::activate_object_with_id()
operation. After the client makes the AMI call, the reply arrives at the
reply handler. The reply-handler uses the PortableServer::Current
interface to obtain the object id and associate the reply with the correct
request. See Advanced CORBA Programming with C++ 11.4.2 and 11.4.3
for more information on the USER_ID and MULTIPLE_ID policies and
Advanced CORBA Programming with C++ 11.7.4 for more information
on the PortableServer::Current.

Although this approach is more complex to implement, it is more scalable
than the Servant-per-AMI-call strategy because it uses a single servant for
all asynchronous calls. However, both strategies require an entry-per-
AMI-call in the client POA’s active object map. One way to reduce this
overhead is to use a Servant Locator that activates the client’s reply
handler on demand, thereby minimizing memory utilization. The
activation-per-AMI-call has the advantage over the Server-differentiated-
reply strategy of reduced marshaling/demarshaling and less data traveling
over the wire.

• Server-differentiated-reply strategy: This strategy provides an
alternative for differentiating multiple AMI calls, but requires a small
modification to the IDL interface. An out parameter is added to the
function signature for use by the server side to add information that will
assist the client-side reply handler in distinguishing which reply goes with
which request. Thus, just one servant is needed for distinguishing between
all AMI callbacks, and it only needs to be activated once in the client’s
POA.

However, compared to allocating a different servant for each AMI call,
the use of an out parameter is obtrusive and incurs more network
overhead to pass the added parameter back to the client. The network
overhead can be limited by using the Asynchronous Completion Token
(ACT) pattern of adding a small, fixed-size inout parameter to the
function call. The ACT is first initialized by the client to indicate a
particular AMI call and then passed to the server. The server subsequently
returns the ACT unchanged as a parameter to the reply handler callback.
The reply handler maps the ACT to the associated actions and states
necessary to complete the reply processing. If the size of the ACT is

o c i w e b . c o m 93

6 . 2 A M I C a l l b a c k M o d e l

smaller than the out parameter described in the earlier part of this
strategy, the network bandwidth consumption is reduced somewhat.

The above strategies are further described, with examples, in
<http://www.cs.wustl.edu/~schmidt/PDF/ami1.pdf>.

6.2.5 The Processing of an AMI sendc_ Operation
When an AMI sendc_ operation is invoked, the following sequence of steps
is initiated (See Figure 6-1):

1. The client invokes an AMI sendc_ operation on its server object
reference.

2. The object reference passes the request to the client ORB.

3. The client ORB:

- Assigns a unique ID number to the request.

- Creates a mapping between the ID and the reply-handler object
reference.

- Packages the request message and hands it off to the OS.

4. The client OS sends the request message to the server.

5. The server OS stores the request in the server ORB’s message buffer.

6. The server ORB:

- Gets the request from the message buffer.

- Unpacks the message.

- Invokes the synchronous operation on the servant.

7. The servant processes the operation and returns the reply to the ORB.

8. The server ORB packages the reply message and hands it off to the OS.

9. The server OS sends the reply message to the client.

10. The client OS stores the reply in the client ORB’s message buffer.

Because the sendc_ operation is asynchronous, the client is able to
process other tasks while steps 2 through 10 are taking place. At some
point after invoking the sendc_ operation (unless the client is
multithreaded and the ORB is running in its own thread, or the reply
handler is not located in the client application), the client must invoke
either perform_work() or run() on the ORB to retrieve the reply. The
following sequence of steps is then initiated:

94 o c i w e b . c o m

C O R B A M e s s a g i n g

11. The client invokes either run() or perform_work() on the client ORB.

12. The client ORB:

- Gets the reply from the message buffer.

- Unpacks the reply message and extracts the ID number.

- Uses the ID number to locate the designated reply-handler object
reference.

- Invokes the appropriate reply-handler operation on the reply-handler
object reference.

13. The client processes the reply-handler operation.

Figure 6-1 AMI Sequence of Steps

Servant Server ORB

Client Client ORB

Server
Proxy

Client OS
Invoke sendc_
request operation.
Pass reply-
handler reference

Do other stuff.

Tell ORB to
look for reply.

Process the
reply-handler
operation.

Assign ID to request.
Map this ID to the
designated reply-
handler operation.
Create request
message and hand it
off to the OS.

Send request
message to
the server.

Server OS

Get reply message
from message buffer.
Use request ID
to identify the
designated reply-
handler operation.
Invoke this operation
on the client.

reply-handler
operation

Process the
synchronous
operation.
invocation.

request
message

request
message

reply
message

reply

Get request from buffer.
Invoke the synchronous
operation on the servant.

When
reply is
received,
store it in
client
ORB
message
buffer.

get reply

run
or

perform_work

sendc

operation
return

8 Create reply message
and hand it off to OS.

Send reply
to client.

5 Store request
in server ORB
message buffer.

1 3

11

2

9

4

7

10

operation
invocation

6

12

13

b
u
f
f
e
r

o c i w e b . c o m 95

6 . 2 A M I C a l l b a c k M o d e l

6.2.6 AMI Callback Example
Now that you know how to use a sendc_ operation and write a reply handler,
we show a complete example that uses the AMI callback feature of TAO.

The example shown here is based on the Messenger example, first introduced
in Chapter 3. Full source code for this example is in the TAO source code
distribution in the directory
$TAO_ROOT/DevGuideExamples/Messaging/AMIcallback.

6.2.6.1 IDL Definitions
The IDL file used for the Messenger is shown below:

// Messenger.idl

exception MessengerUnableToSendMessage
{
};

interface Messenger
{

 boolean send_message(in string user_name,
 in string subject,
 inout string message,
 out long time_sent)
 raises (MessengerUnableToSendMessage);
};

In the above code, the string message parameter is an inout parameter since
only part of the message may get displayed (on a pager, for example). The
returned value in this case is the partial message sent to the user.

The implied-IDL for the reply handler for the Messenger interface is:

interface AMI_MessengerHandler
{
 void send_message(in boolean ami_return_val,
 in string message,
 in long time_sent);

 void send_message_excep(in Messaging::ExceptionHolder excep_holder);
};

96 o c i w e b . c o m

C O R B A M e s s a g i n g

The Messenger interface with the implied-IDL sendc_ operations included is
as follows:

interface Messenger
{

 boolean send_message(in string user_name,
 in string subject,
 inout string message,
 out long time_sent)
 raises (MessengerUnableToSendMessage);

 void sendc_send_message(in AMI_MessengerHandler ami_handler,
 in string user_name,
 in string subject,
 in string message);
};

6.2.6.2 Generating Starter Implementation Code
To minimize the code generated by the IDL compiler, AMI callback stub code
is not generated by default. Therefore, we need to inform the IDL compiler to
generate this code by passing the -GC option. To minimize the amount of code
we need to write, we tell the compiler to generate starter implementation code
by using the -GIh and -GIs options. The resulting command line appears as
follows:

tao_idl -GC -GIh _i.h -GIs _i.cpp Messenger.idl

After this command is run, the starter code for the Messenger servant and
AMI reply-handler implementations can be found in the files
Messenger_i.h and Messenger_i.cpp. Invoke the IDL compiler
manually (instead of through a Makefile) to avoid overwriting implementation
code that you have added to the generated starter code.

Since the AMI reply-handler code is for the client side only, we remove the
reply-handler starter code from Messenger_i.h and Messenger_i.cpp,
then place it into files named MessengerHandler.h and
MessengerHandler.cpp, respectively.

o c i w e b . c o m 97

6 . 2 A M I C a l l b a c k M o d e l

6.2.6.3 The Messenger Servant Code
To help illustrate the usage of AMI, we add a private data member called
seconds_to_wait_ to the Messenger_i class defined in Messenger_i.h.
By having the server artificially wait seconds_to_wait_ seconds before it
sends the reply, we can mimic the effects of an actual server that may take a
while to send a reply.

In addition, Messenger_i has a CORBA::Boolean data member called
throw_exception_ that the send_message() implementation uses to
force an exception to be thrown, thus allowing the client-side exception
handling code to be exercised.

The constructor for Messenger_i accepts arguments to initialize
seconds_to_wait_ and throw_exception_. These arguments are set
based on command-line arguments passed to the server executable (see
$TAO_ROOT/DevGuideExamples/Messaging/AMIcallback/Messenge
rServer.cpp in the TAO source code distribution to see how this is done).

The send_message() member function is shown below (the code in bold has
been added to the IDL-compiler-generated starter code):

CORBA::Boolean Messenger_i::send_message (
 const char * user_name,
 const char * subject,
 char *& message,
 CORBA::Long_out time_sent
)
{
 if (throw_exception_)
 {
 std::cout << "Throwing MessengerUnableToSendMessage exception." << std::endl;
 throw MessengerUnableToSendMessage();
 }

 std::cout << "Write a letter to " << user_name << " as follows:" << std::endl;
 std::cout << "Subject: " << subject << std::endl;
 std::cout << "Dear " << user_name << ’,’ << std::endl;
 std::cout << message << std::endl;

 if (seconds_to_wait_ > 0)
 {
 std::cout << "Waiting for " << seconds_to_wait_ << " seconds..." << std::flush;
 ACE_OS::sleep(seconds_to_wait_);
 std::cout << " Done waiting" << std::endl;
 }

98 o c i w e b . c o m

C O R B A M e s s a g i n g

 // Record the time the message was sent
 time_sent = ACE_OS::gettimeofday().sec();

 // We will assume the message has been sent, so return true
 return true;
}

6.2.6.4 The Reply-Handler Class Definition
For this example, the MessengerHandler reply-handler echoes the server’s
response to standard output, including the time the message was sent. It shuts
down the ORB after one message.

The reply-handler functions related to the send_message() operation are
shown below:

void MessengerHandler::send_message (
 CORBA::Boolean ami_return_val,
 const char * message,
 CORBA::Long time
)
{
 if (ami_return_val)
 {
 time_ = time;
 time_t t = time_;
 const char * time_str = ACE_OS::ctime(&t);
 if (time_str != 0) {
 std::cout << std::endl << "Message sent at " << time_str << std::endl;
 }
 std::cout << "Content of message: " << message << std::endl;
 }
 else
 {
 std::cerr << "Error: Message was not sent." << std::endl;
 }
 // Our simple test just shuts down after sending one message.
 orb_->shutdown(0);
}

void MessengerHandler::send_message_excep (
 Messaging::ExceptionHolder* excep_holder
)
{
 // We'll print an error message and shut down the orb
 try
 {
 excep_holder->raise_exception();
 }

o c i w e b . c o m 99

6 . 2 A M I C a l l b a c k M o d e l

 catch (CORBA::Exception& ex)
 {
 std::cerr << "A CORBA Exception was thrown: " << ex << std::endl;
 }
 orb_->shutdown(0);
}

6.2.6.5 The Client Code
Since the reply handler will be called back by the ORB when the reply arrives
from the server, it needs to be registered with the POA as a servant just like
servants are registered in server code. The client code is:

#include "MessengerC.h"
#include "MessengerHandler.h"

int
main(int argc, char * argv[])
{
 try {

 // assume any command line parameter means we want an automated test.
 bool automated = argc > 1;

 // Initialize orb
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 CORBA::Object_var obj = orb->string_to_object("file://MessengerServer.ior");
 if (CORBA::is_nil(obj.in())) {
 std::cerr << "Nil Messenger reference" << std::endl;
 return 1;
 }

 // Narrow
 Messenger_var messenger = Messenger::_narrow(obj.in());
 if (CORBA::is_nil(messenger.in())) {
 std::cerr << "Argument is not a Messenger reference" << std::endl;
 return 1;
 }

 // Get reference to Root POA.
 obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj.in());

 // Activate POA manager
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();

 // Register an AMI handler for the Messenger interface

100 o c i w e b . c o m

C O R B A M e s s a g i n g

 PortableServer::Servant_var<MessengerHandler> servant =
 new MessengerHandler(orb.in());
 PortableServer::ObjectId_var oid = poa->activate_object(servant.in());
 obj = poa->id_to_reference(oid.in());
 AMI_MessengerHandler_var handler = AMI_MessengerHandler::_narrow(obj.in());

For our example, we will get the necessary information needed to send a
message to a particular user from standard input.

 CORBA::String_var user = CORBA::string_alloc(81);
 CORBA::String_var subject = CORBA::string_alloc(81);
 CORBA::String_var message = CORBA::string_alloc(81);

 if (! automated) {
 std::cout << "Enter user name -->";
 std::cin.getline(user, 81);

 std::cout << "Enter subject -->";
 std::cin.getline(subject, 81);

 std::cout << "Enter message -->";
 std::cin.getline(message, 81);
 } else {
 user = CORBA::string_dup("TestUser");
 subject = CORBA::string_dup("TestSubject");
 message = CORBA::string_dup("Have a nice day.");
 }

 // Record the time the request was made.
 ACE_Time_Value time_sent = ACE_OS::gettimeofday();

 messenger->sendc_send_message(handler.in(),
 user.in(),
 subject.in(),
 message.in());

Now we will run an event loop that runs the ORB in a non-blocking fashion.
Doing so allows us to provide feedback to the user when control is handed
back to the main thread.

Note See Advanced CORBA Programming with C++, 11.11.2, for details on
performing non-blocking event handling with CORBA.

 // Do some work to prove that we can send the message asynchronously, then come
 // back later and retrieve the results.

o c i w e b . c o m 101

6 . 2 A M I C a l l b a c k M o d e l

 for (int i = 0; i < 10; ++i) {
 ACE_OS::printf(".");
 ACE_OS::sleep(ACE_Time_Value(0, 10 * 1000));
 }

 // Our simple servant will exit as soon as it receives the results.
 orb->run();

 if (servant->message_was_sent())
 {
 // Note : We cannot use the time sent by the server to compare with
 // the time value here in the client because the server machine's
 // clock may not be synchronized with the client's clock.

 ACE_Time_Value delay = ACE_OS::gettimeofday() - time_sent;
 std::cout << std::endl << "Reply Delay = "
 << delay.msec() << "ms" << std::endl;
 }

 orb->destroy();
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "Caught a CORBA::Exception: " << ex << std::endl;
 return 1;
 }

 return 0;
}

6.2.6.6 Building Applications that use AMI
TAO’s support of AMI is implemented in the TAO_Messaging library. Thus,
applications that use AMI must link with this library. MPC projects for
applications that use AMI can simply inherit from the messaging and ami
base projects. For example, below is the MPC file for the AMI callback
example in $TAO_ROOT/DevGuideExamples/Messaging/AMIcallback:

project(*Server): messaging, taoexe, portableserver, ami {
 Source_Files {
 Messenger_i.cpp
 MessengerServer.cpp
 }
}

project(*Client): messaging, taoexe, portableserver, ami {
 Source_Files {
 MessengerHandler.cpp

102 o c i w e b . c o m

C O R B A M e s s a g i n g

 MessengerClient.cpp
 }
}

For more information on MPC, see
<http://www.ociweb.com/products/MPC>.

6.2.7 Controlling the Delivery of AMI-based Requests
TAO’s implementation of AMI permits the Messaging SyncScope policy to
be applied to the delivery of requests that use AMI. This feature allows fine-
grained control over the ORB’s return of control back to the client application
code. See 6.3.4 for more information on the Messaging SyncScope policy. In
addition, the TAO-specific buffering constraint policy can be applied to
specify the conditions under which a queue of requests should be buffered and
transmitted. See 6.3.5 for more information on TAO’s buffering constraint
policy.

6.3 Quality of Service Policies

Quality of Service (QoS) is a general concept that is used to specify the
behavior of a service. Programming service behavior by means of QoS
settings offers the advantage that application developers only need to specify
what they want rather than how it should be achieved.

Generally speaking, quality of service comprises several QoS policies. Each
policy is an independent description that associates a name with a value.
Describing QoS by means of a list of independent QoS policies gives rise to
greater flexibility in application design.

The CORBA Messaging specification defines mechanisms by which clients
and servers can set required and supported qualities of service with respect to
requests. It describes a standard QoS framework within which CORBA
services can define their service-specific qualities. In this framework, all QoS
settings are local interfaces derived from CORBA::Policy. Many of these
QoS policies are defined in the Messaging module in IDL. TAO defines
some additional QoS policies, also derived from CORBA::Policy, that fit
within the CORBA Messaging QoS framework.

The following sections describe the messaging QoS policies supported by
TAO and how to use them.

o c i w e b . c o m 103

6 . 3 Q u a l i t y o f S e r v i c e P o l i c i e s

6.3.1 Policy Management

6.3.1.1 Creating Policies
As stated above, all CORBA Messaging QoS policies inherit from
CORBA::Policy (the same base interface used to specify POA policies).
CORBA::ORB has a generic factory operation, create_policy(), that can be
used to create new policy objects. This operation is defined in the following
IDL:

module CORBA {
 typedef unsigned long PolicyType;
 interface Policy {};

 typedef short PolicyErrorCode;
 const PolicyErrorCode BAD_POLICY = 0;
 const PolicyErrorCode UNSUPPORTED_POLICY = 1;
 const PolicyErrorCode BAD_POLICY_TYPE = 2;
 const PolicyErrorCode BAD_POLICY_VALUE = 3;
 const PolicyErrorCode UNSUPPORTED_POLICY_VALUE = 4;
 exception PolicyError {PolicyErrorCode reason;};

 interface ORB {
 Policy create_policy(in PolicyType type, in any val) raises(PolicyError);
 };
};

Each messaging QoS policy is assigned a unique PolicyType. For example,
the policy type for the relative round-trip timeout policy, described in 6.3.2, is
defined as:

module Messaging {
 const CORBA::PolicyType RELATIVE_RT_TIMEOUT_POLICY_TYPE = 32;
};

The val parameter passed to create_policy() is a CORBA::Any that
contains the desired value for the policy. If the CORBA::Any does not contain
an acceptable value or if the CORBA::PolicyType is not supported by the
ORB, a CORBA::PolicyError exception is raised.

Before policies can be applied, they must be added to a
CORBA::PolicyList. For example:

 // Create a policy and add it to a CORBA::PolicyList.

104 o c i w e b . c o m

C O R B A M e s s a g i n g

 CORBA::Any policy_value_as_any;
 // initialize "policy_value_as_any" with a value
 CORBA::PolicyList policy_list;
 policy_list.length(1);
 policy_list[0] =
 orb->create_policy (SOME_POLICY_TYPE, policy_value_as_any);

On the client side, policies are applied to various objects, such as the ORB, the
current thread of execution, or a specific object reference. On the server side,
policies are applied to the POA.

6.3.1.2 Client Side Policy Management
Messaging QoS policies can be applied on the client side at three different
scoping levels. This permits you to work with a level of granularity that is
appropriate for your application. These levels are as follows:

1. The ORB level. Policies applied at the ORB level will apply to all
requests delivered by the specified ORB. The CORBA::PolicyManager
is used to set policies at this level. For example:

 CORBA::Object_var obj = orb->resolve_initial_references("ORBPolicyManager");
 CORBA::PolicyManager_var policy_manager =
 CORBA::PolicyManager::_narrow(obj.in());
 policy_manager->set_policy_overrides (policy_list, CORBA::ADD_OVERRIDE);

2. The thread level. Using thread-level policies allows quality-of-service
values to be applied to operations invoked from a certain thread. The
CORBA::PolicyCurrent object is used to set policies at this level. For
example:

 CORBA::Object_var obj = orb->resolve_initial_references("PolicyCurrent");
 CORBA::PolicyCurrent_var policy_current =
 CORBA::PolicyCurrent::_narrow (obj.in());
 policy_current->set_policy_overrides (policy_list, CORBA::ADD_OVERRIDE);

3. The object reference level. For the most fine-grained level of control,
quality-of-service policies can be set on a per-object-reference basis.
Assuming we have some object reference obj, we can apply policies to
the object reference as follows:

 CORBA::Object_var new_obj =
 obj->_set_policy_overrides (policy_list, CORBA::SET_OVERRIDE);

o c i w e b . c o m 105

6 . 3 Q u a l i t y o f S e r v i c e P o l i c i e s

Note that CORBA::Object::_set_policy_overrides() returns an
object reference that you must narrow to a specific interface type before
invoking operations on it. It does not modify the object reference upon
which it is called. In the above example, the new_obj object reference
contains the new policy_list policies.

Policy overrides applied at the object-reference level take precedence over
those applied at the thread or ORB level. Likewise, policy overrides applied at
the thread level take precedence over those applied at the ORB level.

Whether new policy settings are added to or replace existing policy settings is
controlled by the second parameter in set_policy_overrides(). If the
second parameter is CORBA::SET_OVERRIDE, the policies in the policy list
completely replace the existing policies set at the relevant level of granularity.
If the second parameter is CORBA::ADD_OVERRIDE, the new policies are
added to the existing policies, unless a given policy in effect has the same
PolicyType as one of the policies in the list, in which case the new policy
replaces the existing policy.

6.3.1.3 Server Side Policy Management
On the server side, messaging policies are associated with a POA. Policies that
are applicable to server-side behavior can be passed via a
CORBA::PolicyList to the POA::create_POA() operation. Request
processing through a POA is subject to the policies applied to that POA at its
creation. Some policies applied to a POA are exported to clients via object
references created through that POA.

For more information on POA creation and POA policies, see Advanced
CORBA Programming with C++, Chapter 11.

6.3.1.4 Destroying Policies
Once the policies have been applied at either the client side or the server side,
the policy objects themselves should be destroyed using the
CORBA::Policy::destroy() operation. For example:

 // Destroy the Policy objects.
 for (CORBA::ULong i = 0; i < policy_list.length(); ++i) {
 policy_list[i]->destroy ();
 }
 policy_list.length(0);

106 o c i w e b . c o m

C O R B A M e s s a g i n g

Alternately, you can also use the TAO::Utils::PolicyList_Destroyer.
This TAO-specific class is used in place of CORBA::PolicyList to hold
your policies. Upon destruction, it automatically calls destroy() on each
policy in it. To use it, include tao/Utils/PolicyList_Destroyer.h in
the files where you are using policies, change your policy list types, and
inherit your MPC projects from the utils base project.

6.3.2 Request and Reply Timeouts
The CORBA Messaging specification defines a relative round-trip timeout
policy. Relative round-trip timeouts are used to limit the total amount of time
spent completing the following steps:

1. The client attempts to make a connection with a server.

2. The client passes a request to the server.

3. The client waits for a reply from the server.

At each step, the time spent since the start of the request is checked against a
user-specified timeout value. If the time exceeds this timeout value a
CORBA::TIMEOUT exception is raised. Specifying a relative round-trip
timeout value is useful in real-time and fault-tolerant systems, since the client
can take appropriate action if the server becomes unresponsive or cannot
complete a request within a specified time interval.

Only clients are impacted by the use of the relative round-trip timeout policy;
no timing requirements are passed to the server. If a CORBA::TIMEOUT
exception is raised and a server reply arrives sometime afterward, the reply is
simply ignored.

The PolicyType for the relative round-trip timeout policy is
Messaging::RELATIVE_RT_TIMEOUT_POLICY_TYPE. Its value is a
CORBA::Any containing a TimeBase::TimeT as defined in the CORBA
Time Service specification. The timeout value is a 64-bit value interpreted as
hundreds of nanoseconds. If either the CORBA::Any reference does not
contain a TimeBase::TimeT or the CORBA::PolicyType is not supported,
then a CORBA::PolicyError exception is raised.

The following code shows how to create a relative round-trip timeout policy
with a timeout value of one millisecond, and apply it at the ORB level. A
complete example showing how to use this policy is included in the TAO
source code distribution in the directory
$TAO_ROOT/DevGuideExamples/Messaging/RelativeRoundtripTimeout.

o c i w e b . c o m 107

6 . 3 Q u a l i t y o f S e r v i c e P o l i c i e s

 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Set the policy value to 1 millisecond (10 * 1000 msec/usec).
 TimeBase::TimeT relative_rt_timeout = 10000; // 1 millisecond
 CORBA::Any relative_rt_timeout_as_any;
 relative_rt_timeout_as_any <<= relative_rt_timeout;

 // Create the policy and add it to a CORBA::PolicyList.
 CORBA::PolicyList policy_list;
 policy_list.length(1);
 policy_list[0] =
 orb->create_policy (Messaging::RELATIVE_RT_TIMEOUT_POLICY_TYPE,
 relative_rt_timeout_as_any);

 // Apply the policy at the ORB level.
 CORBA::Object_var obj = orb->resolve_initial_references("ORBPolicyManager");
 CORBA::PolicyManager_var policy_manager =
 CORBA::PolicyManager::_narrow(obj.in());
 policy_manager->set_policy_overrides (policy_list, CORBA::ADD_OVERRIDE);

 // Destroy the Policy objects.
 for (CORBA::ULong i = 0; i < policy_list.length(); ++i) {
 policy_list[i]->destroy ();
 }
 policy_list.length(0);

A client that invokes a request on a server while a relative timeout policy is in
effect may receive an exception of type CORBA::TIMEOUT. This exception is
generated by the underlying invocation implementation upon expiration of the
specified time limit. Prior to the exception being thrown, the request is
cancelled if a response has not yet been received from the server.

Note In addition to relative round-trip timeouts, five additional timeout policies are
defined in the CORBA Messaging specification. These additional timeout
policies apply to request start time, request end time, reply start time, reply
end time, and relative request delivery time. None of these is available in
TAO 1.6a. However, TAO 1.6a does provide a TAO-specific connection
timeout policy, described in 6.3.3.

6.3.3 Connection Timeouts
In addition to the relative round-trip timeout policy described in 6.3.2, TAO
provides a policy to control connection timeouts. The connection timeout

108 o c i w e b . c o m

C O R B A M e s s a g i n g

policy is used to limit the total amount of time a client spends establishing a
connection with a server. If the connection time exceeds the value specified in
the policy, a CORBA::TIMEOUT exception is raised. Specifying a connection
timeout value is useful in real-time and fault-tolerant systems, since the client
can take appropriate action if the server becomes unresponsive or if a network
interruption occurs.

The TAO connection-timeout-policy local interface is defined in
$TAO_ROOT/tao/Messaging/TAO_Ext.pidl as follows:

#pragma prefix "tao"

module TAO
{
 const CORBA::PolicyType CONNECTION_TIMEOUT_POLICY_TYPE = 0x54410008;

 local interface ConnectionTimeoutPolicy : CORBA::Policy {
 readonly attribute TimeBase::TimeT relative_expiry;
 };
};

The following example shows how to set the ConnectionTimeoutPolicy
to 200 milliseconds on an object reference. The example uses the CORBA
Messaging _validate_connection() operation to explicitly open the
connection and verify that the connection can be made within the specified
timeout.

try {

 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Set the policy value (1.0e-3 * 1.0e7 is 1 millisecond).
 TimeBase::TimeT connection_timeout = 1.0e-3 * 1.0e7 * 200;
 CORBA::Any connection_timeout_as_any;
 connection_timeout_as_any <<= connection_timeout;

 // Create the policy and add it to a CORBA::PolicyList.
 CORBA::PolicyList policy_list;
 policy_list.length(1);
 policy_list[0] =
 orb->create_policy (TAO::CONNECTION_TIMEOUT_POLICY_TYPE,
 connection_timeout_as_any);

 // Obtain an object reference.
 CORBA::Object_var obj = orb->string_to_object("file://MessengerServer.ior");

o c i w e b . c o m 109

6 . 3 Q u a l i t y o f S e r v i c e P o l i c i e s

 // Apply the policy to the object reference; returns a new object reference.
 CORBA::Object_var new_obj =
 obj->_set_policy_overrides (policy_list, CORBA::ADD_OVERRIDE);

 // Destroy the Policy objects.
 for (CORBA::ULong i = 0; i < policy_list.length(); ++i) {
 policy_list[i]->destroy ();
 }
 policy_list.length(0);

 // Explicitly bind a connection to the server (may timeout).
 CORBA::PolicyList_var inconsistent_policies;
 CORBA::Boolean status =
 new_obj->_validate_connection (inconsistent_policies.out());

 // _narrow() and use the new_obj object reference as usual...

}
catch (CORBA::TIMEOUT&) {
 // The connection attempt timed out.
}
catch (CORBA::Exception&) {
 // Some other CORBA exception was raised.
}

You can see another example of using the connection timeout policy in
$TAO_ROOT/tests/Connection_Timeout. See the README file in that
directory for more information.

Note The connection timeout policy is specific to TAO. It is not part of the CORBA
Messaging specification.

6.3.4 Reliable Oneway calls using the SyncScope Policy
The CORBA Messaging specification defines a policy called SyncScope.
This policy permits clients to specify at what stage during a oneway message
invocation control is returned back to the client application code. The
specification defines four possible values that can be used for the SyncScope
policy.

• SYNC_NONE Using this policy value causes the client ORB to return
control to the client application before the request is passed to the
transport protocol. For this case the client is guaranteed not to block

110 o c i w e b . c o m

C O R B A M e s s a g i n g

during a request invocation. This policy value provides the lowest
guarantee of delivery.

• SYNC_WITH_TRANSPORT Setting the SyncScope policy to this
value causes control to return to the client application code after the
transport has accepted the request. Use of this policy value does not
guarantee that the request has been delivered to the server. For example, if
IIOP is being used, then limited TCP buffer space may cause unbounded
delays in transmission. SYNC_WITH_TRANSPORT is the default
SyncScope policy value in TAO.

• SYNC_WITH_SERVER When the SyncScope policy is set to this
value, the server sends its reply before invoking the target servant. This
setting is useful if the reliability of the network is of concern and the time
spent executing the servant code dominates the time involved in waiting
for a reply. The stage at which the server sends back an acknowledgement
is right after the use of any servant manager, but before the target servant
is invoked.

• SYNC_WITH_TARGET This policy value has the same effect as
turning a oneway call into a synchronous call by removing the oneway
qualifier in the operation signature. Control is returned to a client
application only after the reply has been received from the target servant.
Use this policy value if you need complete confidence that a reply has
been received from the server and only if it is appropriate for the client
application to block while the target servant is preparing a reply.

In addition, TAO defines a TAO-specific value for this policy:

• SYNC_DELAYED_BUFFERING This policy value is a variant of
SYNC_NONE. See 6.3.5, for discussion of the BufferingConstraint
policy and its interaction with this value.

Both the SYNC_NONE and SYNC_WITH_TRANSPORT policy values
are valid interpretations of the original oneway semantics defined by the
CORBA specification.

The following example shows how to set the SyncScope policy such that
oneway invocations do not return control to the client until the client has
received an acknowledgement from the server that the message has been
delivered to the servant. In this example, we apply the policy at the ORB level:

 // Initialize the ORB.

o c i w e b . c o m 111

6 . 3 Q u a l i t y o f S e r v i c e P o l i c i e s

 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Set the policy value.
 Messaging::SyncScope sync_with_target = Messaging::SYNC_WITH_TARGET;
 CORBA::Any sync_with_target_any;
 sync_with_target_any <<= sync_with_target;

 // Create the policy and add it to a CORBA::PolicyList.
 CORBA::PolicyList policy_list;
 policy_list.length(1);
 policy_list[0] =
 orb->create_policy (Messaging::SYNC_SCOPE_POLICY_TYPE, sync_with_target_any);

 // Apply the policy at the ORB level.
 CORBA::Object_var obj = orb->resolve_initial_references ("ORBPolicyManager");
 CORBA::PolicyManager_var policy_manager =
 CORBA::PolicyManager::_narrow(obj.in());
 policy_manager->set_policy_overrides (policy_list, CORBA::ADD_OVERRIDE);

 // Destroy the Policy objects.
 for (CORBA::ULong i = 0; i < policy_list.length(); ++i) {
 policy_list[i]->destroy ();
 }
 policy_list.length(0);

 // ... rest of application ...

112 o c i w e b . c o m

C O R B A M e s s a g i n g

Figure 6-2 shows the effects of the various settings of the SyncScope policy
on oneway invocations.

6.3.5 Buffered Oneway and Asynchronous Requests
TAO provides a BufferingConstraint policy to control the dispatching of
oneway and asynchronous requests from a client. This policy is not part of the
CORBA Messaging specification, but uses the same QoS policy framework as
the other policies described in this chapter. Using the
BufferingConstraint policy, it is possible to specify that oneway and
asynchronous requests should be buffered in the client’s ORB and dispatched
only when one or more of the following conditions, controllable via the policy
value, has been met:

• A specified timeout value has expired.

• A specified maximum message byte count has been reached.

• A specified maximum message count has been reached.

• An explicit buffer flush has been issued.

• The ORB has been shut down.

Figure 6-2 Effect of SyncScope Policy on Oneway Invocations

o c i w e b . c o m 113

6 . 3 Q u a l i t y o f S e r v i c e P o l i c i e s

By default, oneway and asynchronous requests are not buffered. To set the
BufferingConstraint policy, you create and initialize a structure of type
TAO::BufferingConstraint to describe how request buffering is to be
performed. When specifying this policy, applications are also required to set
the SyncScope policy, described in 6.3.4, to either
Messaging::SYNC_NONE or TAO::SYNC_DELAYED_BUFFERING. The only
difference between these two values is that when the buffer is empty, the
SYNC_DELAYED_BUFFERING value will attempt a send before queueing. The
SYNC_NONE value will always queue the message in the buffer.

The BufferingConstraintPolicy interface, BufferingConstraint
structure, and related constants are defined in $TAO_ROOT/tao/TAO.pidl as
follows:

#pragma prefix "tao"

module TAO {

 typedef unsigned short BufferingConstraintMode;
 const BufferingConstraintMode BUFFER_FLUSH = 0x00;

 // Note that timeout, message_count, and message_bytes can be or’d.
 const BufferingConstraintMode BUFFER_TIMEOUT = 0x01;
 const BufferingConstraintMode BUFFER_MESSAGE_COUNT = 0x02;
 const BufferingConstraintMode BUFFER_MESSAGE_BYTES = 0x04;

 struct BufferingConstraint
 {
 BufferingConstraintMode mode;
 TimeBase::TimeT timeout;
 unsigned long message_count;
 unsigned long message_bytes;
 };

 const CORBA::PolicyType BUFFERING_CONSTRAINT_POLICY_TYPE = 0x54410001;
 local interface BufferingConstraintPolicy : CORBA::Policy
 {
 readonly attribute BufferingConstraint buffering_constraint;
 };
};

To initialize the mode data member of the BufferingConstraint structure,
compute the bitwise OR of one or more TAO::BufferingConstraintMode
constants (e.g., TAO::BUFFER_TIMEOUT|TAO::BUFFER_MESSAGE_COUNT).

114 o c i w e b . c o m

C O R B A M e s s a g i n g

Depending upon the value of mode, one or more of the timeout,
message_count, or message_bytes data members should also be set.

The following example shows how to set the BufferingConstraint policy
such that oneway and asynchronous invocations are buffered in the client
ORB until a particular message count or total buffer size has been reached. In
this example, we apply the policy at the ORB level:

 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Set the SyncScope policy for oneways to SYNC_NONE.
 Messaging::SyncScope sync_none = Messaging::SYNC_NONE;
 CORBA::Any sync_none_any;
 sync_none_any <<= sync_none;

 // Set the BufferingConstraint policy to buffer up to 5 requests
 // or until a total of 4K bytes have been buffered.
 TAO::BufferingConstraint buffering_constraint;
 buffering_constraint.mode =
 TAO::BUFFER_MESSAGE_COUNT | TAO::BUFFER_MESSAGE_BYTES;
 buffering_constraint.message_count = 5;
 buffering_constraint.message_bytes = 4096;
 buffering_constraint.timeout = 0;
 CORBA::Any buffering_constraint_any;
 buffering_constraint_any <<= buffering_constraint;

 // Create the policies and add them to a CORBA::PolicyList.
 CORBA::PolicyList policy_list;
 policy_list.length(2);
 policy_list[0] =
 orb->create_policy (Messaging::SYNC_SCOPE_POLICY_TYPE, sync_none_any);
 policy_list[1] = orb->create_policy (TAO::BUFFERING_CONSTRAINT_POLICY_TYPE,
 buffering_constraint_any);

 // Apply the policies at the ORB level.
 CORBA::Object_var obj = orb->resolve_initial_references ("ORBPolicyManager");
 CORBA::PolicyManager_var policy_manager =
 CORBA::PolicyManager::_narrow(obj.in());
 policy_manager->set_policy_overrides (policy_list, CORBA::ADD_OVERRIDE);

You can see another example using the BufferingConstraint policy with
oneway requests in $TAO_ROOT/tests/Oneway_Buffering. You can see
an example of using the BufferingConstraint policy with asynchronous
(AMI) requests in $TAO_ROOT/tests/AMI_Buffering. See the README
file in each of those directories for more information.

o c i w e b . c o m 115

6 . 4 B i - D i r e c t i o n a l G I O P

Note The buffering constraint policy is specific to TAO. It is not part of the CORBA
Messaging specification.

6.3.5.1 Building Applications that use Messaging QoS
TAO’s support of Messaging QoS is implemented in the TAO_Messaging
library. Thus, applications that use these features must link with this library.
MPC projects for applications that use Messaging QoS can simply inherit
from the messaging base project. For example, below is the MPC file for the
Timeout test in $TAO_ROOT/tests/Timeout that uses the relative round-trip
timeout policy:

project(*Server): taoexe, portableserver {
 Source_Files {
 test_i.cpp
 server.cpp
 }
}

project(*Client): messaging, taoexe, portableserver {
 requires += corba_messaging

 Source_Files {
 testC.cpp
 client.cpp
 }
}

For more information on MPC, see Chapter 4.

6.4 Bi-Directional GIOP

Bi-directional GIOP provides a solution to the problem of invoking callback
operations on clients behind a firewall. Imagine you have a client application
that resides on hosts that are inside firewalls. That client contacts a server
outside of the firewall and provides a callback object for the server. When the
server invokes upon the client callback object, the server attempts to open a
new connection back to the client application. Unless the firewall at every
installation of the client is configured to allow access by the server, the
callback invocation fails. Configuring the firewall to allow the server to open

116 o c i w e b . c o m

C O R B A M e s s a g i n g

a callback connection may impose a significant installation cost and/or violate
site security policies.

Bi-directional GIOP solves this problem by allowing the callback invocation
to use the connection that already exists between the client and the server,
which is the connection that was used to transmit the client’s initial request to
the server. The server’s callback invocation doesn’t need to open a new
connection to the client; thus, a firewall does not block the callback.

Connection management restrictions imposed in GIOP versions 1.0 and 1.1
state that only clients can send requests, and only servers can respond to
requests. (By definition, an application or process that initiates a connection is
a client, and an application or process that accepts connections is a server.
Connection management, however, is orthogonal to the sending of requests
and replies.) This restriction can be overcome in GIOP v1.2 by specifying a
bi-directional policy of BOTH. This policy allows the server to invoke the
client’s callback operations, and the client to respond to these invocations, on
the same connection that the client established initially. The client and server
use only one connection instead of two.

The code in $TAO_ROOT/DevGuideExamples/BiDirectionalGIOP
provides an example of a bi-directional connection between a client and
server. The client creates a callback object and passes its object reference to
the server so that the server may invoke an operation on the callback object.
Bi-directional GIOP allows the server to invoke a callback operation on the
client without creating another connection to the client. There is also a test
case in $TAO_ROOT/tests/BiDirectional that behaves in a similar
fashion.

To create a bi-directional connection, both the client and server must specify a
BidirectionalPolicyValue of BOTH when creating their POAs. The default
policy is NORMAL.

6.4.1 Bi-Directional GIOP Example
The following example shows how to set the bi-directional GIOP policy on a
new POA:

 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Get the RootPOA and its POAManager.
 CORBA::Object_var poa_obj = orb->resolve_initial_references ("RootPOA");

o c i w e b . c o m 117

6 . 4 B i - D i r e c t i o n a l G I O P

 PortableServer::POA_var root_poa = PortableServer::POA::_narrow (poa_obj.in());
 PortableServer::POAManager_var poa_manager = root_poa->the_POAManager ();

 // Create policies for the child POA to be created.
 CORBA::PolicyList policy_list;
 policy_list.length(1);

 CORBA::Any bi_dir_policy_as_any;
 bi_dir_policy_as_any <<= BiDirPolicy::BOTH;
 policy_list[0] =
 orb->create_policy (BiDirPolicy::BIDIRECTIONAL_POLICY_TYPE,
 bi_dir_policy_as_any);

 // Create a POA as a child of RootPOA with the above policies. This POA
 // will receive requests on the same connection on which it sent the request.
 PortableServer::POA_var child_poa =
 root_poa->create_POA ("biDirPOA", poa_manager.in(), policy_list);

 // Destroy the Policy objects.
 for (CORBA::ULong i = 0; i < policy_list.length(); ++i) {
 policy_list[i]->destroy ();
 }
 policy_list.length(0);

 // Activate both POAs.
 poa_manager->activate ();

 // ... rest of application ...

6.4.2 Building Applications that use Bi-Directional GIOP
TAO’s support of bi-directional GIOP is implemented in the TAO_BiDirGIOP
library. Thus, applications that use bi-directional GIOP features must link with
this library. MPC projects for applications that use bi-directional GIOP can
simply inherit from the bidir_giop base project. For example, below is the
MPC file for the bi-directional GIOP test in
$TAO_ROOT/tests/BiDirectional:

project(*idl): taoidldefaults {
 IDL_Files {
 test.idl
 }
 custom_only = 1;
}

project(*Server): taoserver, anytypecode, avoids_minimum_corba, bidir_giop,
avoids_corba_e_micro {

118 o c i w e b . c o m

C O R B A M e s s a g i n g

 after += *idl
 Source_Files {
 testC.cpp
 testS.cpp
 test_i.cpp
 server.cpp
 }
 IDL_Files {
 }
}

project(*Client): taoserver, anytypecode, avoids_minimum_corba, bidir_giop,
avoids_corba_e_micro {
 exename = client
 after += *idl
 Source_Files {
 testC.cpp
 testS.cpp
 test_i.cpp
 client.cpp
 }
 IDL_Files {
 }
}

The avoids_minimum_corba base project, from which the above projects
inherit, indicates that these projects will not build if minimum_corba=1.

For more information on MPC, see
<http://www.ociweb.com/products/MPC>.

Note The current implementation of TAO sets the BiDirPolicy at the ORB level
rather than in each POA. Thus, every connection in that ORB will have the
BiDirPolicy::BOTH value.

Note Warning: There are security issues involved in using Bi-Directional GIOP.
See the last paragraph of section 9.8, “Bi-Directional GIOP”, in Part 2 of the
CORBA specification (OMG Document formal/08-01-06) for a complete
description. See section 15.8.1.1, “IIOP/SSL Considerations,” for issues
related to using Bi-Directional GIOP over IIOP/SSL.

o c i w e b . c o m 119

6 . 5 E n d p o i n t P o l i c y

6.5 Endpoint Policy

The Endpoint Policy is a TAO-specific policy that enables applications
running on multi-homed hosts to limit the endpoints specified for some
objects. This allows an ORB to listen to both public and private interfaces, and
then publish object references that are only public or private. For instance, a
process may provide public access to some business logic object, but private
access, perhaps only on localhost, to an administrative object.

The Endpoint policy makes use of a new policy scope, being applied to a
POA_Manager rather than to an Object, POA, or ORB. The policy will affect
all POAs associated with the constrained POA_Manager.

The Endpoint Policy is located in the TAO_EndpointPolicy library. The
source code is located in $TAO_ROOT/tao/EndpointPolicy. MPC-based
applications that use this policy should derive their server projects from the
endpointpolicy base project.

6.5.1 Using the Endpoint Policy
The Endpoint Policy object is constructed with a sequence of endpoint objects
that identify the different endpoints that should be used. The policy is used to
create a POA Manager via the POA Manager Factory. When POAs are
created with that POA manager, any objects activated within those POAs
restrict their object references to the endpoints that match those found in the
corresponding Endpoint Policy object.

The following server example code is adapted from the TAO test in
$TAO_ROOT/tests/POA/EndpointPolicy. First, we need to include the
header files for the Endpoint Policy and the IIOP Endpoint Value:

#include "tao/EndpointPolicy/EndpointPolicy.h"
#include "tao/EndpointPolicy/IIOPEndpointValue_i.h"

After initializing the ORB, we’ll initialize an Endpoint List with an IIOP
endpoint value containing a host name of “localhost” and a port of 1234:

 EndpointPolicy::EndpointList list;
 list.length (1);
 list[0] = new IIOPEndpointValue_i (“localhost”, 1234);

120 o c i w e b . c o m

C O R B A M e s s a g i n g

Once we have finished populating the Endpoint List, we can use it to create a
an Endpoint Policy:

 CORBA::PolicyList policies;
 policies.length (1);

 CORBA::Any policy_value;
 policy_value <<= list;
 policies[0] = orb->create_policy (EndpointPolicy::ENDPOINT_POLICY_TYPE,
 policy_value);

Now we are ready to create a new POA Manager. In order to create a POA
Manager with new policies, we’ll need to get the POA Manager Factory from
an existing POA (such as the Root POA).

 PortableServer::POAManagerFactory_var poa_manager_factory;
 poa_manager_factory = root_poa->the_POAManagerFactory ();

 local_pm = poa_manager_factory->create_POAManager ("localPOAManager",
 policies);

When creating new POAs that we want to apply this policy to, we need to pass
out POA Manager to the create_POA() operation.

 PortableServer::POA_var local_poa = root_poa->create_POA ("localPOA",
 local_pm.in (),
 poa_policies);

We start the server with two endpoints, one on the external network and one
with localhost:

server -ORBListenEndpoints iiop://localhost:1234 \
 -ORBListenEndpoints iiop://zippy:9999

Any CORBA objects activated with the Root POA includes both of these
endpoints in their object references. Any CORBA objects activated with our
local POA only includes the localhost endpoint and are only able to be used by
clients located on the same host.

Endpoints are matched in their final form. This means that if an IIOP Endpoint
makes use of the hostname_in_ior attribute, that is the name the policy
must match.

o c i w e b . c o m 121

6 . 6 S p e c i f y i n g D i f f e r e n t i a t e d S e r v i c e s w i t h T A O

6.5.2 Limitations
Currently, only IIOP endpoints are supported. This means that only IIOP
endpoints can be added to the policy and selected for use. Any non-IIOP
endpoints are not matched and are never selected when the Endpoint Policy is
used.

6.6 Specifying Differentiated Services with TAO

Some environments provide support for differentiated classes of network
service, and allow applications to specify their network quality of service
needs. A common mechanism for providing differentiated classes of service
on IP networks is the Differentiated Services (diffserv) architecture defined by
the Internet Engineering Task Force (IETF) Diffserv Working Group. In the
diffserv architecture, applications encode a particular six-bit pattern into a
field, called the DS field, of the IP packet header, thereby marking a packet to
receive a particular forwarding treatment, or per-hop behavior (PHB), at each
network node. The Diffserv Working Group has standardized a small number
of specific per-hop behaviors and a recommended bit pattern, or codepoint, for
each one. These PHBs and their recommended codepoints are defined in
various IETF Requests for Comments (RFCs). For more information on
Differentiated Services and Diffserv Codepoints (DSCPs), see RFC 2474,
RFC 2475, RFC 2597, RFC 2598, and RFC 3246, all of which are available
from the IETF at <http://www.ietf.org/rfc/>.

TAO allows applications to control the setting of DSCPs on requests and
replies via client and server policies. Servers can apply the Network Priority
Policy and clients can apply the Client Network Priority Policy. Either policy
is used to set DSCP values for requests and replies. The network priority
model is used to determine which DSCP to apply to a particular request or
reply.

Support for the Network Priority Policies is located in the
TAO_DiffServPolicy library. The source code is located in
$TAO_ROOT/tao/DiffservPolicy. MPC-based applications that use this
policy should derive their server projects from the diffservpolicy base
project.

122 o c i w e b . c o m

C O R B A M e s s a g i n g

Note TAO can also set DSCPs as part of its Real-Time CORBA support. See 8.5.2
for details.

6.6.1 Using the Network Priority Policies
Both the Client Network Priority and Network Priority Policies use the
NetworkPriorityPolicy policy type that is defined in
$TAO_ROOT/tao/DiffServPolicy/DiffServPolicy.pidl:

module TAO
{
 typedef long DiffservCodepoint;

 enum NetworkPriorityModel
 {
 CLIENT_PROPAGATED_NETWORK_PRIORITY,
 SERVER_DECLARED_NETWORK_PRIORITY,
 NO_NETWORK_PRIORITY
 };

 const CORBA::PolicyType CLIENT_NETWORK_PRIORITY_TYPE = 0x54410003;
 const CORBA::PolicyType NETWORK_PRIORITY_TYPE = 0x54410004;

 local interface NetworkPriorityPolicy : CORBA::Policy
 {
 attribute NetworkPriorityModel network_priority_model;
 attribute DiffservCodepoint request_diffserv_codepoint;
 attribute DiffservCodepoint reply_diffserv_codepoint;
 };
};

Here is some sample client code for specifying the Client Network Priority
Policy on the ORB:

 CORBA::Policy_var client_network_policy =
 orb->_create_policy (TAO::CLIENT_NETWORK_PRIORITY_TYPE);

 TAO::NetworkPriorityPolicy_var nw_priority =
 TAO::NetworkPriorityPolicy::_narrow (client_network_policy.in ());

 nw_priority->request_diffserv_codepoint (20); // AF22
 nw_priority->reply_diffserv_codepoint (22); // AF23
 nw_priority->network_priority_model (
 TAO::CLIENT_PROPAGATED_NETWORK_PRIORITY);

 CORBA::PolicyList policy_list;

o c i w e b . c o m 123

6 . 6 S p e c i f y i n g D i f f e r e n t i a t e d S e r v i c e s w i t h T A O

 policy_list.length (1);
 policy_list[0] = nw_priority;

 policy_manager->set_policy_overrides (policy_list, CORBA::SET_OVERRIDE);

 policy_list[0]->destroy ();

This sets the Client Network Priority Policy with the client-propagated model,
meaning we want the request and reply to be taken from this policy object.
The request DSCP is set to 20 and the reply DSCP is set to 22.

In order for this example to function properly, we should also set the server
policy in the POA to a compatible value:

 CORBA::Policy_var npp =
 orb->_create_policy (TAO::NETWORK_PRIORITY_TYPE);

 TAO::NetworkPriorityPolicy_var nw_priority =
 TAO::NetworkPriorityPolicy::_narrow (npp.in ());

 nw_priority->request_diffserv_codepoint (24); // CS3
 nw_priority->reply_diffserv_codepoint (16); // CS2
 nw_priority->network_priority_model(
 TAO::CLIENT_PROPAGATED_NETWORK_PRIORITY);

 CORBA::PolicyList policy_list;
 policy_list.length (1);
 policy_list[0] = nw_priority;

 PortableServer::POA_var child_poa =
 root_poa->create_POA ("Child_POA",
 poa_manager.in (),
 policy_list);

 policy_list[0]->destroy ();

These settings ensure that the client-specified request and reply DSCPs are
used.

124 o c i w e b . c o m

C O R B A M e s s a g i n g

o c i w e b . c o m 125

CHAPTER 7

Asynchronous Method Handling

7.1 Introduction

Processing CORBA requests may require a long duration of activity resulting
in the blocking of subsequent requests. This can reduce the server’s
responsiveness as threads that might otherwise be used to service incoming
requests must block while waiting for a response. Concurrency strategies such
as thread-per-connection and thread-pool can be used in such cases to increase
the system responsiveness, but these approaches may not scale well as the
number of threads increase due to increased number of client connections or
client requests. Asynchronous Method Handling (AMH) is a TAO specific
feature that addresses this situation without requiring you to implement
complicated concurrency strategies.

Note Although AMH is TAO specific, it has been submitted to the Object
Management Group for possible inclusion into the CORBA specification.

AMH provides server implementers the means to have a request for an
operation be handled by one thread, while having the response to that request

126 o c i w e b . c o m

A s y n c h r o n o u s M e t h o d H a n d l i n g

delivered by another thread. For example, a server that needs to invoke a
remote operation in the course of handling a request can combine the use of
AMH with Asynchronous Method Invocation (AMI), discussed in 6.2, to have
an AMI callback handler complete the processing of the original invocation,
and return the result to the caller. In this way, AMH greatly reduces the risk of
a runaway stack that may arise from the use of concurrency and wait strategies
such as the Leader-Follower strategy.

Clients of AMH based services are unaware of this responsibility hand-off.
However, using AMH does impose some limitations:

• All requests must be passed as GIOP messages. No direct or through-POA
collocation is possible with AMH. The use of AMH in an application must
be anticipated at design time.

• AMH may be considered to violate certain aspects of the contract between
servants, POAs, servant managers, and other server objects. This
violation arises from the possibility that a thread calling a servant during
an invocation may return control back to the POA before the actual
operation is complete without throwing an exception.

Note Code using AMH can be found in TAO itself. In particular, TAO’s
Implementation Repository uses AMH to improve its performance when there
are numerous clients trying to connect to it.

7.1.1 When AMH is Useful
Situations where AMH can be useful include:

• You have numerous client connections or client requests to a service that
depends on systems or other services that may cause the serving thread to
block. Scenarios that cause such blockage include media I/O, database
access, reliance on long-running services, or computation intensive
activities such as numerical analysis. A scenario where AMH is
particularly useful is when it is used in conjunction with AMI for the
middle-tier server in a three-tier architecture where the middle-tier server
offloads requests to servers that can be time consuming to fulfill. For this
scenario, neither the client nor the target server processing the request are
aware of the AMH/AMI usage by the middle-tier server. Details on using
AMH in combination with AMI can be found in 7.6.

o c i w e b . c o m 127

7 . 1 I n t r o d u c t i o n

• A very large number of clients are concurrently connected to your server.
Empirical data from Design and Performance of Asynchronous Method
Handling for CORBA shows that when the number of concurrent clients
connected to a server gets large enough, when using standard concurrency
strategies, the request throughput becomes unacceptably low. In this case,
AMH becomes the only practical solution available.

• You wish to simplify concurrency support in your server code. Using
AMH, it is possible to avoid multithreaded programming, which can be
difficult to write and maintain.

• It is important that requests be processed in the order in which they are
received. The special skeleton code generated for using AMH ensures that
client requests are processed in the order received.

7.1.2 When AMH is not Useful
Some situations where AMH may not be applicable include the following:

• There will rarely be more than a medium load of concurrent clients.
Additional empirical data provided in Design and Performance of
Asynchronous Method Handling for CORBA shows that AMH is slightly
less efficient than other concurrency models. However, you should weigh
this slight reduction in efficiency to the possibly simpler server code that
can be written when using AMH to support concurrent requests.

• You are using certain advanced CORBA features. Some advanced
CORBA features assume that the thread that starts an invocation is the
same one that finishes it. However, AMH breaks this assumption. Further
discussion about using advanced CORBA features along with AMH can
be found in 7.5.

• Your application can throw a number of exceptions. You must be careful
when using AMH in an application that raises exceptions. AMH response
handlers, the code responsible for sending a reply back to the client, are
typically not invoked by a POA or a skeleton. Therefore, care must be
taken to catch all exceptions in order to communicate them to the client.
There is no framework that will assist in automating this task.

128 o c i w e b . c o m

A s y n c h r o n o u s M e t h o d H a n d l i n g

7.2 Participants in an AMH Servant

Server applications using AMH rely on the interaction of the following
classes:

• A special skeleton class generated by the IDL compiler for supporting
AMH.

• A Response Handler class also generated by the IDL compiler that takes
the reply information and passes it to the client. An instance of this class is
generated by the AMH skeleton.

• The AMH servant code you write.

AMH servants are derived from the AMH skeletons. The implementation
methods of these skeletons differ from the ordinary server-side IDL to C++
mapping. Only in and inout style arguments are passed to implementation
methods, and the method has a void return, regardless of the return type of the
IDL operation. The response handler’s interface deals with the outputs for
each operation.

The response handler is a local CORBA object. Its role is to gather any output
(out and inout arguments, and return values) from an IDL operation and
prepare a GIOP reply message for the client. A given response handler is only
valid during a single operation. Once the reply is sent, references to the
response handler should be discarded. For each IDL operation, the response
handler has two methods, one for ordinary returns, and another for returning
exceptions.

7.2.1 Simple Example
Consider the following IDL:

interface EchoTest
{

string echo (in string message);
};

The following code fragments illustrate the participants in an AMH servant.

AMH Skeleton
class AMH_EchoTestResponseHandler_ptr;
class POA_AMH_EchoTest

o c i w e b . c o m 129

7 . 2 P a r t i c i p a n t s i n a n A M H S e r v a n t

{
public:
 virtual void echo (AMH_EchoTestResponseHandler_ptr rh,
 const char * message) = 0;
};

Response Handler
class AMH_EchoTestResponseHandler : public virtual CORBA::Object
{
public:

virtual void echo (const char *return_value)
};

Servant
class AMH_EchoTest_i : public virtual POA_AMH_EchoTest
{
public:
 virtual void echo (EchoTestResponseHandler_ptr rh,
 const char * message);
}

The following diagram illustrates how these participants interact to handle an
invocation.

Figure 7-1AMH Servant and Response Handler

130 o c i w e b . c o m

A s y n c h r o n o u s M e t h o d H a n d l i n g

As shown in Figure 7-1, the ORB infrastructure processes the incoming
request from the client and invokes the servant. The reply to the request is not
sent until the application calls the appropriate response handler method. This
can happen from the servant code, or the application may retain a reference to
the response handler and send the reply at a later time.

7.3 Generating AMH Related Code

The TAO IDL compiler takes a single command line option, -GH, which
triggers the generation of the AMH skeleton and response handler classes. The
IDL compiler and its options are discussed at length in Chapter 4.

For each interface in the IDL file, the compiler generates an AMH skeleton
and a response handler. The name for the AMH skeleton is similar to that of
the ordinary skeleton, except that AMH_ is prepended to the interface name.
Recall that CORBA compliant skeletons are named by prepending POA_ to the
fully qualified interface name, including any modules. In general the form is
POA_[<modules>::]AMH_<interface>

For an interface declared as:

module DevGuide
{
 interface Messenger
 {
 ...
 };
};

The IDL compiler will generate POA_DevGuide::Messenger and
POA_DevGuide::AMH_Messenger. If the interface were declared outside of
any module, the generated names would be POA_Messenger and
POA_AMH_Messenger.

The response handler generated by the IDL compiler for each interface is
given a name derived from the interface name in this way:
[<module>::]AMH_<interface>ResponseHandler. For example, the
response handler for the interface above is
DevGuide::AMH_MessengerResponseHandler.

Response handlers are reference counted local CORBA objects. As such, the
response handler has a stub class, a var, ptr, and an out type related to it.

o c i w e b . c o m 131

7 . 4 A n A M H E x a m p l e P r o g r a m

These are all necessary to allow a response handler instance to be created
during the receipt of an invocation, then held until the invocation is complete.
Response handler references are kept by the skeleton infrastructure until a
reply or exception operation is invoked. It is the servant’s responsibility to
either use the response handler or store its reference for future use. It is
essential that either a reply or exception reply method be invoked before
losing the reference to the response handler. Failure to do so will cause the
client to hang.

7.4 An AMH Example Program

Now let us take a look at the Messenger example, extended to use an AMH
based servant. The full source code for this example can be found at
$TAO_ROOT/DevGuideExamples/AMH.

The IDL is nearly identical to that used in other code examples, except that
here the Messenger interface is enclosed in a module so that the application of
the naming convention can be seen.

module DevGuide
{
 interface Messenger
 {
 boolean send_message(in string user_name,
 in string subject,
 inout string message);
 };
};

The send_message() operation has data that flows in and out through its
parameters, as well as returning a value. Also, even though no user exceptions
are raised by the operation, it is still liable to raise system exceptions.

7.4.1 The Generated Stub Classes
When the IDL is compiled, a stub is created for the Messenger interface that is
identical to the stub used for the non-AMH case. The same stub is used as a
proxy for objects served by synchronous servants as well as asynchronous
ones.

132 o c i w e b . c o m

A s y n c h r o n o u s M e t h o d H a n d l i n g

A stub for the response handler is also created. This stub is defined in the
MessengerC.h and MessengerC.cpp files. Although they are of no interest
to the clients, AMH-based servers will use these stubs. For the Messenger
interface shown above, the response handler stub appears as follows:

namespace DevGuide
{

class AMH_MessengerResponseHandler : public virtual CORBA::Object
{

virtual void send_message (
 ::CORBA::Boolean return_value,
 const char * message
) = 0;

 virtual void send_message_excep (
 ::DevGuide::AMH_MessengerExceptionHolder * holder
) = 0;

};
};

For each operation in the interface, two corresponding response handler
member functions are created. The first, which has the same name as the
operation, takes arguments for the operation’s return value, and any out (or
inout) arguments. The second method generated for responding to an
operation is used for sending exceptions back to the client. The name of this
method is generated by appending _excep to the operation name. The
exception reply method takes a single argument, a reference to an exception
holder. The exception holder is a valuetype object that is capable of raising
whatever exception it contains.

Note The use of an exception holder valuetype and inclusion of AMH stubs make
the generated client-side files dependent on the valuetype library. Any
application linked to these generated files must also be linked to the valuetype
library. A way to minimize the impact of this dependency is to generate two
sets of stub definitions: one with AMH for use in server development, and one
without for use on the client side.

The exception holder is a specialized value type object that is unique to a
particular interface. The exception holder has a method for each operation that
is responsible for raising whatever exception needs to be propagated back to

o c i w e b . c o m 133

7 . 4 A n A M H E x a m p l e P r o g r a m

the client. An example showing the use of the exception holder is shown in
7.6.1.

7.4.2 The AMH Servant
The TAO IDL compiler, when given the -GH option, generates an ordinary
skeleton as well as an AMH skeleton for every interface. Using the example
IDL shown above, the ordinary skeleton and AMH skeleton are as follows.

namespace POA_DevGuide
{

class Messenger : public virtual PortableServer::ServantBase
{
public:

virtual CORBA::Boolean send_message (
 const char * user_name,
 const char * subject,
 char *& message
) = 0;

};

class AMH_Messenger : public virtual PortableServer::ServantBase
{
public:

virtual void send_message (
 DevGuide::AMH_MessengerResponseHandler_ptr _tao_rh,
 const char * user_name,
 const char * subject,
 const char * message
) = 0;

};
};

Note that the AMH skeleton’s definition of the send_message() method
differs from that of the ordinary skeleton in two ways:

1. The leading argument is a reference to the response handler for this
particular invocation. This response handler must be invoked by the
servant for any operation to send a GIOP reply message to the client.

2. The remaining send_message() parameters map to the operation’s in
and inout arguments. The return from send_message() is void, even
though the IDL operation returns a string. The return value is passed to the
appropriate method on the response handler, as are any out and out-bound
inout values, if any are defined.

134 o c i w e b . c o m

A s y n c h r o n o u s M e t h o d H a n d l i n g

Now lets take a look at a very simple implementation for the AMH version of
send_message(). In this case, we are not really taking advantage of the
benefit of AMH because we are directly invoking the response handler
immediately from the servant.

void
AMH_Messenger_i::send_message (
 DevGuide::AMH_MessengerResponseHandler_ptr _tao_rh,
 const char * user_name,
 const char * subject,
 const char * message
)
{
 std::cout << "Message from: " << user_name << std::endl;
 std::cout << "Subject: " << subject << std::endl;
 std::cout << "Message: " << message << std::endl;
 CORBA::String_var inout_message_arg =
 CORBA::string_dup("Thanks for the message.");
 CORBA::Boolean result = true;

 _tao_rh->send_message(result,inout_message_arg.inout());
}

The parameters passed to the response handler’s send_message() method
are supplied using in parameter semantics. This means that the caller is still
responsible for releasing memory that was used by any intermediate values
that may be returned. So, for example, the response handler must duplicate the
in parameters it receives.

This behavior exists due to an inversion of control that results from the
asynchronous request processing. In an ordinary request/reply invocation, the
servant has control only when the thread is in the implementation method,
thus control goes away when the method returns. Another way to look at this
is that the lifespan of the invocation is only as long as the duration of the
invocation method. This means that it is the responsibility of the caller of the
method (the generated skeleton class) to clean up any allocated resources
being passed back to the client.

By contrast, when using AMH it is possible for the lifespan of the invocation
to exceed the duration of the invocation method. The example shown above
happened to use the response handler right away, but it is perfectly valid to
store a reference to the response handler, then invoke the appropriate method
on it at a later time. For instance, the example code shown above alternatively
could have spawned a thread to handle the response.

o c i w e b . c o m 135

7 . 4 A n A M H E x a m p l e P r o g r a m

#include <ace/Thread.h>
void
AMH_Messenger_i::send_message (
 DevGuide::AMH_MessengerResponseHandler_ptr _tao_rh,
 const char * user_name,
 const char * subject,
 const char * message
)
{
 std::cout << "Message from: " << user_name << std::endl;
 std::cout << "Subject: " << subject << std::endl;
 std::cout << "Message: " << message << std::endl;
 DevGuide::AMH_MessengerResponseHandler_ptr dup_rh =
 DevGuide::AMH_MessengerResponseHandler::_duplicate (_tao_rh)
 ACE_Thread::spawn (send_message_reply, dup_rh);
};

The response handler reference must be managed, and sending the response
does not end the method. The response handler is a reference counted local
CORBA object. An instance of the response handler is created in the skeleton
just prior to calling the implementation method, and the skeleton releases its
reference to the response handler when the implementation method returns.
This is why, in the implementation of send_message() above, the servant
duplicates the reference to the response handler before returning.

void send_message_reply (void * arg)
{
 DevGuide::AMH_MessengerResponseHandler_ptr rh =
 (DevGuide::AMH_MessengerResponseHandler_ptr)arg

 CORBA::String_var inout_message_arg =
 CORBA::string_dup("Thanks for the message.");
 CORBA::Boolean result = true;

 ACE_OS::sleep (5);

 rh->send_message(result,inout_message_arg.in());
 CORBA::release (rh);
}

In this case, the response handler is passed to a thread function that waits a
few seconds before proceeding to send the reply. Here, the invocation spans
the life of both the implementing method called by the skeleton, as well as the
second thread function. The first method returns to the caller immediately
after spawning the thread, but the client does not receive a reply until after the

136 o c i w e b . c o m

A s y n c h r o n o u s M e t h o d H a n d l i n g

thread function completes. The thread function must release a reference to the
response handler to offset the reference duplication done in
AMH_Messenger_i::send_message().

Invoking the response handler CORBA object results in the sending a
response back to the original client without having any effect on any of the
values passed to it. Therefore, any allocation of storage, such as the string
shown above, is still available for reuse (or leaking if not managed properly).

7.4.3 AMH and Oneway Invocations
Operations that have no out or inout arguments and a void return type will still
have a response handler that must be called. This is also true for oneway
operations. Oneways may be invoked by a client that has set the
SYNC_WITH_TARGET synchronization scope policy, which requires the server
to send a GIOP response when the operation completes. See 6.3.4 for more
details on this policy.

7.4.4 Throwing Exceptions
Exceptions are sent back to clients using a special form of the GIOP reply
message. The message header contains a flag indicating that the reply contains
an exception and the message data contains the marshaled exception. Because
of the inversion of control mentioned above, we cannot simply throw an
exception and expect it to be propagated back to the original client.
Exceptions are thrown by the use of specialized methods on the response
handler. Along with each method for returning values (even if void) from an
interface’s attributes and operations, the response handler also has a method
for each of these to raise exceptions. These methods are named by appending
_excep to the name of the operation to which it is related. Thus, the
DevGuide::AMH_MessengerResponseHandler::send_message()
method shown above is accompanied by send_message_excep() for
raising exceptions.

There is a distinct exception method for each operation. The data supplied to
the method is a reference to a value type object that contains the exception to
be thrown. This exception holder object is similar to the exception holder
defined by the CORBA Messaging specification for AMI. The difference
being that in AMI, the framework calls the _excep method you implement in
your callback handler, whereas with AMH, you call the _excep method
supplied to you by the framework.

o c i w e b . c o m 137

7 . 4 A n A M H E x a m p l e P r o g r a m

The following example code shows how to throw an exception via the
response handler. To make this example a little clearer, a new interface is
defined with an operation that raises a user exception.

module DevGuide
{
 exception demo {};
 interface Asynch_Except_Demo
 {
 boolean trigger () raises (demo);
 };
};

This could be implemented by an AMH servant method such as this one:

void
Excep_Example_i::trigger (DevGuide::AMH_Asynch_Except_DemoResponseHandler_ptr
_tao_rh)
{
 DevGuide::demo *d = new DevGuide::demo;
 DevGuide::AMH_Asynch_Except_DemoExceptionHolder ex_holder(d);
 _tao_rh->trigger_excep (&ex_holder);
 std::cout << "Done sending exception." << std::endl;
}

You will see there is something peculiar about this code example. The
exception instance, d, is a pointer to an exception allocated on the heap. This
code does not free the exception object after invoking the exception sender.
This is because the exception is given to the exception holder, which takes
ownership of the exception.

The AMH exception holder is initialized by supplying a pointer to an
exception instance allocated on the heap. This requirement is a consequence
of the mechanism used to propagate the exception back to the caller. This is
done by the response handler invoking the operation-specific raise method of
the exception holder, which in turn guards the pointer to the exception with an
auto-pointer, then calls a method on the exception that causes it to throw itself.
Afterward, the auto-pointer releases the holder’s reference to the exception,
causing it to be deleted.

Remember that invoking the appropriate response method was semantically
identical to making an invocation with in parameters. The exception methods
violate this notion because these methods require the exception to be allocated
on the heap, and consume it as a side effect of sending the exception.

138 o c i w e b . c o m

A s y n c h r o n o u s M e t h o d H a n d l i n g

This behavior results from the mechanism used to actually form and transmit
the GIOP message containing the exception. This code relies on the exception
holder to throw the exception, then uses existing skeleton helper methods to
generate the GIOP method. By throwing the exception, the exception holder
extracts the exception instance from the exception holder, assigns it to an auto
pointer, then throws the exception.

7.4.5 AMH And The Server Main
A process hosting objects served by asynchronous servants is only different
from one hosting synchronous objects in that it has a choice as to which type
of servant it wishes to attach to an activated object. The server must still
initialize an ORB, obtain a POA, and use that POA to associate the servant
(asynchronous or synchronous) with an object.

7.4.6 AMH and the Client
As with the main function of the server, clients are unaware of the synchrony
of the servant behind any objects it uses. Currently, TAO imposes a side-effect
on clients of AMH enabled services. The AMH response handler and
exception holder classes are defined in the generated stub header file. The
exception holder is a value type, as is the exception holder in an AMI callback
object. This creates a dependency between the client application and the TAO
value type library.

A second side-effect is manifest in MPC files related to applications that
directly build the IDL for an AMH based server. As is the case with the AMH
example code provided in $TAO_ROOT/DevGuideExamples/AMH, the client
subproject must be dependant on the AMH base project, amh.mpb. This
ensures that if this project is used to compile the IDL, the proper AMH
elements will be generated. For example, the definition for an MPC project
that inherits from the AMH base project could look like:

project(*Client): ..., amh
{

 ...
}

o c i w e b . c o m 139

7 . 5 A M H a n d A d v a n c e d C O R B A F e a t u r e s

7.5 AMH and Advanced CORBA Features

CORBA servers frequently have many details to manage in addition to
running implementation code. Examples include:

• An application may make use of servant managers to control the
deployment of servant instances.

• Applications may make use of certain CORBA Current objects to gain
access to information that is specific to a particular invocation context.

• Applications may be written in such a way that a servant is collocated
with a client, and may wish to use strategies such as direct collocation for
performance optimization.

Many of these advanced features of CORBA assume that the thread that starts
an invocation is the same thread that finishes it. AMH makes it possible to
invalidate this assumption. Therefore, care must be taken to ensure that any
invocation-specific context data is separately managed so that any subsequent
thread that participates in an invocation is able to access this information. The
following subsections outline some of the obvious situations where such
context dependent information may be needed, although it is not a complete
list.

7.5.1 Portable Interceptors
Portable Interceptors are specialized client or server objects that are used to
process inbound or outbound messages, very close to the transport layer.
Interceptors are used to initialize the context within any CORBA Current
objects used by the server, and they may be used to process service contexts,
which contain meta-information attached to a message. For example, this
meta-information might include security information such as authorization
tokens or credentials, or may include transaction tracking information.

When using any service that relies on interceptors, you should be very careful
when AMH is also used. For example, TAO’s RT Scheduling Service assumes
that all responses will be sent by the same thread as that on which the original
request was received.

If you are implementing your own interceptor to manage meta-information,
such as request auditing or other activities, and you use AMH, be sure to write

140 o c i w e b . c o m

A s y n c h r o n o u s M e t h o d H a n d l i n g

your interceptor in such a way as to avoid relying on any information that is
specific to the thread receiving a request or sending a reply.

7.5.2 Servant Locators
Servant managers work with the POA to supply servant instances on demand.
As discussed in Advanced CORBA Programming with C++, 11.7.3, there are
two kinds of servant managers: activators and locators. Activators provide a
servant to the POA that is retained in the POA’s active object map, and
remains associated with a given object until that object is deactivated or the
POA itself shuts down. Locators are servant managers that provide servants
only for the duration of a single invocation. Because of the limited lifespan of
servants when using locators, care must be taken using AMH when servants
are managed using locators.

Whether the servant is held by the POA for the duration of a single invocation
or many, it is handed back to the servant manager for clean up. With AMH,
this may occur before the response handler has sent a reply message. If you
are using AMH and a servant locator then you must ensure that any reference
to the original servant is not used, as the servant locator may have destroyed
the servant. Similarly, you may have implemented the servant locator to
manage a pool of servant objects. While the servant instance may still be
valid, you must be aware that any state information that you update while
handling an invocation may be modified if the invocation is handed off to
another thread for completion.

7.5.3 Invocation Related CORBA::Current Objects
CORBA Current objects are locality constrained interfaces, derived from the
empty CORBA::Current interface, that give application code access to
information that is specific to the current thread of control. This access is
provided through an object reference supplied by the ORB. Some current
objects, such as PortableServer::Current and
PortableInterceptor::Current, are specific to the current invocation.
Because this invocation information is thread-specific, it is not sufficient to
hand a current object to whatever thread will complete an AMH invocation.
The initial servant thread must extract any information from the current and
hand that data separately to the invocation completing thread. If a completion
handler needs invocation-specific information from the current, such as the
object ID from a PortableServer::Current, the information must be

o c i w e b . c o m 141

7 . 5 A M H a n d A d v a n c e d C O R B A F e a t u r e s

accessed in the original servant method and handed off to the completing
thread along with the response handler.

Since current objects are context aware, the completing thread cannot simply
use a reference to the invocation related current. Any invocation on the current
by that thread would result in a NO_CONTEXT exception being raised. From the
point of view of the current, the second thread is outside of the context of an
invocation.

7.5.4 Reference Counted Servants
Servants may be reference counted in order to avoid memory leaks when
objects associated with the servants are destroyed. A servant’s reference count
is incremented during an invocation and decremented again when the
invocation completes. This way, an invocation that deactivates an object, such
as one calling POA::deactivate_object(), will not cause a crash when
the POA removes its reference to the servant.

When an AMH servant method returns, regardless of the disposition of any
pending reply, the skeleton code will treat this as a completion of the
invocation and will decrement the reference count on the servant. This means
that if your AMH servant uses a companion object to complete an invocation,
the companion object should either have no association with the original
servant, or must manage the reference count of that servant. Managing the
reference count may be done explicitly by calling _add_ref() and
_remove_ref() on the servant, or implicitly by holding the reference to the
servant in a PortableServer::Servant_var<>.

7.5.5 Collocation
Collocation occurs when the servant for an object is in the same address space
as the client making an invocation on that object. There are two forms of
collocation, thru-POA and direct. Collocated invocations that go through the
POA have an opportunity to also go through interceptors and are subject to the
control imposed by the POA such as being rejected because the POA is in the
discarding state. Direct invocations are forwarded straight from the stub
method to the servant method. In both cases, the caller’s thread is actually
used to perform the invocation.

Since an AMH servant’s implementation of an operation has a different
signature than what is expected based on the IDL definition of the operation, it
does not match what is expected by the collocated stub. Further, AMH makes

142 o c i w e b . c o m

A s y n c h r o n o u s M e t h o d H a n d l i n g

it possible or likely that the invocation is not complete when the servant
method returns. There is currently no mechanism in TAO’s collocated stubs to
enable the calling thread to wait until some other thread invokes the response
handler and provides results to the caller. Therefore, there is no support in
TAO for combining collocation and AMH.

Given that the desire to use AMH is often the result of bottlenecks in the
servant, we might find that the efficiency gained by using collocated calls that
avoid marshaling would be minimal anyway. Therefore, it is reasonable to
explicitly disable collocated calls in an application that is implemented using
AMH based servants. Keep in mind that such control is imposed at IDL
compilation time. Be sure to isolate the definitions of interfaces that will be
implemented using AMH from those for which you wish to support collocated
access.

Note Future versions of TAO may support collocated invocation of AMH servants.

7.6 Combining AMH with AMI

CORBA servers are often used in multi-tier applications, with middle layers
serving as concentrators or gateways. The middle layer may process requests
by turning around and sending invocations to other servers to complete.
Consider the following IDL interfaces:

// file: middle.idl
interface Middle
{
 string get_the_answer (in string question);
};

// file: inner.idl
interface Inner
{
 string answer (in string question);
};

A client might invoke Middle::get_the_answer(), which in turn invokes
Inner::answer(), waits for the response, then replies back to the client
with the answer. Imagine that invoking Inner::answer() takes a long time,

o c i w e b . c o m 143

7 . 6 C o m b i n i n g A M H w i t h A M I

and that the client load is variable. Sometimes there may be two or three client
requests pending, while at other times there may be hundreds. The thread
waiting for a reply is essentially a wasted resource. As the client load
increases, if there are insufficient threads available to handle the load, then
clients may not be able to have their requests processed within their time
constraints.

Traditionally, to avoid making a thread a wasted resource, the server
implementing the Middle interface would process a request invoking
get_the_answer() in a separate thread using some threading strategy.
Before this thread returns, it in turn invokes Inner::answer() and waits for
the result. While waiting, this thread may be blocked so that it cannot handle
other requests. If TAO’s thread pool strategy is being used, and the thread is
part of a thread pool, then it is at risk of being “borrowed” to process another
incoming request. This is illustrated in Figure 7-2.

Note Further discussion about TAO’s threading models and wait strategies can be
found in Chapter 15.

.

Figure 7-2 Middle-tier Server Without AMH and AMI

144 o c i w e b . c o m

A s y n c h r o n o u s M e t h o d H a n d l i n g

In addition, using TAO’s thread pool strategy raises the possibility of
recursive requests (also called “nested upcalls”), wherein a thread waiting for
the Inner::answer() response may be required to handle another incoming
client request. Of course, the problem could be resolved by adding more
threads, but this does not scale well as the number of client requests increases.
This is because context switching between many threads may overwhelm the
system.

The best solution to this problem is to implement the Middle server using
AMH to handle the incoming get_the_answer() requests and AMI to
invoke Inner::answer(), as shown in Figure 7-3.

7.6.1 AMH/AMI Example
An example implementation of the Middle server using AMH and AMI
together is given here. The full code for this example is in the directory
$TAO_ROOT/DevGuideExamples/AMH_AMI.

7.6.1.1 AMI Callback Handler
To realize the benefits of AMH/AMI, an AMI callback handler in the middle
tier must be supplied to manage asynchronous replies from the Inner server.

Figure 7-3 Middle-tier Server Using AMI and AMH together

o c i w e b . c o m 145

7 . 6 C o m b i n i n g A M H w i t h A M I

Since AMI callback handlers are CORBA servants we must supply an
implementation for the handler. Inner_callback_i is the AMI callback
handler invoked when the reply to Inner::answer() is received. The role of
this callback handler is to forward the answer back to the original caller.
Therefore, the callback servant must be initialized with the correct response
handler shown here:

class Inner_callback_i : public virtual POA_AMI_InnerHandler
{
public:
 Inner_callback_i (PortableServer::POA_ptr poa,
 AMH_MiddleResponseHandler_ptr _tao_rh);
 virtual void answer (const char * ami_return_val);
 virtual void answer_excep (Messaging::ExceptionHolder * excep_holder);

private:
 PortableServer::POA_var poa_
 AMH_MiddleResponseHandler_var response_handler_;
};

As you will see below, we will make sure the AMI reply handler is initialized
with the AMH response handler. The callback handler reference must be
supplied for each sendc_ call, in order to allow the ORB’s dispatcher to
deliver the reply to the appropriate handler.

As is the case for all AMI callback handlers, our callback handler has two
methods that must be supplied for each operation in the interface. One for
dealing with ordinary replies, another for dealing with exceptions. In this
example, we have a callback handler class, Inner_callback_i, with
methods answer() and answer_excep().

Note Because we are using AMI, the Inner server does not need to change to
support AMH-based asynchronous replies.

Consider now the handling of ordinary replies:

void
Inner_callback_i::answer (const char * ami_return_val)
{
 this->response_handler_->get_the_answer (ami_return_val);
 PortableServer::ObjectId_var oid = this->poa_->servant_to_id(this);
 this->poa_->deactivate_object (oid.in());

146 o c i w e b . c o m

A s y n c h r o n o u s M e t h o d H a n d l i n g

}

Handling return values is straightforward. The return value and any
out/inout parameters are supplied as in parameters to the callback handler.
It simply passes those values on to the AMH response handler, again as in
parameters, which forwards the response to the original client. After that, this
servant has done its job, so it deactivates itself.

Now consider the handling of exceptions. As shown in section 7.4.4, the AMH
exception holder is initialized with a local copy of the exception extracted
from the AMI exception holder. Combining this behavior with the AMI
exception callback interface requires that we explicitly duplicate the exception
in order to pass it on to the client. This may be done by having the AMI
exception holder throw the exception, which we then catch, duplicate, and
pass to the client via the AMH response handler. This technique is shown
here.

void
Inner_callback_i::answer_excep (Messaging::ExceptionHolder* excep_holder)
{
 try {
 excep_holder->raise_exception();
 }
 catch (CORBA::Exception& ex) {
 CORBA::Exception* local_ex = ex._tao_duplicate();
 AMH_MiddleExceptionHolder amh_excep_holder (local_ex);
 this->response_handler_->get_the_answer_excep (&amh_excep_holder);
 }
 catch (...) {
 CORBA::Exception* unknown_ex = new CORBA::UNKNOWN;
 AMH_MiddleExceptionHolder amh_excep_holder (unknown_ex);
 this->response_handler_->get_the_answer_excep (&amh_excep_holder);
 }

 std::cout << "inner_callback_i deactivating self" << std::endl;
 PortableServer::ObjectId_var oid = this->poa_->servant_to_id(this);
 this->poa_->deactivate_object (oid.in());
}

7.6.1.2 AMH Servant
Consider now the interface to servant for the middle-tier servant:

#include "middleS.h"
#include "innerC.h"

o c i w e b . c o m 147

7 . 6 C o m b i n i n g A M H w i t h A M I

class Asynch_Middle_i :
 public virtual AMH_POA_Middle
{
public:
 Asynch_Middle_i (PortableServer::POA_ptr poa, Inner_ptr inner);
 virtual void get_the_answer (AMH_MiddleResponseHandler_ptr _tao_rh,
 const char * question);
private:
 PortableServer::POA_var poa_
 Inner_var inner_;
};

The middle servant is the only piece that needs to be AMH aware, therefore it
is the only class to derive from a POA_AMH_* base class.

Asynch_Middle_i::get_the_answer() is passed an AMH response handler, which
is used to initialize an instance of an AMI reply handler, as shown below:

void
Asynch_Middle_i::get_the_answer (AMH_MiddleResponseHandler_ptr _tao_rh,
 const char * question)
{
 PortableServer::ServantBase_var servant =
 new Inner_callback_i (this->poa_.in(),_tao_rh.in());

 PortableServer::ObjectId_var objid =
 this->poa_->activate_object (servant.in());
 CORBA::Object_var obj = this->poa_->id_to_reference(objid.in());
 AMI_InnerHandler_var cb = AMI_InnerHandler::_narrow(obj.in());
 this->inner_->sendc_answer (cb.in(),question);
}

The call to Inner::sendc_answer() sends the invocation request message
to the Inner server and returns immediately.

In general, after this point the servant thread is free to handle any other
incoming messages, whether they are new requests from clients, or AMI
replies from the Inner server. The AMI reply handler will be invoked on some
thread when the Inner server sends a reply message from the answer()
invocation. It will then immediately invoke the get_the_answer() method
of the AMH response handler, which sends a reply back to the originating
client.

148 o c i w e b . c o m

A s y n c h r o n o u s M e t h o d H a n d l i n g

o c i w e b . c o m 149

CHAPTER 8

Real-Time CORBA

8.1 Introduction

In 1999, the OMG introduced the Real-Time CORBA specification
(ptc/99-06-02) (RT CORBA 1.0) to provide CORBA developers with policies
and mechanisms for controlling allocation of system resources and improving
the predictability of system execution. The RT CORBA 1.0 specification was
originally defined as a set of extensions to the CORBA core and the CORBA
Messaging specifications. In August 2002, the OMG published a minor
revision of the RT CORBA specification, RT CORBA 1.1 (formal/02-08-02).
RT-CORBA 2.0 (formal/03-11-01), released in November 2003, introduced
the dynamic scheduling model. Finally, RT-CORBA 1.2 (formal/05-01-04)
integrated the dynamic scheduling details with the existing static scheduling
model. Despite the unusual version numbering sequencing, RT-CORBA 1.2,
released in January of 2005, is the most current version of the RT CORBA
specification.

150 o c i w e b . c o m

R e a l - T i m e C O R B A

8.1.1 Road Map
In this chapter, we explore the topic of real-time CORBA from the perspective
of an application with real-time predictability requirements, as well as from
the perspective of the features available in TAO’s implementation. While the
chapter is designed to be taken as a whole, you may find benefit to reading
certain sections independently.

If you want to learn more about...

• The motivation for and scope of RT CORBA, see 8.2, “Real-Time CORBA
Overview.”

• The new modules and interfaces introduced by RT CORBA, see 8.3,
“Real-Time CORBA Architecture.”

• The latest dynamic scheduling features of RT CORBA, see 8.4, “Dynamic
Scheduling.”

• Building and configuring applications that use TAO’s implementation of
RT CORBA, see 8.5, “TAO’s Implementation of Real-Time CORBA.”
This section also discusses TAO’s extensions to RT CORBA.

• Sample code that uses TAO’s RT CORBA features, see 8.6,
“Client-Propagated Priority Model,” 8.7, “Server-Declared Priority
Model,” and 8.8, “Using the RTScheduling::Current.” These sections
present examples of client and server application code using various RT
CORBA features and priority models. In addition, 8.9, “Real-Time
CORBA Examples,” lists further examples and tests in TAO that use
several of the RT CORBA features discussed in this chapter.

8.2 Real-Time CORBA Overview

The standard CORBA specification has historically done a very good job of
supporting the requirements of distributed object-oriented systems, such as
location transparency, programming language and operating system
independence, separation of interface from implementation, and
interoperability in heterogeneous environments.

However, in real-time systems, the timeliness of a system is as important as its
functional requirements. That is, success is determined not only by logical
correctness, but also by the time required to reach a correct solution or
complete a task. A correct result that is reached outside the predetermined

o c i w e b . c o m 151

8 . 2 R e a l - T i m e C O R B A O v e r v i e w

time interval is still considered a failure. Such systems must be predictable
and deterministic.

The applicability of CORBA to real-time systems has been limited, due to
CORBA’s lack of standard mechanisms for specifying and enforcing Quality
of Service (QoS) across distributed objects and supporting real-time
programming techniques.

The goal of the RT CORBA specification is to address the shortcomings of
CORBA for distributed real-time systems without sacrificing the spirit of
CORBA and without placing a burden on developers of non-real-time
systems. RT CORBA adds QoS control to standard CORBA with the goal of
improving application predictability. RT CORBA achieves this by bounding
priority inversions and managing resources end-to-end.

Specifically, RT CORBA provides policies and mechanisms for resource
configuration and control in the following areas:

• Processor Resources:

- RT CORBA defines portable priorities and a mechanism for
mapping them to native operating system priorities.

- RT CORBA enables end-to-end priority propagation via standard
priority models and mechanisms so that clients and servers can
specify request-priority propagation semantics.

- RT CORBA adds thread pools and mechanisms for servers to
allocate, partition, and manage thread characteristics.

- RT CORBA defines standard synchronizers for coordinating
contention for system resources in a consistent fashion.

- RT CORBA defines distributable threads and schedulers for
managing static or dynamic scheduling.

• Communication Resources:

- RT CORBA adds protocol properties to enable selection and
configuration of protocols by clients and servers.

- RT CORBA enables mechanisms for explicit binding to establish
and manage connections between clients and servers.

• Memory Resources:

152 o c i w e b . c o m

R e a l - T i m e C O R B A

- RT CORBA enables request buffering by servers when all available
threads are currently servicing requests.

Figure 8-1 shows how various RT CORBA policies and mechanisms (in
italics) relate to the standard CORBA architecture.

Figure 8-1 Real-Time CORBA Policies and Mechanisms

o c i w e b . c o m 153

8 . 3 R e a l - T i m e C O R B A A r c h i t e c t u r e

To achieve its goals with regard to the above QoS policies, the RT CORBA
specification leverages the QoS policy framework defined in the CORBA
Messaging specification. See Chapter 6 for more information on CORBA
Messaging.

For example, using the QoS policy framework, a client can override default
policy settings at the ORB, thread, or object reference level to affect qualities
such as request priority, message delivery, and request/reply timeouts.
Likewise, servers can use QoS policies with the Portable Object Adapter’s
create_POA() operation to affect server-side qualities such as request
queuing and the creation and management of thread pools.

The remainder of this chapter describes the specific QoS policies addressed by
the RT CORBA specification and how they are supported by TAO. We extend
the Messenger example from previous chapters to show how to use TAO’s
implementation of the RT CORBA specification to address the QoS
requirements of real-time applications.

For more information on RT CORBA, read “Object Interconnections:
Real-time CORBA, Part 1: Motivation and Overview,” by Douglas C.
Schmidt and Steve Vinoski.

8.3 Real-Time CORBA Architecture

The RT CORBA specification extends the standard CORBA specification
with the addition of several new modules and interfaces to achieve end-to-end
predictability and control over the management of resources. Developers of
non-real-time CORBA applications need not be burdened by these extensions.
RT CORBA extensions to the standard CORBA architecture include:

• Real-time ORB (RTCORBA::RTORB)

• Real-time POA (RTPortableServer::POA)

• Real-time CORBA priority (RTCORBA::Priority)

• Real-time Current (RTCORBA::Current)

• Real-time mutex (RTCORBA::Mutex)

• Thread pools (RTCORBA::ThreadpoolId)

• Thread pool lanes (RTCORBA::ThreadpoolLane)

154 o c i w e b . c o m

R e a l - T i m e C O R B A

Figure 8-2 shows how key entities defined by the RT CORBA extensions
relate to the standard CORBA architecture.

Figure 8-2 also shows elements of Dynamic Scheduling, an extension to the
real-time CORBA specification. Dynamic Scheduling, its components,
features, and services are discussed at length in 8.4.

8.3.1 Real-Time CORBA Modules
The RT CORBA specification introduces additional IDL modules, RTCORBA
RTPortableServer, and RTScheduling, which contain definitions of RT
CORBA interfaces and types.

• The RTCORBA module contains definitions for portable priorities, priority
mapping, thread pools, real-time policies, and protocol properties. It also
contains definitions for real-time Current, Mutex, and ORB interfaces.
Entities defined in the RTCORBA module are used by both clients and
servers.

Figure 8-2 RT CORBA Extensions

o c i w e b . c o m 155

8 . 3 R e a l - T i m e C O R B A A r c h i t e c t u r e

• The RTPortableServer module contains the definition of the real-time
Portable Object Adapter (POA) interface for use by servers.

• The RTScheduling module defines the components used to support
dynamic and static scheduling and distributable threads. The
RTScheduling::Current may be used in both client and server
processes.

Note The interface definition for module RTCORBA is quite large. We will be
examining portions of it throughout this chapter. The definition is included in
the TAO source distribution in $TAO_ROOT/tao/RTCORBA/RTCORBA.pidl.
Likewise, the definition of RTPortableServer is found in
$TAO_ROOT/tao/RTPortableServer/RTPortableServer.pidl and the
definition of RTScheduling is found in
$TAO_ROOT/tao/RTScheduling/RTScheduler.pidl.

8.3.2 The Real-Time ORB
The RT CORBA specification introduces an interface for a real-time ORB,
RTCORBA::RTORB. The RT ORB is a local interface used to create resources
necessary to manage real-time applications. The RTORB interface does not
inherit from CORBA::ORB, rather it is simply a helper object that applications
use to create and manage instances of various RT CORBA types, such as
mutexes, thread pools, and policies.

TAO’s RT CORBA library supplies the implementation of RTORB. The RT
CORBA library uses specialized ORBInitializers, as defined in the Portable
Intercepter specification, to initialize the RTORB. Each ORB has an RTORB
instance. Applications obtain a reference to the RTORB by calling
resolve_initial_references(“RTORB”) on the ORB.

Rather than showing the entire RTORB interface in one place, the various
operations are introduced in smaller functional groupings as we describe how
to use them in subsequent sections.

The RTCORBA::RTORB is initialized when its associated CORBA::ORB is
initialized during CORBA::ORB_init(). The RT CORBA specification
defines a new ORB initialization parameter, ORBRTPriorityRange, used to
constrain the range of CORBA priorities the RTORB may use. However, this
option is not currently supported by TAO, meaning that any CORBA priority

156 o c i w e b . c o m

R e a l - T i m e C O R B A

value may be used by any RTORB. CORBA Priority values are discussed in
8.3.4.

Here we show an example that obtains the RTORB from the ORB. For the
sake of clarity, we have omitted error-handling code:

#include <tao/corba.h>
#include <tao/RTCORBA/RTCORBA.h>

int main (int argc, char* argv[])
{
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

 // Get the RTORB.
 CORBA::Object_var obj = orb->resolve_initial_references ("RTORB");
 RTCORBA::RTORB_var rt_orb = RTCORBA::RTORB::_narrow (obj.in());

 // Use the RTORB to access RT CORBA features (e.g., create_threadpool())
};

8.3.3 The Real-Time POA
The RT CORBA specification introduces the real-time POA interface,
RTPortableServer::POA, which specializes PortableServer::POA. As
shown below, the real-time POA adds new reference creation operations that
accept a priority as an additional parameter.

module RTPortableServer
{
 local interface POA : PortableServer::POA
 {
 Object create_reference_with_priority (in CORBA::RepositoryId intf,
 in RTCORBA::Priority priority)
 raises (WrongPolicy);

 Object create_reference_with_id_and_priority
 (in PortableServer::ObjectId oid,
 in CORBA::RepositoryId intf,
 in RTCORBA::Priority priority)
 raises (WrongPolicy);

 PortableServer::ObjectId activate_object_with_priority
 (in PortableServer::Servant p_servant,
 in RTCORBA::Priority priority)
 raises (ServantAlreadyActive, WrongPolicy);

o c i w e b . c o m 157

8 . 3 R e a l - T i m e C O R B A A r c h i t e c t u r e

 void activate_object_with_id_and_priority (in PortableServer::ObjectId oid,
 in PortableServer::Servant p_servant,
 in RTCORBA::Priority priority)
 raises (ServantAlreadyActive, ObjectAlreadyActive, WrongPolicy);

 };
};

When an application links to the RTPortableServer library, all POA
references are implemented by the real-time POA. Thus an application may
create a POA using the ordinary method of invoking
PortableServer::POA::create_POA(), then narrow the newly-created
POA reference to RTPortableServer::POA. The following example shows
this technique. Once again, error checking has been omitted for the sake of
clarity:

#include <tao/corba.h>
#include <tao/RTPortableServer/RTPortableServer.h>

int main (int argc, char* argv[])
{
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

 // Get the RootPOA.
 CORBA::Object_var obj = orb->resolve_initial_references ("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow (obj.in());

 // Create a child POA.
 CORBA::PolicyList policies;
 policies.length(2);
 policies[0] = poa->create_lifespan_policy (PortableServer::PERSISTENT);
 policies[1] = poa->create_id_assignment_policy (PortableServer::USER_ID);
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 PortableServer::POA_var child_poa =
 poa->create_POA ("Child POA", mgr.in(), policies);

 // Use the new POA as a RT POA.
 RTPortableServer::POA_var rt_poa =
 RTPortableServer::POA::_narrow (child_poa.in());

};

158 o c i w e b . c o m

R e a l - T i m e C O R B A

8.3.4 Real-Time Priority Mapping
A Real-Time Operating System (RTOS) must support the concept of discrete
thread priority to adequately leverage benefits of RT CORBA. Thread
priorities are usually represented as a range of integer values and a direction of
precedence. A thread’s priority is used to determine its execution eligibility,
with threads having higher precedence being eligible for execution ahead of
threads with lower precedence. RT CORBA refers to an operating system’s
representation of priority as native priority. Native priorities are not used
directly by RT CORBA, but are represented in IDL to provide a mechanism
for allowing native code to interact with RT CORBA. The native priority type
is defined as follows:

module RTCORBA {
 typedef short NativePriority;
 // ...
}

A short integer has the range -32768 to 32767, however only a subset of this
range will be valid in any particular operating system.

To allow all objects participating in a distributed real-time application to have
a consistent notion of thread priority, RT CORBA supplies a second type to
represent portable priority:

module RTCORBA {
 typedef short Priority;
 const Priority minPriority = 0;
 const Priority maxPriority = 32767;
 //...
};

The type Priority is used when referring to “portable” priority values.
Although it is a signed short integer, an RT CORBA priority value is always
positive, its range being constrained by the constants minPriority and
maxPriority. With CORBA priorities, higher values take precedence over
lower values.

Conversion between native priority and RT CORBA priority is achieved
through mapping functions. The RT CORBA specification uses the following
declaration to represent the mapping between priority types:

module RTCORBA {

o c i w e b . c o m 159

8 . 3 R e a l - T i m e C O R B A A r c h i t e c t u r e

 native PriorityMapping;
};

The specification recognizes that this mapping behavior is frequently invoked.
To minimize performance impact, the declaration uses a native type rather
than an interface. Use of an interface would necessitate the use of a CORBA
object, and require obtaining a reference to the same. On the other hand,
native types are specified directly in the target language binding. The C++
binding for PriorityMapping is a class in the RTCORBA namespace.

namespace RTCORBA {
 class PriorityMapping
 {
 public:
 virtual CORBA::Boolean to_native (RTCORBA::Priority corba_priority,
 RTCORBA::NativePriority& native_priority);
 virtual CORBA::Boolean to_CORBA (RTCORBA::NativePriority native_priority,
 RTCORBA::Priority& corba_priority);
 };
};

The methods to_native() and to_CORBA() may be called several times by
an ORB during an invocation. To provide the greatest possible efficiency
these methods do not throw exceptions, not even CORBA System exceptions.
However these functions will return FALSE if the input value is outside the
allowed range for that type. For both of these functions, the first argument has
the semantics of an in, supplying input, the second argument being an out for
receiving the converted results.

An RT ORB conforming to the specification will make use of these mapping
functions throughout the course of an invocation. If the call to either mapping
function returns FALSE, the ORB is required to stop processing the invocation
and throw a DATA_CONVERSION system exception to the invoking application.
Note that this exception may not be propagated if the error is the result of a
oneway operation.

8.3.5 The Real-Time Current
The CORBA::Current interface serves as a common base for interfaces
providing context-specific information in clients and servers. Applications use
the RTCORBA::Current, which derives from CORBA::Current, to
determine the priority of the current invocation.

160 o c i w e b . c o m

R e a l - T i m e C O R B A

module RTCORBA {
 local interface Current : CORBA::Current
 {
 attribute Priority the_priority;
 };
};

The real-time Current is obtained by narrowing the reference to the object
returned by calling resolve_initial_references(“RTCurrent”).

The RTCORBA::Priority value obtained from the Current may be mapped
to a native priority by using the PriorityMapping object, as discussed in
section 8.3.4.

8.3.6 The Real-Time Mutex
Real-time CORBA defines the local Mutex object to present a portable
interface for controlling access by multiple threads. RT CORBA mutexes are
created by the RTORB. The RT CORBA Mutexes are local objects, thus
references to the Mutexes are not allowed to cross process boundaries.

The interface definition for Mutex is in the RTCORBA module. Here is the
Mutex definition.

module RTCORBA
{
 // Mutex.
 local interface Mutex
 {
 void lock ();
 void unlock ();
 boolean try_lock (in TimeBase::TimeT max_wait);
 // if max_wait = 0 then return immediately
 };
};

A real-time CORBA Mutex is functionally similar to a common mutual
exclusion lock, which is used to ensure that only one thread has access to
critical sections of code at a time. A mutex has two states, locked and
unlocked. A mutex starts out in the unlocked state. The mutex operations are:

• lock() sets the mutex state to locked, when called on an unlocked mutex.
If the mutex is already locked, then lock() blocks until the owning
thread calls unlock(). A mutex is not recursive, therefore if a thread
attempts to call lock() twice, it will deadlock.

o c i w e b . c o m 161

8 . 3 R e a l - T i m e C O R B A A r c h i t e c t u r e

• try_lock() attempts to set the state of a mutex to locked. It returns
TRUE if it successfully locks the mutex, or FALSE if the mutex cannot be
locked within the max_wait time period. If zero is passed as the
max_wait time, try_lock() immediately returns FALSE if the mutex
cannot be locked. The type TimeT, used as the argument to try_lock(),
is defined in the module TimeBase.

• unlock() resets the mutex state back to unlocked. If there is a single
thread waiting to acquire the lock, it will do so at this time. If multiple
threads are waiting, and either SCHED_FIFO or SCHED_RR scheduling
policies (described in Table 8-3) are in effect, the mutex is acquired in
priority order. If the threads implementation does not support the
aforementioned scheduling policies, or a different scheduling policy is
used, the order in which threads are awarded the lock is undefined.

RT CORBA Mutexes are supplied by the RTORB. The operations which affect
the life cycle of Mutexes are shown below:

module RTCORBA
{
 local interface RTORB
 {
 // ...
 Mutex create_mutex ();
 void destroy_mutex (in Mutex the_mutex);

 // TAO specific ...
 };
};

• RTORB::create_mutex() creates a new instance of a mutex and returns
a reference to it. An RT CORBA mutex is a reference-counted object.

• RTORB::destroy_mutex (in Mutex the_mutex) cleans up the
resources held by the mutex object. In TAO, destroy_mutex() removes
the mutex from the internal table of named mutexes.

In addition to these RT-CORBA-compliant operations, TAO provides extra
functionality. See 8.5.3 for details on the TAO extension.

8.3.7 Thread Pools
A thread pool is a collection of threads that are all separately available to
perform work on behalf of the ORB. A typical thread pool consists of two or

162 o c i w e b . c o m

R e a l - T i m e C O R B A

more threads, all waiting for incoming requests. The threads in a pool may be
of the same default priority, or they may be grouped together in lanes. Each
lane is designated by a certain priority, and each thread in the lane executes at
that priority. Upon creation, a thread pool may have a number of pre-created
static threads. A number of dynamic threads may be created later if needed.
By default, dynamic threads live forever after they are created. The
-RTORBDynamicThreadRunTime and
-RTORBDynamicThreadIdleTimeout options can be used to specify when
dynamic threads should be destroyed. See 8.5.7.1 for details on these options.
The RT CORBA specification provides a mechanism that allows a lane of
higher priority to borrow a thread from a lane of lesser priority in the same
thread pool, if needed.

Note TAO thread pools are not fully compliant with the RT CORBA specification.
Specifically, request buffering and thread borrowing are not supported.
Attempts to specify request buffering or thread borrowing result in a
CORBA::NO_IMPLEMENT exception.

8.3.7.1 Interface Specifications
The RTCORBA module defines several types that are used in conjunction with
thread pools, as shown here:

module RTCORBA
{
 // Threadpool types.
 typedef unsigned long ThreadpoolId;

 struct ThreadpoolLane
 {
 Priority lane_priority;
 unsigned long static_threads;
 unsigned long dynamic_threads;
 };
 typedef sequence <ThreadpoolLane> ThreadpoolLanes;

 // Threadpool Policy.
 const CORBA::PolicyType THREADPOOL_POLICY_TYPE = 41;
 local interface ThreadpoolPolicy : CORBA::Policy
 {
 readonly attribute ThreadpoolId threadpool;
 };

o c i w e b . c o m 163

8 . 3 R e a l - T i m e C O R B A A r c h i t e c t u r e

Thread pools are identified by a value of type RTCORBA::ThreadpoolId. A
POA may be associated with a single thread pool. This is done by supplying a
ThreadpoolPolicy as part of the PolicyList supplied to create_POA().
Because a POA may only be associated with a single thread pool, there is only
one ThreadpoolId in the ThreadpoolPolicy. The thread pool policy may
also be applied to the ORB to set the default thread pool used by subsequently-
created POAs.

Thread pools are created by the RTORB, using the IDL operations shown
here:

module RTCORBA
{
 local interface RTORB
 {
 // Threadpool creation/destruction.
 exception InvalidThreadpool {};

 ThreadpoolId create_threadpool (in unsigned long stacksize,
 in unsigned long static_threads,
 in unsigned long dynamic_threads,
 in Priority default_priority,
 in boolean allow_request_buffering,
 in unsigned long max_buffered_requests,
 in unsigned long max_request_buffer_size);

 ThreadpoolId create_threadpool_with_lanes (
 in unsigned long stacksize,
 in ThreadpoolLanes lanes,
 in boolean allow_borrowing,
 in boolean allow_request_buffering,
 in unsigned long max_buffered_requests,
 in unsigned long max_request_buffer_size);

 void destroy_threadpool (in ThreadpoolId threadpool)
 raises (InvalidThreadpool);

 };
};

8.3.7.2 Creating Thread Pools
Thread pools are managed by the ORB. This is similar to using multiple
threads with the thread-pool reactor (see Chapter 18). The main advantage to
using RT CORBA thread pools is that multiple lanes can be created with
differing thread priorities.

164 o c i w e b . c o m

R e a l - T i m e C O R B A

Here we show the steps necessary to create a thread pool. First, the thread pool
lanes must be defined. To do this, an RTCORBA::ThreadpoolLanes
sequence is instantiated and filled with information specifying the lane
priorities and the number and types of threads to create:

// Set the thread pool lane size.
const CORBA::ULong TOTAL_LANES = // get a value from somewhere
RTCORBA::ThreadpoolLanes lanes(TOTAL_LANES);
lanes.length(TOTAL_LANES);

// Initialize the lane information.
for (CORBA::ULong i = 0; i < TOTAL_LANES; ++i) {
 lanes[i].static_threads = 1;
 lanes[i].dynamic_threads = 0;

 // Initialize the lane_priority (a value between 0 - 32767).
 lanes[i].lane_priority = // some priority value
}

Next, use the RTORB to create the thread pool and child POA:

// Create the threadpool and get back its ThreadpoolId.
RTCORBA::ThreadpoolId threadpool_id =
 rt_orb->create_threadpool_with_lanes(0, // Stack Size
 lanes,
 false, // Allow borrowing
 false, // Allow request buffering
 0, // Max buffered requests
 0); // Max request buffer size

// Create a policy list.
CORBA::PolicyList poa_policy_list(2);
poa_policy_list.length(2);

// Set the priority model (client propagated for this example).
poa_policy_list[0] =
 rt_orb->create_priority_model_policy(RTCORBA::CLIENT_PROPAGATED, 0);

// Set the thread pool id.
poa_policy_list[1] =
 rt_orb->create_threadpool_policy(threadpool_id);

// Create the child poa with the policy list.
PortableServer::POA_var child_poa = root_poa->create_POA("child_poa",
 poa_manager.in(),
 poa_policy_list);

o c i w e b . c o m 165

8 . 3 R e a l - T i m e C O R B A A r c h i t e c t u r e

Operations dispatched to servants activated in this new POA will run in one of
the threads from the thread pool at a priority requested by the client
application. See the example in 8.9 for more details on the use of thread pools.

8.3.7.3 Thread Pool Lane Listen Endpoints
Persistent object references require the same endpoint(s) to be used each time
the server is run. When thread pools with lanes are required to support
persistent object references, you must supply explicit endpoints for each lane.
This is accomplished by specifying the -ORBLaneListenEndpoints ORB
initialization option. This option takes two parameters—the lane identifier and
an endpoint specification. The lane identifier is a composite value of the form
n:m where n is the thread pool number, starting with 1, and m is the lane index
within the thread pool, starting with 0. The endpoint specification parameter is
of the form of an ordinary endpoint specification such as may be provided to
the -ORBListenEndpoints ORB initialization option.

For example, an application creating a thread pool with three lanes might
specify the following lane listen endpoints:

-ORBLaneListenEndpoints 1:0 iiop://:1234 \
-ORBLaneListenEndpoints 1:1 iiop://:1235 \
-ORBLaneListenEndpoints 1:2 iiop://:1236

to define three explicit endpoints for the pool’s lanes. Both of the thread pool
number and lane index can use the wildcard character of ‘*’. This value means
that the specified endpoint should be used for all lanes that match. For
example:

-ORBLaneListenEndpoints *:* iiop://myhost

would specify that all lanes in all thread pools should use the network
interface named myhost. This would be useful with systems that have multiple
network interfaces.

Another ORB initialization option, -ORBLaneEndpoint, is an alias for
-ORBLaneListenEndpoints. See 17.13.40 and 17.13.41 for more
information about these options.

166 o c i w e b . c o m

R e a l - T i m e C O R B A

8.3.8 End-to-End Priority Propagation
One of the biggest challenges in using CORBA for real-time applications is
making sure that the priority of an activity is honored by all of the objects and
operations involved in carrying out that activity. End-to-end predictability
requires that both client and server respect the system-wide priorities during
request processing. Furthermore, the system needs to bound the priority
inversions and latencies during end-to-end processing. Of course, ultimately
the RT ORB relies upon the real-time operating system to schedule threads
appropriately. The RT CORBA specification does not attempt to define or
dictate real-time OS capabilities.

The RT CORBA specification defines two common priority propagation
models: client-propagated and server-declared. The priority model is selected
through the RTCORBA::PriorityModelPolicy as follows:

module RTCORBA
{
 // Priority Model Policy.
 const CORBA::PolicyType PRIORITY_MODEL_POLICY_TYPE = 40;
 enum PriorityModel
 {
 CLIENT_PROPAGATED,
 SERVER_DECLARED
 };

 local interface PriorityModelPolicy : CORBA::Policy
 {
 readonly attribute PriorityModel priority_model;
 readonly attribute Priority server_priority;
 };
};

The PriorityModelPolicy is a client-exposed policy, meaning that a client
ORB knows what policy is in force and can adjust itself accordingly. As
defined in the CORBA messaging specification, the value of this property is
communicated through IOP::ServiceContexts. In 8.6 and 8.7, we
describe how to use the client-propagated and server-declared priority models
to specify how priorities are propagated end-to-end across ORB endsystems.

8.3.9 Explicit Binding
Frequently, real-time CORBA systems need to explicitly bind object
references prior to their first use. To fulfill this requirement, RT CORBA

o c i w e b . c o m 167

8 . 3 R e a l - T i m e C O R B A A r c h i t e c t u r e

makes use of the operation CORBA::Object::_validate_connection()
with the appropriate policies set, which preestablishes a connection between
the client and server. This operation forces the server to allocate basic
resources necessary to service requests on the physical connection used to
generate the call.

8.3.10 Priority-banded Connections
The server uses the create_priority_banded_connection_policy()
operation on the RTORB to create priority bands. This operation takes as a
parameter a sequence of PriorityBand structures called
RTCORBA::PriorityBands. As shown in the IDL below, a PriorityBand
structure contains two priorities, low and high. The low priority represents
the minimum priority of the band and the high priority represents the
maximum priority of the band.

module RTCORBA
{
 // Priorities.
 typedef short NativePriority;
 typedef short Priority;

 // PriorityBandedConnectionPolicy.
 struct PriorityBand
 {
 Priority low;
 Priority high;
 };
 typedef sequence <PriorityBand> PriorityBands;
};

Each band corresponds to one or more lanes within a thread pool on the
server. The following example shows how to create priority-banded
connection policies.

 // Create the sequence of priority bands.
 const CORBA::ULong NUM_BANDS = // some number of bands
 RTCORBA::PriorityBands bands(NUM_BANDS);
 bands.length(NUM_BANDS);

 // Populate the priority band sequence.
 bands[0].low = low_value1;
 bands[0].high = high_value1;
 bands[1].low = low_value2;
 bands[1].high = high_value2;

168 o c i w e b . c o m

R e a l - T i m e C O R B A

 ...

 // Create the policy list and add the priority banded connection policy.
 CORBA::PolicyList policy_list(1);
 policy_list.length(1);
 policy_list[0] = rt_orb->create_priority_banded_connection_policy(bands);

 // Create a child poa with the priority banded connection policy.
 PortableServer::POA_var child_poa = root_poa->create_POA("child_poa",
 poa_manager.in(),
 policy_list);

The priority band chosen depends on the priority model specified by the
server. See 8.6 and 8.7 for more information on priority models.

8.3.11 Private Connections
Ordinarily, the client ORB is allowed to reuse a connection to support many
object references. However, multiplexing requests for different object
references on a single connection carries a risk of blocking a thread if the
connection is busy during an invocation triggered by another thread. The RT
CORBA PrivateConnectionPolicy allows the application to specify that
dedicated, non-multiplexed connections will be used for certain object
references. When this policy is applied to an ORB or a thread, each object
reference will have a private connection associated with it. Be aware that the
connection is associated with the object reference, not the ORB or thread. If
multiple threads use the same object reference, they may still share a
connection.

An application should use the RTORB to create instances of the
RTCORBA::PrivateConnectionPolicy policy. This policy may be applied
to an RTORB via the ORBPolicyManager, or to a specific thread via the
PolicyCurrent. In the following example, we apply the private connection
policy to the PolicyCurrent to ensure that requests on object references
invoked from within this thread will be carried over private connections to the
servers hosting the referenced objects.

 CORBA_Object_var obj = orb->resolve_initial_references("PolicyCurrent");
 CORBA::PolicyCurrent_var policy_current =
 CORBA::PolicyCurrent::_narrow(obj.in());

 // Create a policy list to supply to the PolicyCurrent.
 CORBA::PolicyList policy_list;
 policy_list.length(1);

o c i w e b . c o m 169

8 . 3 R e a l - T i m e C O R B A A r c h i t e c t u r e

 policy_list[0] = rt_orb->create_private_connection_policy();

 policy_current->set_policy_overrides (policy_list,
 CORBA::SET_OVERRIDE);

8.3.12 Protocol Properties
Protocol Properties were introduced into the RT CORBA specification to
allow users to specify a preferred protocol to use for connections between
clients and servers, and to fine tune the parameters of the physical transport
over which GIOP requests are made. As shown below, the
ProtocolProperties interface does not contain any operations or
attributes:

module RTCORBA
{
 // Protocol Properties.
 local interface ProtocolProperties
 {
 };
};

The TCPProtocolProperties interface corresponds to GIOP over TCP/IP
(IIOP) and allows the application to specify the sizes of the TCP send and
receive buffers, as well as the TCP keep-alive, routing, and delay attributes.
The enable_network_priority attribute is a TAO extension and is
described in 8.5.2. The TCPProtocolProperties interface is shown here:

module RTCORBA
{
 local interface TCPProtocolProperties : ProtocolProperties
 {
 attribute long send_buffer_size;
 attribute long recv_buffer_size;
 attribute boolean keep_alive;
 attribute boolean dont_route;
 attribute boolean no_delay;
 attribute boolean enable_network_priority;
 };
};

TAO also provides protocol property interfaces for the TAO-specific transport
protocols UIOP, DIOP, SCIOP, and SHMIOP as shown below:

170 o c i w e b . c o m

R e a l - T i m e C O R B A

module RTCORBA
{
 // Communication over Unix Domain Sockets (Local IPC).
 local interface UnixDomainProtocolProperties : ProtocolProperties
 {
 attribute long send_buffer_size;
 attribute long recv_buffer_size;
 };

 // Communication over Shared Memory.
 local interface SharedMemoryProtocolProperties : ProtocolProperties
 {
 attribute long send_buffer_size;
 attribute long recv_buffer_size;
 attribute boolean keep_alive;
 attribute boolean dont_route;
 attribute boolean no_delay;
 attribute long preallocate_buffer_size;
 attribute string mmap_filename;
 attribute string mmap_lockname;
 };

 // Communication over UDP (DIOP)
 local interface UserDatagramProtocolProperties : ProtocolProperties
 {
 attribute long send_buffer_size;
 attribute long recv_buffer_size;
 attribute boolean enable_network_priority;
 };

 // Communication over SCTP (SCIOP)
 local interface StreamControlProtocolProperties : ProtocolProperties
 {
 attribute long send_buffer_size;
 attribute long recv_buffer_size;
 attribute boolean keep_alive;
 attribute boolean dont_route;
 attribute boolean no_delay;
 attribute boolean enable_network_priority;
 };

};

RT CORBA specifies two new policies for configuring protocols:

• ServerProtocolPolicy

• ClientProtocolPolicy

o c i w e b . c o m 171

8 . 3 R e a l - T i m e C O R B A A r c h i t e c t u r e

When the server or client protocol policy is created, several protocols can be
configured at the same time by specifying the protocols and their properties in
a sequence called a ProtocolList. The order in which protocols are
specified in the list indicates the order of preference. The server-side ORB
lists protocol information in this same order in IORs created through that
ORB; the client-side ORB considers the protocols in this same order when
binding to the server. Server and client protocol policies are created via
factory operations on the RT ORB interface. These type and interface
definitions are shown below:

module RTCORBA
{
 local interface ProtocolProperties { };

 struct Protocol
 {
 IOP::ProfileId protocol_type;
 ProtocolProperties orb_protocol_properties;
 ProtocolProperties transport_protocol_properties;
 };
 typedef sequence<Protocol> ProtocolList;

 // Server Protocol Policy
 local interface ServerProtocolPolicy : CORBA::Policy
 {
 readonly attribute ProtocolList protocols;
 };

 // Client Protocol Policy
 local interface ClientProtocolPolicy : CORBA::Policy
 {
 readonly attribute ProtocolList protocols;
 };

 // RT ORB factory operations for protocol policies
 local interface RTORB
 {
 // ...
 ServerProtocolPolicy create_server_protocol_policy (
 in ProtocolList protocols);

 ClientProtocolPolicy create_client_protocol_policy (
 in ProtocolList protocols);
 };
};

172 o c i w e b . c o m

R e a l - T i m e C O R B A

The following example shows how to specify protocol properties on the server
side. In this example, we configure two protocols—IIOP and the
TAO-specific UIOP—with IIOP specified as the preferred protocol (because
it is first in the protocol list).

#include <tao/RTCORBA/RTCORBA.h>

int main (int argc, char* argv[])
{
 try
 {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

 // Get a reference to Root POA and activate it.
 CORBA::Object_var obj = orb->resolve_initial_references ("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow (obj.in());
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();

 // Get the RTORB.
 obj = orb->resolve_initial_references ("RTORB");
 RTCORBA::RTORB_var rtorb = RTCORBA::RTORB::_narrow (obj.in());

 // Create a protocol list with 2 elements
 RTCORBA::ProtocolList protocols(2);
 protocols.length(2);

 // Specify the TCP properties.
 CORBA::Long send_buffer_size = 16384;
 CORBA::Long recv_buffer_size = 16384;
 CORBA::Boolean keep_alive = true;
 CORBA::Boolean dont_route = false;
 CORBA::Boolean no_delay = true;

 // Create TCP protocol properties.
 RTCORBA::TCPProtocolProperties_var tcp_properties =
 rtorb->create_tcp_protocol_properties(
 send_buffer_size,
 recv_buffer_size,
 keep_alive,
 dont_route,
 no_delay);

 // Specify the TCP (IIOP) protocol as the primary protocol type.
 protocols[0].protocol_type = TAG_INTERNET_IOP;
 protocols[0].transport_protocol_properties =
 RTCORBA::ProtocolProperties::_duplicate (tcp_properties.in ());

o c i w e b . c o m 173

8 . 4 D y n a m i c S c h e d u l i n g

 // Next, use UIOP with the default values if IIOP fails.
 protocols[1].protocol_type = TAO_TAG_UIOP_PROFILE;
 protocols[1].transport_protocol_properties =
 RTCORBA::UnixDomainProtocolProperties::_nil ();

 // Create server protocol policy and insert it into a policy list.
 CORBA::PolicyList policy_list;
 policy_list.length(1);
 policy_list[0] = rtorb->create_server_protocol_policy (protocols);

 // Set the policy on a new child POA.
 PortableServer::POA_var child_poa = poa->create_POA (
 "childPOA", mgr.in (), policy_list);

 //...

8.3.13 Other Real-Time CORBA Features
Other aspects of the RT CORBA specification are covered in other chapters of
this guide.

• Timeouts

See 6.3.3 for information on request and reply timeouts.

• Reliable oneways

See 6.3.4 for information on specifying the reliability of oneway requests.

• Asynchronous Invocations

Asynchronous invocations of operations on CORBA objects are covered
in 6.2.

8.4 Dynamic Scheduling

CORBA Real-Time Scheduling is defined in section 3 of the Real-Time
CORBA specification, version 1.2 (OMG document formal/05-01-04). This
specification supersedes the static real-time scheduling service defined in
version 1.0.

Note This specification is also known as the “static” specification. The OMG’s
document access page refers to a separate document, formal/03-11-01, as the
“dynamic” specification. In fact, version 1.2 supersedes version 2.0, and

174 o c i w e b . c o m

R e a l - T i m e C O R B A

represents an integration of the dynamic scheduling features first specified in
version 2.0 back into the 1.x specification branch.

Static scheduling depends upon knowing the run time characteristics of a
system a priori in order to determine the scheduling needs. Dynamic
scheduling, on the other hand, is much more flexible, allowing for run time
selection of scheduling behavior. This is achieved through the implementation
of scheduling disciplines. The RT CORBA specification lists some well
known disciplines, such as Fixed Priority Scheduling (i.e., Static) and Earliest
Deadline First. These disciplines are used to evaluate thread execution order
when using a scheduler to dispatch threads. See section 8.4.5 for more
information on the scheduler.

A distributable thread is a schedulable entity that maps to an operating system
thread while in the context of a particular process, but may pass between
processing nodes carrying schedule requirements as service contexts.
Distributable threads may be newly spawned, or may be created from an
existing thread. Distributable threads carry context information with them as
they span nodes. This context information is accessed by the scheduler in each
node through the use of portable interceptors.

8.4.1 Distributable Threads
The RT CORBA specification defines distributable threads as schedulable
threads that can run across many nodes in a distributed system. The interface
RTScheduling::DistributableThread is used by both the Current and
Scheduler interfaces, but may also be used by the application. Distributable
thread creation occurs in two ways:

• Creating a new operating system thread by calling
RTScheduling::Current::spawn(), described in 8.4.3.

• Invoking begin_scheduling_segment(), also described in 8.4.3.
Calling begin_scheduling_segment() when not in a distributable
thread makes the current thread distributable.

The distributable thread interfaces shown below provide only the means of
canceling the thread while it is running. Distributable threads work in
conjunction with scheduling segments, which in turn are managed by the
RTScheduling::Current.

o c i w e b . c o m 175

8 . 4 D y n a m i c S c h e d u l i n g

 module RTScheduling
 {
 local interface DistributableThread
 {
 enum DT_State
 {
 ACTIVE,
 CANCELLED
 };

 void cancel();
 readonly attribute DT_State state;
 };
 };

The RTScheduling::DistributableThread::cancel() operation may
be used to cancel a running thread. The thread’s current state may be
referenced via the state attribute. Any thread may cancel a distributable
thread, however it is dangerous to try to cancel a thread other than the current
thread. While a distributable thread may span many nodes of a distributed
system, the interface shown above is local, meaning it only has effect in the
current process. It is possible to obtain a reference to a
DistributableThread object in one process while the actual head of the
thread is in another process. Calling cancel() on such a
DistributableThread will then not have the desired effect as the
cancellation is indicated as a change of state in the span. While a distributable
thread’s cancel() operation may be invoked at any time, in any process,
doing so does not necessarily alter the thread’s processing.

8.4.2 Real-Time Scheduling Thread Action
Thread Action objects, which implement the
RTScheduling::ThreadAction interface, are the RT CORBA equivalent
of thread functions.

 module CORBA
 {
 native VoidData;
 };

 module RTScheduling
 {
 local interface ThreadAction
 {
 void do (in CORBA::VoidData data);

176 o c i w e b . c o m

R e a l - T i m e C O R B A

 };
 };

Objects that implement the ThreadAction interface are required to provide a
method to be invoked when using RTScheduling::Current::spawn() to
start a new distributable thread. The spawn() operation takes a reference to a
ThreadAction and invokes do() on it in the native thread creation method.
The data argument is a native type, CORBA::VoidData, which is defined as
a void* by the C++ language mapping and is used the same way that a void*
argument is supplied to a C/C++ thread function.

8.4.3 Real-Time Scheduling Current
The real-time scheduling current, RTScheduling::Current, is a
specialization of the RTCORBA::Current interface providing additional
operations related to creation and management of distributable threads.
Through the RTScheduling::Current, distributable threads may be
spawned or the current thread may be converted into a distributable thread. A
distributable thread may span several scheduling segments. The Current
provides the means to identify all the segments of the currently operating
thread.

TAO’s definition of RTScheduling::Current deviates slightly from the
RT CORBA specification in one important regard. In TAO, the signature of
the spawn() operation contains additional parameters that are not present in
the RT CORBA specification. The RT CORBA specification defines the
spawn() operation as follows:

module RTScheduling
{
 local interface Current : RTCORBA::Current
 {
 // Standard RT CORBA spawn() operation definition.
 DistributableThread spawn (in ThreadAction start,
 in unsigned long stack_size,
 in RTCORBA::Priority base_priority);
 };
};

TAO extends this interface to include parameters that would normally be
supplied to the begin_scheduling_segment() operation.

module RTScheduling

o c i w e b . c o m 177

8 . 4 D y n a m i c S c h e d u l i n g

{
 local interface Current : RTCORBA::Current
 {
 // TAO’s extended spawn() operation definition.
 DistributableThread spawn (in ThreadAction start,
 in CORBA::VoidData data,
 in string name,
 in CORBA::Policy sched_param,
 in CORBA::Policy implicit_sched_param,
 in unsigned long stack_size,
 in RTCORBA::Priority base_priority);
 };
};

TAO’s extended spawn() operation combines two steps into one. The RT
CORBA specification is very open in terms of how distributable threads may
interact with schedules. It states that schedules, or schedulers, are not required,
but does not completely describe what should happen when they are not
present. By allowing distributable threads to exist outside of schedules, the
specification imposes an explicit burden for any thread to also invoke
begin_scheduling_segment() when starting. This requires that the
schedule segment information either be known implicitly by the thread
function, or it must be communicated to the thread function via the data
parameter, which usually carries application data for the thread. TAO’s
implementation of spawn() carries the schedule segment information
separately from any application-specific thread data. It also uses a wrapper
function to invoke begin_scheduling_segment() before, and
end_scheduling_segment() after, invoking the thread function.

The RTScheduling::Current is responsible for managing scheduling
segments. Threads invoke begin_scheduling_segment() to start a new,
and possibly nested, scheduling segment. Threads invoke
end_scheduling_segment() at the completion of a scheduling segment.
Threads may also invoke update_scheduling_segment() to modify the
attributes of the current scheduling segment, if necessary.

module RTScheduling
{
 local interface Current : RTCORBA::Current
 {
 exception UNSUPPORTED_SCHEDULING_DISCIPLINE {};

 void begin_scheduling_segment (in string name,
 in CORBA::Policy sched_param,

178 o c i w e b . c o m

R e a l - T i m e C O R B A

 in CORBA::Policy implicit_sched_param)
 raises (UNSUPPORTED_SCHEDULING_DISCIPLINE);

 void update_scheduling_segment (in string name,
 in CORBA::Policy sched_param,
 in CORBA::Policy implicit_sched_param)
 raises (UNSUPPORTED_SCHEDULING_DISCIPLINE);

 void end_scheduling_segment (in string name);
 };
};

The operations above allow RT CORBA applications to manage scheduling
segments. Scheduling segments may be named, and the name can be used
when ending a scheduling segment to ensure the correct segment is ended;
otherwise, the name has no purpose. The sched_param and
implicit_sched_param parameters are used to describe how a scheduling
segment relates to other scheduling segments within the scheduler. The
sched_param parameter is used to explicitly define the new or updated
scheduling segment. The implicit_sched_param parameter is used
whenever a nested scheduling segment is started with a nil sched_param
value. There are no constraints placed on the definition of the scheduling
parameters by the RT CORBA specification other than the fact that they must
derive from the CORBA::Policy interface. Scheduling parameters are created
by schedulers that implement a particular scheduling discipline, by way of a
factory operation that returns scheduling parameters specific to that discipline.
The RT CORBA specification describes a number of well-known scheduling
disciplines, and includes example IDL specifications for each. These
scheduling disciplines are briefly described in section 8.4.5. See also section
3.7 of the RT CORBA 1.2 specification for a more complete description of
these scheduling disciplines.

8.4.4 Real-Time Scheduling Resource Manager
The RT CORBA specification defines a scheduler-aware specialization of the
RTCORBA::Mutex called RTScheduling::ResourceManager. This
interface defines no new operations or attributes, it simply provides a means to
distinguish a resource manager from a base mutex. A ResourceManager is
created by calling the create_resource_manager() operation on the
RTScheduling::Scheduler interface. See 8.4.5 for more details on the
RTScheduling::Scheduler interface. Operations that acquire
(RTScheduling::ResourceManager::lock() or

o c i w e b . c o m 179

8 . 4 D y n a m i c S c h e d u l i n g

RTScheduling::ResourceManager::try_lock()) or release
(RTScheduling::ResourceManager::unlock()) a real-time CORBA
resource manager are defined as scheduling points, meaning the scheduler will
have a chance to run and reassess the scheduling parameters, thereby ensuring
that the scheduling discipline is maintained. Distributable threads may share
local resources by using RTScheduling::ResourceManager operations.

8.4.5 Real-Time Scheduling Scheduler
A scheduler is responsible for allocating system resources and determining
timeliness. The real-time CORBA scheduler is intended to be pluggable. ORB
implementations may provide different scheduler implementations as long as
they implement the RTScheduling::Scheduler interface, defined in
RTScheduler.pidl. This pluggable architecture affords implementors the
flexibility to provide specific schedulers, each with particular scheduling
characteristics. The scheduler works in conjunction with portable interceptors
to track scheduling segments of a distributable thread. The real-time scheduler
interface is described in 8.4.5.3, where it is presented in context with the other
elements of real-time scheduling.

8.4.5.1 TAO’s RTScheduleManager
While the real-time CORBA specification describes the
RTScheduling::Scheduler interface and its role in distributed real-time
systems, it does not mandate an implementation or even a scheme for
managing schedulers. The specification states that using a scheduler is
optional, and for ORBs that have a scheduler, it may be accessed by calling
resolve_initial_references(“RTScheduler”). TAO, on the other
hand, provides a TAO-specific initial reference called the
“RTScheduleManager”. A call to
resolve_initial_references(“RTSchedulerManager”) returns an
object through which an application may supply its own scheduler.

8.4.5.2 Scheduling Disciplines
A scheduler is used to implement a particular scheduling discipline. It may
implement a well-known scheduling discipline such as Earliest Deadline First
or something esoteric such as Most Important First. The real-time CORBA
specification describes four well-known scheduling disciplines:

• Fixed Priority

180 o c i w e b . c o m

R e a l - T i m e C O R B A

• Earliest Deadline First (EDF)

• Least Laxity First (LLF)

• Maximize Accrued Utility (MAU)

For each of these disciplines, the specification provides a recommended
interface, including the definition of the particular scheduling parameter type
and how it might be created.

In addition, TAO provides an example scheduler that implements a scheduling
discipline that is not one of the above well-known disciplines, but that may be
useful in some situations:

• Most Important First (MIF)

The following sections briefly describe each of the well-known scheduling
disciplines, the associated scheduling parameter types, and the scheduler
interface.

8.4.5.3 Common RTScheduling::Scheduler Interface
Each of the discipline-specific schedulers listed above extends the common
base interface RTScheduling::Scheduler. The RT CORBA specification
provides an interface for this base type. TAO extends the Scheduler
interface, as shown in 8.5.4. The RT CORBA specified interface focuses on
resource management and is shown here:

module RTScheduling
{
 local interface Scheduler
 {
 exception INCOMPATIBLE_SCHEDULING_DISCIPLINES {};

 attribute CORBA::PolicyList scheduling_policies;
 readonly attribute CORBA::PolicyList poa_policies;
 readonly attribute string scheduling_discipline_name;

 ResourceManager create_resource_manager (
 in string name,
 in CORBA::Policy scheduling_parameter);

 void set_scheduling_parameter (
 inout PortableServer::Servant resource,
 in string name,
 in CORBA::Policy scheduling_parameter);
 };

o c i w e b . c o m 181

8 . 4 D y n a m i c S c h e d u l i n g

};

Note that the exception INCOMPATIBLE_SCHEDULING_DISCIPLINES is not
explicitly referenced by any of the operations defined in the specification.

The scheduling_policies and poa_policies attributes provide the
scheduler with a way of listing any POA policies that might be required for the
scheduler to work. It is reasonable and typical for these attributes to return nil
values.

The scheduling_discipline_name attribute is simply a name that may be
queried by the application to identify the particular discipline implemented by
the scheduler.

The create_resource_manager() operation is used to create instances of
RTScheduling::ResourceManager, providing it with a name and
optionally associating it with a scheduling parameter.

The set_scheduling_parameter() operation is intended to be a hook
giving schedulers a way to associate certain schedule parameters, such as a
fixed priority ceiling, to a particular resource. The resource in this case is a
servant.

It is not necessary for a scheduler to implement all or any of these operations.
They are defined merely as hooks to provide scheduler implementors a means
to express any sort of scheduling needs in code.

8.4.5.4 Fixed Priority Scheduling
The fixed priority scheduling discipline, also known as rate-monotonic
scheduling, is characterized by static schedules where the schedule is
completely determined prior to deployment. An example of fixed priority
scheduling is available in
$TAO_ROOT/examples/RTScheduling/Fixed_Priority_Scheduler.
The fixed priority scheduler is a suitable replacement for the older static
scheduling model.

Fixed priority scheduling is defined in the FP_Scheduling module. The
fixed priority scheduling parameter is defined by the
FP_Scheduling::SegmentSchedulingParameterPolicy local
interface. It has an attribute representing a single RT CORBA priority value.
The fixed priority scheduler is defined by the
FP_Scheduling::FP_Scheduler interface.

182 o c i w e b . c o m

R e a l - T i m e C O R B A

module FP_Scheduling
{
 local interface SegmentSchedulingParameterPolicy : CORBA::Policy
 {
 attribute RTCORBA::Priority value;
 };

 local interface FP_Scheduler : RTScheduling::Scheduler
 {
 SegmentSchedulingParameterPolicy create_segment_scheduling_parameter (
 in RTCORBA::Priority segment_priority);
 };
};

8.4.5.5 Earliest Deadline First Scheduling
The earliest deadline first (EDF) scheduling discipline places emphasis on
those threads that must complete the soonest. EDF scheduling segments are
based on a required completion time, which may be modified further by an
indication of a thread’s importance depending upon a particular scheduler’s
implementation. TAO does not currently provide a reference implementation
of the EDF scheduling discipline. The RT CORBA specification, however,
provides a suggested EDF scheduling interface in the EDF_Scheduling
module, shown here:

module EDF_Scheduling
{
 struct SchedulingParameter
 {
 TimeBase::TimeT deadline;
 long importance;
 };

 local interface SchedulingParameterPolicy : CORBA::Policy
 {
 attribute SchedulingParameter value;
 };

 local interface Scheduler : RTScheduling::Scheduler
 {
 SchedulingParameterPolicy create_scheduling_parameter (
 in SchedulingParameter value);
 };
};

o c i w e b . c o m 183

8 . 4 D y n a m i c S c h e d u l i n g

Note that the deadline member of the scheduling parameter is of type
TimeBase::TimeT. This type is defined as part of the CORBA Time Service
specification.

8.4.5.6 Least Laxity First Scheduling
The least laxity first (LLF) scheduling discipline favors threads that have the
least amount of time they can wait before missing a deadline (i.e., being late).
The real-time CORBA specification defines laxity as:

laxity = deadline - current time - estimated remaining time to completion

Where the estimated remaining time to completion is based on an estimated
initial execution time and the current time executed. In the LLF scheduling
discipline, threads that have a lower laxity value are scheduled first.

Least laxity first scheduling is defined in the LLF_Scheduling module:

module LLF_Scheduling
{
 struct SchedulingParameter
 {
 TimeBase::TimeT deadline;
 TimeBase::TimeT estimated_initial_execution_time;
 long importance;
 };

 local interface SchedulingParameterPolicy : CORBA::Policy
 {
 attribute SchedulingParameter value;
 };

 local interface Scheduler : RTScheduling::Scheduler
 {
 SchedulingParameterPolicy create_scheduling_parameter (
 in SchedulingParameter value);
 };
};

The LLF scheduling parameter is similar to the EDF scheduling parameter in
that it includes a deadline and an importance qualifier. An estimate of the
amount of time this schedule segment is anticipated to take to complete is also
included, so that the scheduler can compute the laxity for this segment. TAO
does not currently provide a reference implementation of the LLF scheduling
discipline.

184 o c i w e b . c o m

R e a l - T i m e C O R B A

8.4.5.7 Maximize Accrued Utility Scheduling
The maximize accrued utility (MAU) scheduling discipline is a special case of
the Earliest Deadline First scheduling discipline. In MAU scheduling, a
special function, called the utility function, is used to compute a utility value
for a thread. The utility of a thread is a measure of the likelihood that a thread
will complete close to, but prior than, its deadline. A thread that can complete
close to its deadline has a greater utility value than a thread completing much
earlier. A thread that will complete after its deadline may have a zero or
negative utility value. The MAU discipline seeks a schedule that results in
maximal accrued (i.e., summed) utility.

Maximize accrued utility scheduling is defined in the
Max_Utility_Scheduling module:

module Max_Utility_Scheduling
{
 struct SchedulingParameter
 {
 TimeBase::TimeT deadline;
 long importance;
 };

 local interface SchedulingParameterPolicy : CORBA::Policy
 {
 attribute SchedulingParameter value;
 };

 local interface Scheduler : RTScheduling::Scheduler
 {
 SchedulingParameterPolicy create_scheduling_parameter (
 in SchedulingParameter value);
 };
};

The MAU scheduling parameter is similar to the EDF scheduling parameter in
that it includes a deadline and an importance qualifier. TAO does not currently
provide a reference implementation of the MAU scheduling discipline.

8.4.5.8 Most Important First Scheduling
TAO provides an example of a scheduler that implements a somewhat
different scheduling discipline from the well-known disciplines described
above. The most important first (MIF) scheduler makes use of a thread’s
importance to determine which thread should execute. The MIF scheduler

o c i w e b . c o m 185

8 . 5 T A O ’ s I m p l e m e n t a t i o n o f R e a l - T i m e C O R B A

interface is defined in the MIF_Scheduling module in
$TAO_ROOT/examples/RTScheduling/MIF_Scheduling.idl.

module MIF_Scheduling
{
 local interface SegmentSchedulingParameterPolicy : CORBA::Policy
 {
 attribute short importance;
 };

 local interface MIF_Scheduler : RTScheduling::Scheduler
 {
 SegmentSchedulingParameterPolicy create_segment_scheduling_parameter (
 in short segment_importance);
 };
};

An implementation of MIF scheduling is provided in
$TAO_ROOT/examples/RTScheduling/MIF_Scheduler.

8.5 TAO’s Implementation of Real-Time CORBA

This section provides details on using TAO’s implementation of RT CORBA
and RT CORBA extensions provided in TAO. Topics in this section include:

• Priority Mapping in TAO

• Enabling Network Priority in TAO

• Using TAO’s Named Mutexes

• Building RT CORBA Support into TAO

• Configuring the RT ORB Component

8.5.1 Priority Mapping In TAO
TAO offers three priority mappings: continuous, direct and linear. These
priority mappings are explained in the following subsections.

8.5.1.1 Continuous Priority Mapping
The continuous priority mapping, as shown in Figure 8-3, uses only the first n
priorities of CORBA’s priority range, providing a one-to-one mapping of
native-to-CORBA priorities, where n is the number of discrete native priority

186 o c i w e b . c o m

R e a l - T i m e C O R B A

values permitted by the operating system. The lowest native priority maps to a
CORBA priority value of 0, the next higher native priority maps to 1, etc.

Because the mapping functions, PortableMapping::to_native() and
PortableMapping::to_CORBA() are idempotent, you can start with a
priority value, convert it twice and end up with the same value. This advantage
of continuous mapping is countered by the disadvantage that part of the
CORBA priority range is invalid. If you are using more than one RTOS in a
distributed environment, where each RTOS defines a different number of
discrete priority values, some CORBA priorities will map to valid native
priorities in one RTOS, but be invalid in another RTOS.

Figure 8-3 TAO Continuous Mapping Behavior

o c i w e b . c o m 187

8 . 5 T A O ’ s I m p l e m e n t a t i o n o f R e a l - T i m e C O R B A

8.5.1.2 Direct Priority Mapping
The direct priority mapping is similar to the continuous priority mapping in
that some of the CORBA priority values are invalid. However, native priority
values are passed directly through as CORBA priority values. As shown in
Figure 8-4, no priority transform is applied to the native value. This mapping
would only be desirable where native priority values fall within the minimum
and maximum values of the CORBA priority range.

It is possible to have native priority values that do not directly map onto the
CORBA priority range. The direct mapping would be useless in this situation.
An attempt to set the priority from a native value that does not map into the

188 o c i w e b . c o m

R e a l - T i m e C O R B A

CORBA priority range would cause a CORBA::DATA_CONVERSION exception
to be raised.

8.5.1.3 Linear Priority Mapping
The linear priority mapping is one-to-many, providing a range of CORBA
priority values for each native priority value. The size of the range is
(RTCORBA::maxPriority - RTCORBA::minPriority)/n, where n is the
number of discrete native priorities. For instance, a native system offering 16

Figure 8-4 TAO Direct Mapping Behavior

o c i w e b . c o m 189

8 . 5 T A O ’ s I m p l e m e n t a t i o n o f R e a l - T i m e C O R B A

priority values would result in a map with 2048 CORBA priority values for
each native priority value.

The risk with the linear priority mapping is that rounding can occur. In other
words, a CORBA priority converted to a native priority may be converted
back to a different CORBA priority value than the original. Furthermore, if
objects are hosted on processes using different real-time operating systems
with sufficiently different priority ranges, the linear mapping may result in a
native priority being communicated, then communicated back as a different
native priority.

8.5.1.4 Using TAO’s Priority Mappings
The RT CORBA specification only defines what a priority-mapping object is
to do, not how it is to do it. Furthermore, the specification does not define a

Figure 8-5 TAO Linear Mapping Behavior

190 o c i w e b . c o m

R e a l - T i m e C O R B A

means of accessing the priority-mapping object. What is defined is
RTScheduling, which hides the details of priority mapping from the
application.

To ensure that priority mappings are used consistently in an environment,
TAO is configured at run time through the RT_ORB_Loader service
configuration option ORBPriorityMapping (see 8.5.7). Within your
application, the ORB’s priority-mapping object may be obtained through a
helper object, an instance of TAO_Priority_Mapping_Manager (or its alias
RTCORBA::PriorityMappingManager) as shown below:

class TAO_RTCORBA_Export TAO_Priority_Mapping_Manager :
 public virtual CORBA::LocalObject
{
public:
//... implementation details not shown

 // Get the current priority mapping.
 RTCORBA::PriorityMapping* mapping (void);

 // Set a new priority mapping.
 void mapping (RTCORBA::PriorityMapping* new_mapping);

};

Since the priority-mapping manager, TAO_Priority_Mapping_Manager,
inherits from CORBA::LocalObject, it ultimately inherits from
CORBA::Object, which means that a reference to it may be obtained from the
ORB via a call to resolve_initial_references(). The name used for
this object is PriorityMappingManager. The object reference returned
from resolve_initial_references() must be narrowed using a call to
RTCORBA::PriorityMappingManager::_narrow(). The mapping()
operation is then called on the resulting object reference to obtain a pointer to
the RTCORBA::PriorityMapping object as shown below:

 CORBA::Object_var obj =
 orb->resolve_initial_references ("PriorityMappingManagaer");
 RTCORBA::PriorityMappingManager_var mapping_manager =
 RTCORBA::PriorityMappingManager::_narrow (obj.in());
 RTCORBA::PriorityMapping* priority_mapping = mapping_manager->mapping();

Note that the PriorityMappingManager retains ownership of the
PriorityMapping, so it should not be deleted.

o c i w e b . c o m 191

8 . 5 T A O ’ s I m p l e m e n t a t i o n o f R e a l - T i m e C O R B A

8.5.2 Enabling Network Priority in TAO
Some environments provide support for differentiated classes of network
service, and allow applications to specify their network quality of service
needs. A common mechanism for providing differentiated classes of service
on IP networks is the Differentiated Services (diffserv) architecture defined by
the Internet Engineering Task Force (IETF) Diffserv Working Group. In the
diffserv architecture, applications encode a particular six-bit pattern into a
field, called the DS field, of the IP packet header, thereby marking a packet to
receive a particular forwarding treatment, or per-hop behavior (PHB), at each
network node. The Diffserv Working Group has standardized a small number
of specific per-hop behaviors and a recommended bit pattern, or codepoint, for
each one. These PHBs and their recommended codepoints are defined in
various IETF Requests for Comments (RFCs). For more information on
Differentiated Services and Diffserv Codepoints (DSCPs), see RFC 2474,
RFC 2475, RFC 2597, RFC 2598, and RFC 3246, all of which are available
from the IETF at <http://www.ietf.org/rfc/>.

The RT CORBA specification does not provide a way to map RT CORBA
priorities to network priorities. As an extension to RT CORBA, TAO provides
a mechanism to map RT CORBA priorities to network priorities via diffserv
codepoints. Applications enable this mapping via a TAO-specific extension to
the TCPProtocolProperties described in 8.3.12. The interface is:

module RTCORBA
{
 local interface TCPProtocolProperties : ProtocolProperties
 {
 attribute long send_buffer_size;
 attribute long recv_buffer_size;
 attribute boolean keep_alive;
 attribute boolean dont_route;
 attribute boolean no_delay;
 attribute boolean enable_network_priority;
 };
};

When the enable_network_priority attribute is set to TRUE, mapping
between RT CORBA priority and a corresponding network priority diffserv
codepoint is enabled. The diffserv codepoint resulting from this mapping is
encoded into the DS field in the IP packet header for GIOP requests and
replies.

192 o c i w e b . c o m

R e a l - T i m e C O R B A

8.5.2.1 Enabling Network Priority in a Client
If you enable network priorities on the client side, the RT CORBA priority of
the invoking thread is mapped to a corresponding diffserv codepoint and set in
the IP packet header for GIOP requests. To enable network priorities on the
client side, you must create a TCPProtocolProperties object, set the
enable_network_priority attribute to TRUE, create a protocol properties
policy, then set the protocol properties policy at the ORB, thread, or object
level. An example of how to do this is shown below:

#include <tao/RTCORBA/RTCORBA.h>

int main (int argc, char* argv[])
{
 try
 {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

 // Get the RTORB.
 obj = orb->resolve_initial_references ("RTORB");
 RTCORBA::RTORB_var rtorb = RTCORBA::RTORB::_narrow (obj.in());

 // Specify the TCP properties.
 CORBA::Long send_buffer_size = 16384;
 CORBA::Long recv_buffer_size = 16384;
 CORBA::Boolean keep_alive = true;
 CORBA::Boolean dont_route = false;
 CORBA::Boolean no_delay = true;

 // Create TCP protocol properties.
 RTCORBA::TCPProtocolProperties_var tcp_properties =
 rtorb->create_tcp_protocol_properties(
 send_buffer_size,
 recv_buffer_size,
 keep_alive,
 dont_route,
 no_delay);

 // Enable network priority.
 tcp_properties->enable_network_priority (1);

 // Create a protocol list and set the ProtocolProperties.
 RTCORBA::ProtocolList protocols;
 protocols.length (1);
 protocols[0].protocol_type = TAO_TAG_IIOP_PROFILE;
 protocols[0].transport_protocol_properties =
 RTCORBA::ProtocolProperties::_duplicate (tcp_properties.in ());

o c i w e b . c o m 193

8 . 5 T A O ’ s I m p l e m e n t a t i o n o f R e a l - T i m e C O R B A

 // Create client protocol policy and insert it into a policy list.
 CORBA::PolicyList policy_list;
 policy_list.length (1);
 policy_list[0] = rtorb->create_client_protocol_policy (protocols);

 // Set the policy at the ORB level.
 CORBA::Object_var obj = orb->resolve_initial_references("ORBPolicyManager");
 CORBA::PolicyManager_var policy_manager =
 CORBA::PolicyManager::_narrow(obj.in());
 policy_manager->set_policy_overrides(policy_list, CORBA::SET_OVERRIDE);

 //...

In the example above, since the client protocol policy is set at the ORB level
(by setting the policy overrides on the ORBPolicyManager), network priority
mapping will be enabled for all requests invoked through that ORB.

8.5.2.2 Enabling Network Priority in a Server
If you enable network priorities on the server side, the RT CORBA priority of
the request-dispatching thread is mapped to a corresponding diffserv
codepoint and set in the IP packet header for the GIOP reply. To enable
network priorities on the server side, create TCPProtocolProperties and
set the enable_network_priority attribute to TRUE. Then, create a
protocol-properties policy and set the policy on a new POA upon creation. An
example of how to do this is shown below:

#include <tao/RTCORBA/RTCORBA.h>

int main (int argc, char* argv[])
{
 try
 {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

 // Get a reference to Root POA and activate it.
 CORBA::Object_var obj = orb->resolve_initial_references ("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow (obj.in());
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate ();

 // Get the RTORB.
 obj = orb->resolve_initial_references ("RTORB");
 RTCORBA::RTORB_var rtorb = RTCORBA::RTORB::_narrow (obj.in());

194 o c i w e b . c o m

R e a l - T i m e C O R B A

 // Specify the TCP properties.
 CORBA::Long send_buffer_size = 16384;
 CORBA::Long recv_buffer_size = 16384;
 CORBA::Boolean keep_alive = true;
 CORBA::Boolean dont_route = false;
 CORBA::Boolean no_delay = true;

 // Create TCP protocol properties.
 RTCORBA::TCPProtocolProperties_var tcp_properties =
 rtorb->create_tcp_protocol_properties(
 send_buffer_size,
 recv_buffer_size,
 keep_alive,
 dont_route,
 no_delay);

 // Enable network priority.
 tcp_properties->enable_network_priority (1);

 // Create a protocol list and set the ProtocolProperties.
 RTCORBA::ProtocolList protocols;
 protocols.length (1);
 protocols[0].protocol_type = TAO_TAG_IIOP_PROFILE;
 protocols[0].transport_protocol_properties =
 RTCORBA::ProtocolProperties::_duplicate (tcp_properties.in ());

 // Create server protocol policy and insert it into a policy list.
 CORBA::PolicyList policy_list;
 policy_list.length (1);
 policy_list[0] = rtorb->create_server_protocol_policy (protocols);

 // Set the policy on a new child POA.
 PortableServer::POA_var child_poa = poa->create_POA (
 "childPOA", PortableServer::POAManager::_nil(), policy_list);

 //...

In the example above, network priority mapping will be enabled in all replies
generated from servants activated in the child POA. Replies generated from
servants activated in the Root POA will not have network priority mapping
enabled, so take care when using _this to get object references from
servants.

8.5.2.3 Network Priority Mappings
Different mappings of RT CORBA priorities to network priorities are
possible. A specific network priority mapping is provided via a TAO-specific

o c i w e b . c o m 195

8 . 5 T A O ’ s I m p l e m e n t a t i o n o f R e a l - T i m e C O R B A

NetworkPriorityMapping interface. This mapping is similar to the RT
CORBA priority to native priority mapping described in 8.3.4. The interface is
shown below:

module RTCORBA
{
 typedef long NetworkPriority;
 native NetworkPriorityMapping;
};

The C++ binding for NetworkPriorityMapping is a class in the RTCORBA
namespace as shown below:

namespace RTCORBA {
 class NetworkPriorityMapping
 {
 public:
 virtual CORBA::Boolean to_network (RTCORBA::Priority corba_priority,
 RTCORBA::NetworkPriority& network_priority);
 virtual CORBA::Boolean to_CORBA (RTCORBA::NetworkPriority network_priority,
 RTCORBA::Priority& corba_priority);
 };
};

The functions to_network() and to_CORBA() may be called several times
by an ORB during an invocation. To provide the greatest possible efficiency
these functions do not throw exceptions, not even CORBA System exceptions.
However these functions will return FALSE if the input value is outside the
allowed range for that type. For both of these functions, the first argument has
the semantics of an in, supplying input, with the second argument being an out
for receiving the converted results.

During an invocation, the RT ORB uses these mapping functions to map
between RT CORBA priority and network priority. If the call to either
mapping function returns FALSE, the ORB stops processing the invocation
and throws a DATA_CONVERSION system exception to the invoking
application.

By default, TAO uses a linear network-priority mapping that maps RT
CORBA priority values to discrete diffserv codepoints recommended by
various IETF RFCs. For example, RFC 2474 recommends specific codepoints
for “default” per-hop behaviors and various Class Selector (CS) codepoints;
RFC 2597 recommends specific codepoints for various Assured Forwarding

196 o c i w e b . c o m

R e a l - T i m e C O R B A

(AF) PHBs; RFC 3246 recommends a specific codepoint for Expedited
Forwarding (EF) PHB. See the relevant RFCs for more information on the
values and semantics of these PHBs and their recommended diffserv
codepoints.

8.5.2.4 Using TAO’s Network Priority Mappings
Similar to the run-time configuration of priority mappings described in
8.5.1.4, the network priority mapping used by TAO can be configured at run
time through the RT_ORB_Loader option
RTORBNetworkPriorityMapping, described in 8.5.7. Within your
application, the ORB’s network priority-mapping object may be obtained
through either a helper object, an instance of
TAO_Network_Priority_Mapping_Manager or its typedef
RTCORBA::NetworkPriorityMappingManager.

class TAO_RTCORBA_Export TAO_Network_Priority_Mapping_Manager :
 public virtual CORBA::LocalObject
{
public:
//... implementation details not shown

 /// Get the current network priority mapping.
 RTCORBA::NetworkPriorityMapping* mapping (void);

 /// Set a new network priority mapping.
 void mapping (RTCORBA::NetworkPriorityMapping* new_mapping);

}

Because TAO_Network_Priority_Mapping_Manager is derived from
CORBA::LocalObject, it ultimately is derived from CORBA::Object. As a
descendant of CORBA::Object, a reference to the network priority mapping
manager may be obtained from the ORB via a call to
resolve_initial_references(). The name used for this object is
NetworkPriorityMappingManager. The object reference returned from
resolve_initial_references() must be narrowed using a call to
RTCORBA::NetworkPriorityMappingManager::_narrow(). Then, a
call must be made to the mapping() function on the resulting object
reference to obtain a pointer to the RTCORBA::NetworkPriorityMapping
object. An example of how to do this is shown below:

o c i w e b . c o m 197

8 . 5 T A O ’ s I m p l e m e n t a t i o n o f R e a l - T i m e C O R B A

 CORBA::Object_var obj =
 orb->resolve_initial_references ("NetworkPriorityMappingManagaer");
 RTCORBA::NetworkPriorityMappingManager_var network_mapping_manager =
 RTCORBA::NetworkPriorityMappingManager::_narrow (obj.in());
 RTCORBA::NetworkPriorityMapping* network_priority_mapping =
 network_mapping_manager->mapping();

Note that the NetworkPriorityMappingManager retains ownership of the
NetworkPriorityMapping, so it should not be deleted.

8.5.2.5 Implementing a Custom Network Priority Mapping
An application can implement a custom NetworkPriorityMapping by
deriving a new class from RTCORBA::NetworkPriorityMapping and
overriding the to_network() and to_CORBA() functions as shown below:

class CustomNetworkPriorityMapping :
 public virtual RTCORBA::NetworkPriorityMapping
{
 public:
 virtual CORBA::Boolean to_network (RTCORBA::Priority corba_priority,
 RTCORBA::NetworkPriority& network_priority);
 virtual CORBA::Boolean to_CORBA (RTCORBA::NetworkPriority network_priority,
 RTCORBA::Priority& corba_priority);
};

CORBA::Boolean CustomNetworkPriorityMapping::to_network (
 RTCORBA::Priority corba_priority,
 RTCORBA::NetworkPriority& network_priority)
{
 network_priority = // map corba_priority to network_priority
 return true;
}

CORBA::Boolean CustomNetworkPriorityMapping::to_CORBA (
 RTCORBA::NetworkPriority network_priority,
 RTCORBA::Priority& corba_priority)
{
 corba_priority = // map network_priority to corba_priority
 return true;
}

To create an instance of our custom network priority mapping and instruct
TAO to use it instead of the default network priority mapping, we do the
following:

 CustomNetworkPriorityMapping* new_network_priority_mapping =

198 o c i w e b . c o m

R e a l - T i m e C O R B A

 new CustomNetworkPriorityMapping();
 network_mapping_manager->mapping(new_network_priority_mapping);

Note that the NetworkPriorityMappingManager takes ownership of the
new network priority-mapping object.

8.5.3 Using TAO’s Named Mutexes
The basic RT CORBA Mutex specification only requires that an RTORB
create and destroy mutexes. TAO adds the option of maintaining a table of
mutexes keyed by a name, freeing the application developer from managing
references to the mutex as shown below:

module RTCORBA
{
 local interface RTORB
 {
 // ...
 // TAO specific
 // Named Mutex creation/opening
 exception MutexNotFound {};
 Mutex create_named_mutex (in string name,
 out boolean created_flag);
 Mutex open_named_mutex (in string name)
 raises (MutexNotFound);

 };
};

In addition to supplying the RT-CORBA-compliant implementation of
mutexes, TAO provides the following functions for accessing mutexes by
name:

RTORB::create_named_mutex(in string name, out boolean created_flag)

Creates a new instance of a mutex and returns a reference to it, or returns a
reference to an existing mutex of that name. The value of created_flag
will be TRUE only if the mutex was created as a result of this call.

RTORB::open_named_mutex(in string name)

Returns a reference to an existing mutex only if it exists. Raises the TAO-
specific exception MutexNotFound if the supplied name does not match
any mutex.

o c i w e b . c o m 199

8 . 5 T A O ’ s I m p l e m e n t a t i o n o f R e a l - T i m e C O R B A

8.5.4 Dynamic Scheduling and TAO
TAO fully supports the scheduling feature of RT CORBA. TAO deviates from
the specification in a few important respects. In particular, the definitions of
the RTScheduling::Current (see 8.4.3) and the base interface for the
RTScheduling::Scheduler (see 8.4.5) are slightly different in TAO than
in the specification.

TAO does not provide an implementation of RTScheduling::Scheduler.
As discussed in 8.4.5, the scheduler is effectively an abstract interface, the real
work of scheduling being handled by specialized schedulers. TAO does
provide the framework for building your own scheduler and using it to
manage the dispatching of distributable threads. TAO’s framework includes a
set of portable interceptors to provide message notification to the scheduler.
These interceptors provide additional scheduling points in addition to the
usual begin, update, and end of a scheduling segment.

TAO extends the base scheduler as defined in the RT CORBA specification to
define several operations used by the portable interceptors or
RTScheduling::Current as schedule evaluation points. TAO’s scheduler
interface definition is shown here:

module RTScheduling
{
 local interface Scheduler
 {
 void begin_new_scheduling_segment (in Current::IdType guid,
 in string name,
 in CORBA::Policy sched_param,
 in CORBA::Policy implicit_sched_param)
 raises (Current::UNSUPPORTED_SCHEDULING_DISCIPLINE);

 void begin_nested_scheduling_segment (in Current::IdType guid,
 in string name,
 in CORBA::Policy sched_param,
 in CORBA::Policy implicit_sched_param)
 raises (Current::UNSUPPORTED_SCHEDULING_DISCIPLINE);

 void update_scheduling_segment (in Current::IdType guid,
 in string name,
 in CORBA::Policy sched_param,
 in CORBA::Policy implicit_sched_param)
 raises (Current::UNSUPPORTED_SCHEDULING_DISCIPLINE);

 void end_scheduling_segment (in Current::IdType guid,

200 o c i w e b . c o m

R e a l - T i m e C O R B A

 in string name);

 void end_nested_scheduling_segment (in Current::IdType guid,
 in string name,
 in CORBA::Policy outer_sched_param);
 };
};

The scheduler’s operations are invoked by the RTScheduling::Current
whenever a new base or nested schedule segment is begun or ended, or when a
segment is updated. These invocations provide the scheduler an opportunity to
raise an exception (e.g., if an inappropriate exception is used) or to possibly
dispatch or otherwise order existing distributable threads.

The TAO scheduler provides implementations for all of the portable
interceptor interception points. With the exception of receive_request(),
the signatures of all the interception operations is the same as that of the
equivalent PortableInterceptor::ServerInterceptor or
PortableInterceptor::ClientInterceptor operations. The difference
in the signature of the receive_request() operation results from the need
to supply additional information to the scheduler, as shown here:

module RTScheduling
{
 local interface Scheduler
 {
 void receive_request (in PortableInterceptor::ServerRequestInfo ri,
 in Current::IdType guid,
 in string name,
 in CORBA::Policy sched_param,
 in CORBA::Policy implicit_sched_param)
 raises (PortableInterceptor::ForwardRequest);
 };
};

As with the common scheduler operations shown in 8.4.5.3, TAO’s additional
operations provide additional hooks to allow the expression of any sort of
scheduler that may be required by the application. The TAO-specific
scheduler interface is intended to describe all possible schedule evaluation
points, making up for apparent deficiencies in the RT CORBA specification’s
scheduler interface.

o c i w e b . c o m 201

8 . 5 T A O ’ s I m p l e m e n t a t i o n o f R e a l - T i m e C O R B A

8.5.5 Enabling RT CORBA Support in TAO
RT CORBA features are controlled when building TAO by the rt_corba,
corba_messaging, and minimum_corba build flags. The RT CORBA
features are enabled in TAO by default because rt_corba is set to 1,
corba_messaging is set to 1, and minimum_corba is set to 0 by default in
the TAO make files. If any of these three flags is set to the opposite value, RT
CORBA support will not be available in the TAO libraries. The preprocessor
macros TAO_HAS_RT_CORBA, TAO_HAS_CORBA_MESSAGING, and
TAO_HAS_MINIMUM_CORBA can also be used to set these flags (for example,
in build environments where you are not using GNU Make). See A.4 for more
information concerning these flags and macros.

8.5.6 Building Applications that use RT CORBA
TAO’s support of basic RT CORBA features is implemented in the
TAO_RTCORBA library, and the RTPortableServer module’s features are
implemented in the TAO_RTPortableServer library. Thus, applications that
use TAO’s RT CORBA features must link with one or both of these libraries.
MPC projects for clients that use RT CORBA can simply inherit from the
rt_client base project. MPC projects for servers that use RT CORBA can
simply inherit from the rt_server base project. For example, here is the
MPC file for the RT CORBA example in
$TAO_ROOT/DevGuideExamples/RTCORBA:

project(*Server): rt_server {
 Source_Files {
 Messenger_i.cpp
 MessengerServer.cpp
 common.cpp
 }
}

project(*Client): rt_client {
 Source_Files {
 MessengerC.cpp
 MessengerClient.cpp
 common.cpp
 }
}

For more information on MPC, see
<http://www.ociweb.com/products/MPC>.

202 o c i w e b . c o m

R e a l - T i m e C O R B A

8.5.7 Configuring RT CORBA at Run Time
Certain behavioral aspects of TAO’s implementation of RT CORBA can be
configured at run time.

8.5.7.1 RT ORB Loader
The RT ORB can be configured via the RT_ORB_Loader service object. The
TAO RT_ORB_Loader takes initialization options that control the priority
mapping type, the network priority mapping type, the scheduling policy, the
thread scoping policy, and the lifetime of dynamic threads in a thread pool.

The RT_ORB_Loader object is initialized by supplying a service
configuration directive, typically as a line in a svc.conf file. Service
configuration directives are explained in further detail in Chapter 16. For
example, an application that statically links the RTCORBA library may use a
static directive as shown here. (The entire directive should appear on one
line in the file.)

static RT_ORB_Loader "-ORBPriorityMapping linear -ORBSchedPolicy SCHED_FIFO
-ORBScopePolicy SYSTEM"

The possible configuration options for the RT_ORB_Loader service object are
listed in the following tables.

Valid values for mapping_type are:

• direct (default)—RT CORBA priorities are passed directly through as
native priorities. The entire range of RT CORBA priorities may not be
usable.

• linear—The entire RT CORBA priority range is mapped to the entire
native priority range.

Table 8-1 Priority Mapping Selection Option

Option Description

-ORBPriorityMapping mapping_type
Selects the algorithm to use when mapping RT
CORBA priorities to native operating system
priorities.

o c i w e b . c o m 203

8 . 5 T A O ’ s I m p l e m e n t a t i o n o f R e a l - T i m e C O R B A

• continuous—RT CORBA priorities are mapped onto native priorities
based on the minimum native value. For example, if the minimum native
value is 8 and the CORBA priority is 22 then the mapped priority would
be 30.

See 8.5.1 for more information on TAO’s priority mappings.

Currently, the only valid value for mapping is:

• linear (default)—RT CORBA priorities are mapped to a series of
network priorities, represented as diffserv codepoints. The linear
mapping is the only network priority mapping provided with TAO.

See 8.5.2 for more information on enabling network priorities in TAO.

On some operating systems, the choice of scheduling policy affects how the
priority mapping computations are performed. Each scheduling policy may
have different low and high priority values, and therefore would affect the
priority at which threads may run. Valid values for sched_policy are:

• SCHED_OTHER (default)—System-dependent default scheduling policy.

• SCHED_FIFO—FIFO scheduling policy, wherein the highest priority
thread that can run is scheduled first.

• SCHED_RR—Round-robin scheduling policy, wherein a fixed time-slice is
provided for each thread.

You may need “super-user” or “Administrator” privileges to affect the
scheduling policy.

Table 8-2 Network Priority Mapping Selection Option

Option Description

-RTORBNetworkPriorityMapping mapping
Selects the algorithm to use when
mapping RT CORBA priorities to
network priorities.

Table 8-3 Scheduling Policy Selection Option

Option Description

-ORBSchedPolicy sched_policy
Specifies the scheduling policy used when
mapping RT CORBA priorities to native
priorities.

204 o c i w e b . c o m

R e a l - T i m e C O R B A

On some operating systems, the choice of scheduling contention scope affects
the preemption and execution of the threads allocated to RT CORBA thread
pools. Valid values for scope_policy are:

• PROCESS (default)—Threads compete for resources only with other
threads in the same process.

• SYSTEM—Threads with system scheduling contention scope compete for
resources against all threads in the system. This may not be available for
all threading implementations.

These options control when thread pools’ dynamic threads should exit and
end. If neither option is specified, dynamic threads will essentially run forever
(until the ORB shuts down). The thread pool automatically creates new
dynamic threads as required. See 8.3.7 for more details about thread pools.

8.5.7.2 RT Collocation Resolver
TAO normally optimizes collocated invocations (where the client and the
target object are in the same address space). The effect of the ORB’s default
collocation optimization is such that the client thread is used to carry out the
request. As described in 15.4.5, this effect may be undesirable in real-time
applications, because the client thread may not be running at the priority at
which the request should be processed, possibly leading to priority inversions.

Table 8-4 Scope Policy Selection Option

Option Description

-ORBScopePolicy scope_policy Specifies the thread-scheduling contention scope.

Table 8-5 Dynamic Thread Options

Option Description

-RTORBDynamicThreadIdleTimeout time
Specifies that dynamic threads should exit
after being idle for time microseconds.

-RTORBDynamicThreadRunTime time

Specifies that dynamic threads should exit
after time microseconds. Any work in
progress will be completed before
termination.

o c i w e b . c o m 205

8 . 6 C l i e n t - P r o p a g a t e d P r i o r i t y M o d e l

Therefore, TAO’s implementation of RT CORBA employs a special
“real-time collocation resolver” (RT_Collocation_Resolver) to determine
whether an invocation should be subject to collocation optimization. As
described in 17.13.11, the RT collocation resolver considers factors other than
just whether the request target object is in the same address space as the client
when deciding if the collocation optimization should be applied.

The default behavior of TAO’s RT collocation resolver is appropriate for most
real-time CORBA applications. However, its behavior can be disabled if the
default (non-RT) collocation optimization resolution mechanism is desired.
The RT collocation resolver can be disabled using the
-ORBDisableRTCollocation ORB initialization option.

See 17.13.11 for more information on this option.

8.6 Client-Propagated Priority Model

In the client-propagated priority model, a CORBA request is executed at the
priority specified by the client when the request is invoked. The CORBA
priority of the request is carried with the invocation. In this model, the server
is obligated to execute the servant code that handles the request in a thread
running at the appropriate native priority, according to the selected priority
mapping. The client’s requested priority is carried to the server in a CORBA
priority service context, and is passed back to the client from the server, along
with the reply, through the service context.

8.6.1 Specifying the Client-Propagated Priority Model in
the Server
A server specifies that it supports the client-propagated priority model by
setting the RTCORBA::CLIENT_PROPAGATED policy during POA creation.
The policy is then exported to clients via object references generated through
that POA.

Table 8-6 RT Collocation Resolver Option

Option Description

-ORBDisableRTCollocation {0 | 1}
Controls how collocation optimization
decisions are made in RT CORBA
applications.

206 o c i w e b . c o m

R e a l - T i m e C O R B A

Here, we extend the Messenger example from Chapter 3 to set the
RTCORBA::CLIENT_PROPAGATED priority model policy in the Messenger
server:

#include "Messenger_i.h"
#include <iostream>
#include <fstream>

int main (int argc, char* argv[])
{
 try
 {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

 // Get a reference to Root POA and activate it.
 CORBA::Object_var obj = orb->resolve_initial_references ("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow (obj.in());
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();

 // Get the RTORB.
 obj = orb->resolve_initial_references ("RTORB");
 RTCORBA::RTORB_var rtorb = RTCORBA::RTORB::_narrow (obj.in());

 // Use the RTORB to create the CLIENT_PROPAGATED priority model policy.
 CORBA::PolicyList policies;
 policies.length(1);
 RTCORBA::Priority default_server_priority = 30;
 policies[0] = rtorb->create_priority_model_policy(
 RTCORBA::CLIENT_PROPAGATED,
 default_server_priority); // priority to use if not propagated from client

 // Create a child POA with CLIENT_PROPAGATED priority model in effect.
 PortableServer::POA_var child_poa =
 poa->create_POA ("MessengerPOA", mgr.in(), policies);

 // Create a Messenger_i servant.
 PortableServer::Servant_var<Messenger_i> messenger_servant
 = new Messenger_i(orb.in());

 // Register the servant with the new POA, obtain its object reference,
 // stringify it, and write it to a file
 PortableServer::ObjectId_var oid =
 child_poa->activate_object (messenger_servant.in());
 CORBA::Object_var messenger_obj = child_poa->id_to_reference (oid.in());
 CORBA::String_var str = orb->object_to_string (messenger_obj.in());
 std::ofstream iorFile ("Messenger.ior");
 iorFile << str.in() << std::endl;

o c i w e b . c o m 207

8 . 6 C l i e n t - P r o p a g a t e d P r i o r i t y M o d e l

 iorFile.close();
 std::cout << "IOR written to file Messenger.ior" << std::endl;

 // Accept requests from clients.
 orb->run();

 // Release resources.
 orb->destroy();
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "Caught a CORBA exception: " << ex << std::endl;
 return 1;
 }
 return 0;
}

8.6.2 Using the Client-Propagated Priority Model in the
Client
To use the client-propagated priority model in the client, we first check to see
if the object reference we obtain from the server is configured with the
RTCORBA::CLIENT_PROPAGATED policy. We do this by calling the
_get_policy() operation on the object reference, narrowing the resulting
policy object to RTCORBA::PriorityModelPolicy, then testing it to see if
its value is RTCORBA::CLIENT_PROPAGATED:

 // Get the Messenger object reference.
 CORBA::Object_var obj = orb->string_to_object ("file://Messenger.ior");
 Messenger_var messenger = Messenger::_narrow (obj.in());

 // Get the policy from the object reference.
 CORBA::Policy_var policy =
 messenger->_get_policy (RTCORBA::PRIORITY_MODEL_POLICY_TYPE);

 // Check to see if it is of type RTCORBA::PriorityModelPolicy.
 RTCORBA::PriorityModelPolicy_var priority_policy =
 RTCORBA::PriorityModelPolicy::_narrow (policy.in ());
 if (CORBA::is_nil (priority_policy.in ())) {
 std::cerr << "Messenger object does not support RTCORBA::PriorityModelPolicy"
 << std::endl;
 return 1;
 }

 // Check to see if the priority model is RTCORBA::CLIENT_PROPAGATED.
 RTCORBA::PriorityModel priority_model = priority_policy->priority_model();
 if (priority_model != RTCORBA::CLIENT_PROPAGATED) {
 std::cerr << "Messenger object does not support RTCORBA::CLIENT_PROPAGATED"

208 o c i w e b . c o m

R e a l - T i m e C O R B A

 << std::endl;
 return 1;
 }

Next, we use the RTCORBA::Current interface to set the priority of the
calling thread to the priority we want propagated to the server with the
request. We call resolve_initial_references(“RTCurrent”) on the
ORB to obtain the RTCORBA::Current, then use the RTCORBA::Current
object to set the priority of the current thread to the CORBA priority at which
we want the request to be processed by the server:

 CORBA::Object_var current_obj = orb->resolve_initial_references ("RTCurrent");
 RTCORBA::Current_var current = RTCORBA::Current::_narrow (current_obj.in());
 RTCORBA::Priority desired_priority = 10;
 current->the_priority (desired_priority);

Now, when we invoke an operation on the Messenger object reference, the
priority will be carried with the request to the server’s ORB, where it will be
used to set the priority of the thread that processes the request:

 CORBA::String_var message = CORBA::string_dup ("Howdy!");
 messenger->send_message ("TAO User", "Test", message.inout());

8.7 Server-Declared Priority Model

In the server-declared priority model, a CORBA request is executed at the
priority specified by the server as the default for CORBA objects managed by
the POA to which the policy applies, or at the priority specified on a
per-object-reference basis. The server-declared model is appropriate when
some operations must always be invoked at the same priority, regardless of the
client thread making the request. In this model, the priority at which
invocations on an object reference will be executed by the server is published
in the object reference, where it is available to the client-side ORB. The
client’s ORB can use this priority information to, for example, set the priority
of the calling thread or choose the appropriate connection to the server over
which to send the request. The priority is not carried with the request through
the service context list as it is with the client-propagated priority model.

o c i w e b . c o m 209

8 . 7 S e r v e r - D e c l a r e d P r i o r i t y M o d e l

8.7.1 Specifying the Server-Declared Priority Model in the
Server
The server specifies that it supports the server-declared priority model by
setting the RTCORBA::SERVER_DECLARED policy, and the default priority
value to use for executing requests, during POA creation. By default,
operation invocations on CORBA objects managed by a particular POA will
be executed at the default priority value specified at that POA’s creation. The
server-declared policy and the priority value are exported to clients via object
references generated through that POA. The priority can also be set on a
per-object-reference basis, as explained later in this section.

Here, we extend the Messenger example from Chapter 3 to set the
RTCORBA::SERVER_DECLARED priority model policy in the Messenger
server:

#include "Messenger_i.h"
#include <iostream>
#include <fstream>

int main (int argc, char* argv[])
{
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

 // Get a reference to Root POA and activate it.
 CORBA::Object_var obj = orb->resolve_initial_references ("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow (obj.in());
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();

 // Get the RTORB.
 obj = orb->resolve_initial_references ("RTORB");
 RTCORBA::RTORB_var rtorb = RTCORBA::RTORB::_narrow (obj.in());

 // Use the RTORB to create the SERVER_DECLARED priority model policy.
 CORBA::PolicyList policies;
 policies.length(1);
 RTCORBA::Priority default_server_priority = 30;
 policies[0] = rtorb->create_priority_model_policy(
 RTCORBA::SERVER_DECLARED,
 default_server_priority); // default priority to use

 // Create a child POA with SERVER_DECLARED priority model in effect.
 PortableServer::POA_var child_poa =
 poa->create_POA ("MessengerPOA", mgr.in(), policies);

210 o c i w e b . c o m

R e a l - T i m e C O R B A

 // Create a Messenger_i servant.
 PortableServer::Servant_var<Messenger_i> messenger_servant
 = new Messenger_i(orb.in());

 // Activate the Messenger in the new POA.
 PortableServer::ObjectId_var oid =
 child_poa->activate_object (messenger_servant.in());

 // Obtain the Messenger object reference, stringify it, and write it to a file
 CORBA::Object_var messenger_obj = child_poa->id_to_reference (oid.in());
 CORBA::String_var str = orb->object_to_string (messenger_obj.in());
 std::ofstream iorFile ("Messenger.ior");
 iorFile << str.in() << std::endl;
 iorFile.close();
 std::cout << "IOR written to file Messenger.ior" << std::endl;

 // Accept requests from clients.
 orb->run();

 // Release resources.
 orb->destroy();
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "Caught a CORBA exception: " << ex << std::endl;
 return 1;
 }
 return 0;
}

You can use operations defined on the RTPortableServer::POA interface
to override the POA’s default priority on a per-object-reference basis. For
example, we can use the activate_object_with_priority() function
rather than activate_object() to activate the Messenger object with a
CORBA priority other than the default, specified when the POA was created:

 // Use the POA as a RT POA.
 RTPortableServer::POA_var rt_poa =
 RTPortableServer::POA::_narrow (child_poa.in());

 // Activate the Messenger in the new POA with a specific priority.
 RTCORBA::Priority messenger_specific_priority = 50;
 PortableServer::ObjectId_var oid =
 rt_poa->activate_object_with_priority (
 messenger_servant.in(),
 messenger_specific_priority);

o c i w e b . c o m 211

8 . 7 S e r v e r - D e c l a r e d P r i o r i t y M o d e l

Other operations on the RTPortableServer::POA interface are used
similarly, including

• create_reference_with_priority(),

• create_reference_with_id_and_priority(), and

• activate_object_with_id_and_priority(),

depending upon the POA policies (e.g., PortableServer::USER_ID or
PortableServer::SYSTEM_ID) in effect. If the POA does not support the
RTPortableServer::SERVER_DECLARED priority policy, and you try to
use one of the above operations to set the priority of the object reference, the
PortableServer::WrongPolicy exception is raised.

8.7.2 Using the Server-Declared Priority Model in the
Client
You do not need to do anything special on the client-side to use an object
reference with the server-declared priority model. The server automatically
executes operations invoked on that object reference at the priority declared in
the object reference. However, clients can use the priority information in the
object reference to make decisions about how (or whether) to invoke the
request. In the following example, our MessengerClient will invoke the
send_message() operation only if the Messenger object reference supports
the server-declared priority model, and the priority value is sufficiently high:

 // Get the Messenger object reference.
 CORBA::Object_var obj = orb->string_to_object ("file://Messenger.ior");
 Messenger_var messenger = Messenger::_narrow (obj.in());

 // Get the policy from the object reference.
 CORBA::Policy_var policy =
 messenger->_get_policy (RTCORBA::PRIORITY_MODEL_POLICY_TYPE);

 // Check to see if it is of type RTCORBA::PriorityModelPolicy.
 RTCORBA::PriorityModelPolicy_var priority_policy =
 RTCORBA::PriorityModelPolicy::_narrow (policy.in ());
 if (CORBA::is_nil (priority_policy.in ())) {
 std::cerr << "Messenger object does not support RTCORBA::PriorityModelPolicy"
 << std::endl;
 return 1;
 }

 // Check to see if the priority model is RTCORBA::SERVER_DECLARED.
 RTCORBA::PriorityModel priority_model = priority_policy->priority_model();

212 o c i w e b . c o m

R e a l - T i m e C O R B A

 if (priority_model != RTCORBA::SERVER_DECLARED) {
 std::cerr << "Messenger object does not support RTCORBA::SERVER_DECLARED"
 << std::endl;
 return 1;
 }

 // Check to see if the server’s priority value is high enough for us.
 RTCORBA::Priority desired_priority = 30;
 RTCORBA::Priority server_priority = priority_policy->server_priority();
 if (server_priority < desired_priority) {
 std::cerr << "Messenger object’s priority is too low." << std::endl;
 return 1;
 }

 // Send the message.
 CORBA::String_var message = CORBA::string_dup ("Howdy!");
 messenger->send_message ("TAO User", "Test", message.inout());

8.8 Using the RTScheduling::Current

The RTScheduling::Current exists to manage distributable threads.
Through its interface, an application is able to spawn new distributable
threads, and begin, update, and end scheduling segments. The Current object
provides a thread with an identity as well as a way to obtain references to other
distributable threads. The interface is described in detail in 8.4.3.

8.8.1 Spawning New Distributable Threads
The Current’s spawn() operation will create a new distributable thread, to
invoke the do() operation of the supplied RTScheduling::ThreadAction
reference. Spawning a new distributable thread has the side effect of creating a
new operating system thread bound to the current process. The spawn()
operation allows you to set the priority of the new thread and supply a
scheduling parameter appropriate for whatever scheduling discipline was
chosen for the application. TAO’s implementation of spawn() implicitly
associates the newly created distributable thread with a scheduling segment by
invoking begin_scheduling_segment() right before calling the thread
function, then invoking end_scheduling_segment() immediately after.

The following code fragment, found in
$TAO_ROOT/tests/RTScheduling/DT_Spawn/test.cpp, shows how to
use the RTScheduling::Current::spawn() operation.

o c i w e b . c o m 213

8 . 8 U s i n g t h e R T S c h e d u l i n g : : C u r r e n t

The application begins as any other CORBA application, setting up some
pointers that will refer to various objects, then calling CORBA::ORB_init().
Note that, in this case, the sched_param and implicit_sched_param
values are initialized to nil policy references. In this example, the particular
scheduler we are using does not support any particular scheduling parameters.

#include "../Scheduler.h" // for class TAO_Scheduler
#include "Thread_Action.h" // for class Test_Thread_Action
#include "tao/RTScheduling/RTScheduler_Manager.h"

int main (int argc, char* argv [])
{
 CORBA::ORB_var orb;
 RTScheduling::Current_var current;

 const char * name = 0;
 CORBA::Policy_var sched_param = CORBA::Policy::_nil();
 CORBA::Policy_var implicit_sched_param = CORBA::Policy::_nil();

 Test_Thread_Action thread_action;

 try {
 orb = CORBA::ORB_init (argc, argv);

A distributable thread cannot exist without a scheduler, so the next portion of
the code shows the initialization of a scheduler. TAO deviates a bit from the
RT CORBA specification by supplying a scheduler manager, through which
an externally created scheduler may be associated with the ORB. The
scheduler used for this example is trivial; its implementation is available in the
parent directory for this example, in
$TAO_ROOT/tests/RTScheduling/Scheduler.h.

 CORBA::Object_var manager_obj =
 orb->resolve_initial_references ("RTSchedulerManager");

 TAO_RTScheduler_Manager_var manager =
 TAO_RTScheduler_Manager::_narrow (manager_obj.in());

 TAO_Scheduler* scheduler;
 ACE_NEW_RETURN (scheduler, TAO_Scheduler (orb.in ()), -1);

 manager->rtscheduler (scheduler);

Now that we have created a scheduler, we are ready to obtain a scheduling
current and use it to spawn a distributable thread.

214 o c i w e b . c o m

R e a l - T i m e C O R B A

 CORBA::Object_var current_obj =
 orb->resolve_initial_references ("RTScheduler_Current");
 current = RTScheduling::Current::_narrow (current_obj.in());

 try {
 ACE_DEBUG ((LM_DEBUG,
 ACE_TEXT("Invoking DT spawn without calling "
 "begin_scheduling_segment...\n")));

 ACE_CString data ("Harry Potter");
 char* thread_data = const_cast<char*>(data.c_str());
 CORBA::ULong stack_size = 0;
 RTCORBA::Priority base_priority = 0;
 current->spawn (&thread_action,
 thread_data,
 name,
 sched_param.in(),
 implicit_sched_param.in(),
 stack_size,
 base_priority);

At this point, the new thread is off and running. Notice that the spawn()
operation takes several arguments

• thread_action—a reference to an object that derives from
RTScheduler::ThreadAction. The do() operation of this object is
invoked as the interesting part of the thread function. See 8.4.2 for more
information on the ThreadAction interface. In this example, the class
Test_Thread_Action is defined in
$TAO_ROOT/tests/RTScheduling/DT_spawn/Thread_Action.h.

• thread_data—the argument that is passed to the thread function. In this
case, the thread function takes a string as an argument.

• name—the identity supplied to the new distributable thread. As a
side-effect, this identity is supplied to begin_scheduling_segment()
as part of the thread function. In this example, the name is empty since no
other distributable threads exist when spawn() is called.

• sched_param—depending on the scheduling discipline applied to the
application, this argument may point to information required to schedule
this thread. It is forwarded to begin_scheduling_segment(). In this
example, the trivial scheduler does not require any parameters, thus
sched_param is nil.

o c i w e b . c o m 215

8 . 8 U s i n g t h e R T S c h e d u l i n g : : C u r r e n t

• implicit_sched_param—also passed to
begin_scheduling_segment(), this argument is used to update the
scheduling parameter that would be used if one were needed and
sched_param was nil. In this example, scheduling parameters are not
needed, so this value is also nil.

• stack_size—the next argument supplied is the size of the stack for the
newly spawned thread. A non-zero value would indicate the desired stack
size; passing zero, as in this example, indicates the operating system
defined default stack size should be used.

• base_priority—the last argument supplied is the base priority value
for the newly spawned thread. In this example, multiple thread priorities
are not being used, so the base priority value is passed as zero.

The rest of the example in the distribution shows how to manage distributable
threads using the current.

8.8.2 Managing Scheduling Segments
Scheduling segments are logical entities that may cross application
boundaries. They are used to define the life span of a distributable thread.
Depending upon the scheduling discipline used, a scheduling segment may
have information associated with it, such as a completion deadline, that may
cause the priority of the associated thread to be dynamically changed.
Scheduling segments are used by the scheduler to associate requests or
activities with application threads of appropriate priority. Scheduling
segments have a beginning and an end; the end need not be in the same
process as the beginning. Segments may be nested or consecutive. A
distributable thread may span many scheduling segments. Scheduling
segments may also be updated, changing the associated schedule parameter,
and possibly raising or lowering the priority.

The following example demonstrates the management of scheduling
segments. This example is found in
$TAO_ROOT/tests/RTScheduling/Current/Thread_Task.cpp. Here,
we look at Thread_Task::svc(), which provides an implementation of a
thread function just like any class derived from ACE_Task_Base. The code
below begins three nested scheduling segments, uses the current to obtain a
list of the currently scheduled segments, then finally ends each segment.

int Thread_Task::svc (void)

216 o c i w e b . c o m

R e a l - T i m e C O R B A

{
 try {
 const char * name = 0;
 CORBA::Policy_var sched_param = CORBA::Policy::_nil();
 CORBA::Policy_var implicit_sched_param = CORBA::Policy::_nil();

 this->current_->begin_scheduling_segment (
 "Fellowship of the Ring",
 sched_param.in(),
 implicit_sched_param.in());

 size_t count = 0;
 ACE_OS::memcpy (
 &count,
 this->current_->id()->get_buffer(),
 this->current_->id()->length());

 ACE_DEBUG ((LM_DEBUG,
 ACE_TEXT ("Starting Distributable Thread %d with 3 nested scheduling "
 "segments...\n"),
 count));

 // Start - Nested Scheduling Segment
 this->current_->begin_scheduling_segment (
 "Two Towers",
 sched_param.in(),
 implicit_sched_param.in());

 // Start - Nested Scheduling Segment
 this->current_->begin_scheduling_segment (
 "The Return of the King",
 sched_param.in(),
 implicit_sched_param.in());

 RTScheduling::Current::NameList* segment_name_list =
 this->current_->current_scheduling_segment_names();

 {
 ACE_GUARD_RETURN (TAO_SYNCH_MUTEX, ace_mon, *lock_, -1);
 ACE_DEBUG ((LM_DEBUG,
 ACE_TEXT ("Segment Names for DT %d :\n"),
 count));

 for (unsigned int i = 0; i < segment_name_list->length(); ++i)
 {
 ACE_DEBUG ((LM_DEBUG,
 ACE_TEXT ("%s\n"),
 (*segment_name_list)[i].in()));
 }
 }

o c i w e b . c o m 217

8 . 9 R e a l - T i m e C O R B A E x a m p l e s

 // End - Nested Scheduling Segment
 this->current_->end_scheduling_segment (name);

 // End - Nested Scheduling Segment
 this->current_->end_scheduling_segment (name);

 // End - Nested Scheduling Segment
 this->current_->end_scheduling_segment (name);

 ACE_DEBUG ((LM_DEBUG,
 ACE_TEXT ("DT %d terminated ...\n"),
 count));

 {
 ACE_GUARD_RETURN (TAO_SYNCH_MUTEX, ace_mon, *shutdown_lock_, -1);
 --active_thread_count_;
 if (active_thread_count_ == 0)
 {
 // Without this sleep, we will occasionally get BAD_INV_ORDER
 // exceptions on fast dual processor machines.
 ACE_OS::sleep (1);
 orb_->shutdown (0);
 }
 }
 }
 catch (CORBA::Exception& ex)
 {
 ACE_PRINT_EXCEPTION (ex, "Caught exception:");
 return -1;
 }

 return 0;
}

8.9 Real-Time CORBA Examples

Throughout this chapter we have shown several code fragments illustrating
the use of real-time CORBA features. Many of the examples we have shown
are available as executable code distributed with TAO. This code is found in
the following directories:

• $TAO_ROOT/DevGuideExamples/RTCORBA—This directory contains a
variation of the Messenger application introduced in Chapter 3. This
example uses the RTORB in the client to create a private connection

218 o c i w e b . c o m

R e a l - T i m e C O R B A

policy and uses the RTCORBA::Current for setting the priority to be
consistent with the server. On the server side, the example shows the use
of a thread pool with some number of lanes (the number depending on the
native platform).

• $TAO_ROOT/examples/RTCORBA/Activity—The example in this
directory highlights configuration of RTORB and RTPOA characteristics
including the priority mapping policy.

• $TAO_ROOT/examples/RTScheduling—This directory contains
several applications that demonstrate the use of distributable threads and
various scheduling disciplines.

• $TAO_ROOT/tests/RTCORBA—This directory is the top level directory
for a suite of tests that are run regularly to ensure the integrity of TAO’s
real-time CORBA implementation. These tests are focused on isolating
particular features, but do provide insight into use of RT CORBA
mutexes, priority-banded connections, client-propagated and
server-declared priority models, collocation, and more.

• $TAO_ROOT/tests/RTScheduling—This directory includes a suite of
tests focused on the use of the real-time scheduler. Specific tests highlight
using distributable threads, canceling threads, and the scheduling current.

o c i w e b . c o m 219

CHAPTER 9

Portable Interceptors

9.1 Introduction

Portable Interceptors in CORBA are objects that the ORB invokes at
predefined points in the request and reply paths of an operation invocation
(request interceptors) or during the generation of an IOR (IOR interceptors).
As an application developer, you define the code executed in an interceptor.
Since interceptors exist orthogonally to the operation invocations they
monitor/modify, interceptor code can be added without affecting existing
client and server code. Portable Interceptors can perform a variety of
information collection and authentication tasks, including the following:

• Gathering debugging information about messages sent between clients
and servers.

• Logging usage or access information about distributed objects.

• Performing security and authenticity checks in a distributed system.

TAO supports both request interceptors and IOR interceptors. Except for
minor differences, TAO’s implementation conforms to the CORBA 3.1
Portable Interceptor specification (Chapter 16 of OMG Document

220 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

formal/08-01-04). Portable interceptor support in TAO is controlled by the
interceptors build flag. By default, interceptors are enabled unless
minimum_corba=1 or interceptors=0. For more information on build
flags, refer to .

The Portable Interceptors functionality is mostly defined by local interfaces.
In order to create your own portable interceptors you will need to be familiar
with how to implement local objects. If you need more information how to
implement local objects, see Chapter 12.

For more information on Portable Interceptors, read “Object Interconnections:
CORBA Metaprogramming Mechanisms, Part 1: Portable Interceptors
Concepts and Components,” by Douglas C. Schmidt and Steve Vinoski.

9.2 Using TAO Request Interceptors

TAO request interceptors can be attached at four points along the
request/reply path of client and server communications. On the client, they can
be activated when a request is sent or when a reply is received. On the server,
they can be activated when a target operation is called, or when the reply is
sent. There are ten interception operations, discussed in the next four sections.
Figure 9-1 shows the relationship of clients and servers to the ten interception
operations.

Figure 9-1 Client and Server Interception Operations

o c i w e b . c o m 221

9 . 2 U s i n g T A O R e q u e s t I n t e r c e p t o r s

9.2.1 The Interceptor Interface
All interceptor interfaces defined in the CORBA specification are derived
from the Interceptor interface:

module PortableInterceptor
{
 local interface Interceptor
 {
 readonly attribute string name;
 void destroy ();
 };

This interface is defined in $TAO_ROOT/tao/PI/Interceptor.pidl. All
interceptors we define need to implement the name attribute and destroy()
operation.

9.2.2 Client Request Interceptors
Client request interceptors implement the following interface, which ia
defined in $TAO_ROOT/tao/PI/ClientRequestInterceptor.pidl:

module PortableInterceptor
{
 local interface ClientRequestInterceptor : Interceptor
 {
 void send_request (in ClientRequestInfo ri) raises (ForwardRequest);
 void send_poll (in ClientRequestInfo ri);
 void receive_reply (in ClientRequestInfo ri);
 void receive_exception (in ClientRequestInfo ri)
 raises (ForwardRequest);
 void receive_other (in ClientRequestInfo ri) raises (ForwardRequest);
 };
};

To use interceptors on the client-side, developers define a new class that
inherits from PortableInterceptor::ClientRequestInterceptor
and CORBA::LocalObject, and implement the five operations that
correspond to the client side interception points, plus operations that provide
the name of the interceptor and destroy the interceptor.

TAO does not support the send_poll() client interception point. The
send_poll() operation is specific to time-independent invocations and TAO
does not currently support time-independent invocations.

222 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

9.2.2.1 Client Interception Points
The four client interception points available in TAO are send_request(),
receive_reply(), receive_exception(), and receive_other(). The
send_request() interception point allows an interceptor to monitor or
change the service context before a request is sent to the server. The
receive_reply() point intercepts a reply after it has returned from the
server but before it has been passed to the client. The
receive_exception() point is invoked when an exception occurs, before
the exception is raised to the client. The receive_other() interception point
allows the interceptor to monitor responses that are neither normal replies nor
exceptions. An example of this would be a LOCATION_FORWARD response.

9.2.3 Server Request Interceptors
Interceptors on the server side implement the following interface, which is
defined in $TAO_ROOT/tao/PI_Server/ServerRequestInterceptor.pidl:

module PortableInterceptor {

 local interface ServerRequestInterceptor : Interceptor
 {
 void receive_request_service_contexts (in ServerRequestInfo ri)
 raises (ForwardRequest);
 void receive_request (in ServerRequestInfo ri) raises (ForwardRequest);
 void send_reply (in ServerRequestInfo ri);
 void send_exception (in ServerRequestInfo ri) raises (ForwardRequest);
 void send_other (in ServerRequestInfo ri) raises (ForwardRequest);
 };

 // additional interfaces omitted for brevity.
};

To use interceptors on the server side, developers define a new class that
inherits from PortableInterceptor::ServerRequestInterceptor
and CORBA::LocalObject, and implement the five operations that
correspond to the five server side interception points, plus operations that
provide the name of the interceptor and destroy the interceptor.

9.2.3.1 Server Interception Points
The receive_request_service_context() interception point is called
before the servant manager is called. The operation parameters that are passed
as part the request’s service context are not available to the interceptor at this

o c i w e b . c o m 223

9 . 2 U s i n g T A O R e q u e s t I n t e r c e p t o r s

point. Any service context information the interceptor needs must be obtained
from the request scope PICurrent. The PICurrent is explained in 9.5. The
receive_request() point allows the interceptor to monitor request
information once all operation parameters are available. An interceptor that
implements the send_reply() operation can monitor and modify the reply
service context after the server operation has been invoked but before the
reply is sent to the client. The send_exception() point allows the
interceptor to inspect exception information and modify the reply service
context before the exception is sent to the client. Interceptors implementing
the send_other() operation can inspect the information available when the
request results in something other than a normal reply or an exception.

9.2.4 Request Parameters
Request interceptors access request information through
ClientRequestInfo and ServerRequestInfo objects, which are given as
parameters to their respective interception points. Client and server
RequestInfo objects inherit from a common interface defined in
$TAO_ROOT/tao/PI/RequestInfo.pidl:

local interface RequestInfo
{
 readonly attribute unsigned long request_id;
 readonly attribute string operation;

 readonly attribute Dynamic::ParameterList arguments;
 readonly attribute Dynamic::ExceptionList exceptions;
 readonly attribute Dynamic::ContextList contexts;
 readonly attribute Dynamic::RequestContext operation_context;

 readonly attribute any result;
 readonly attribute boolean response_expected;
 readonly attribute Messaging::SyncScope sync_scope;

 readonly attribute ReplyStatus reply_status;
 readonly attribute Object forward_reference;

 any get_slot (in SlotId id) raises (InvalidSlot);
 IOP::ServiceContext get_request_service_context (in IOP::ServiceId id);
 IOP::ServiceContext get_reply_service_context (in IOP::ServiceId id);
};

The ClientRequestInfo interface extends the RequestInfo interface
with attributes and operations of interest to client-side interceptors.

224 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

local interface ClientRequestInfo : RequestInfo
{
 readonly attribute Object target;
 readonly attribute Object effective_target;
 readonly attribute IOP::TaggedProfile effective_profile;

 readonly attribute any received_exception;
 readonly attribute CORBA::RepositoryId received_exception_id;

 IOP::TaggedComponent get_effective_component (in IOP::ComponentId id);
 IOP::TaggedComponentSeq get_effective_components (in IOP::ComponentId id);
 CORBA::Policy get_request_policy (in CORBA::PolicyType type);
 void add_request_service_context (
 in IOP::ServiceContext service_context,
 in boolean replace);
};

The ServerRequestInfo interface extends the RequestInfo interface
with attributes and operations of interest to the server-side interceptors.

local interface ServerRequestInfo : RequestInfo
{
 readonly attribute any sending_exception;
 readonly attribute ServerId server_id;
 readonly attribute ORBId orb_id;
 readonly attribute AdapterName adapter_name;
 readonly attribute CORBA::OctetSeq object_id;
 readonly attribute CORBA::OctetSeq adapter_id;
 readonly attribute CORBA::RepositoryId target_most_derived_interface;

 CORBA::Policy get_server_policy (in CORBA::PolicyType type);
 void set_slot (in SlotId id, in any data) raises (InvalidSlot);
 boolean target_is_a (in CORBA::RepositoryId id);
 void add_reply_service_context (
 in IOP::ServiceContext service_context,
 in boolean replace);
};

For an explanation of the attributes and operations of a RequestInfo object,
as well as their applicability to each interception point, see Chapter 16 of the
CORBA 3.1 specification.

9.2.5 Registering Interceptors
As a developer, you provide the code to register your application’s
interceptors with the ORB. Interceptors are installed in the ORB with an

o c i w e b . c o m 225

9 . 2 U s i n g T A O R e q u e s t I n t e r c e p t o r s

ORBInitializer object and registered by implementing its pre_init() or
post_init() method and calling
PortableInterceptor::register_orb_initializer() prior to
calling CORBA::ORB_init(). The specifics of interceptor initialization are
shown in the example in the next section. Developers need to be aware that
certain operations that need a pointer to the ORB can not be invoked during
interceptor registration, because the registration occurs within the call to
ORB_init(), and no ORB pointer exists yet.

To allow for this, the ORBInitInfo interface contains functions and
attributes that hold the arguments passed to ORB_init(), a reference to the
CodecFactory, and additional information that would otherwise be
unavailable.

9.2.6 Example: A Simple Authentication Interceptor
Our first example uses interceptors to add a user name to each request that a
client makes. The client’s interceptor provides the name that is sent with the
request. The server’s interceptor authenticates the user before the request is
dispatched to the servant. Our example extends the Messenger example from
Chapter 3. The complete source code for this example is in the TAO source
code distribution in the directory
$TAO_ROOT/DevGuideExamples/PortableInterceptors/Auth.

Note This example is not meant as a secure authentication solution. Please refer to
the Chapter 27 for a more thorough treatment of the subject of security.

9.2.6.1 Messenger Interface
The definition of the Messenger interface has not changed:

interface Messenger
{
 boolean send_message (in string user_name,
 in string subject,
 inout string message);
};

9.2.6.2 Messenger Implementation Class
We now define the Messenger_i implementation class as follows:

226 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

#include "MessengerS.h"

class Messenger_i : public virtual POA_Messenger
{
public:
 //Constructor
 Messenger_i (void);

 //Destructor
 virtual ~Messenger_i (void);

virtual CORBA::Boolean send_message (
 const char* user_name,
 const char* subject,
 char*& message
);
};

The implementation of the Messenger_i class is as follows:

#include "Messenger_i.h"
#include <iostream>

// Implementation skeleton constructor
Messenger_i::Messenger_i (void)
{
}

// Implementation skeleton destructor
Messenger_i::~Messenger_i (void)
{
}

CORBA::Boolean Messenger_i::send_message (
 const char* user_name,
 const char* subject,
 char*& message
)
{
 std::cout << "Message from: " << user_name << std::endl;
 std::cout << "Subject: " << subject << std::endl;
 std::cout << "Message: " << message << std::endl;
 CORBA::string_free (message);
 message = CORBA::string_dup ("Thanks for the message.");
 return true;
}

o c i w e b . c o m 227

9 . 2 U s i n g T A O R e q u e s t I n t e r c e p t o r s

9.2.6.3 Defining the Client Request Interceptor
The client-side interceptor is defined in the ClientInterceptor class. This
class inherits from CORBA::LocalObject and
PortableInterceptor::ClientRequestInterceptor.

#include <tao/PortableInterceptorC.h>
#include <tao/LocalObject.h>
#include <tao/PI/PI.h>

class ClientInterceptor :
 public virtual PortableInterceptor::ClientRequestInterceptor,
 public virtual CORBA::LocalObject
{
public:
 ClientInterceptor (void);
 virtual ~ClientInterceptor ();

 virtual char* name ();

 virtual void destroy ();

 virtual void send_poll (PortableInterceptor::ClientRequestInfo_ptr ri);

 virtual void send_request (PortableInterceptor::ClientRequestInfo_ptr ri);

 virtual void receive_reply (PortableInterceptor::ClientRequestInfo_ptr ri);

 virtual void receive_other (PortableInterceptor::ClientRequestInfo_ptr ri);

 virtual void receive_exception(PortableInterceptor::ClientRequestInfo_ptr ri);

private:
 const char *myname_;
};

In this example, we have overridden the operations that correspond to the five
interception points as well as the name() and destroy() operations from
PortableInterceptor::Interceptor.

9.2.6.4 Implementing the Client Request Interceptor
Next, we implement the client request interceptor. The constructor initializes
the name of our interceptor. The name() operation’s implementation is
simple.

ClientInterceptor::ClientInterceptor (void)

228 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

 : myname_ ("Client_Authentication_Interceptor")
{
 std::cout << "Calling ClientInterceptor constructor." << std::endl;
}

char* ClientInterceptor::name ()
{
 std::cout << "Calling ClientInterceptor name() method" << std::endl;
 return CORBA::string_dup (this->myname_);
}

To illustrate how information can be passed using the service context list, we
insert some user name information into the service context list at the client’s
send_request() interception point. Later, we will show how we can extract
and use this as validation information on the server side at the server’s
receive_request() interception point.

In our interceptor’s send_request() operation, we first log information
about the request to standard output. Then, we insert information into the
service context list. Recall that the service context list is a sequence of
structures, each containing a context identifier of type unsigned long and a
sequence of octets. You can use these fields to pass any information you want
with the request. Here, we set the context_id field to an arbitrary value and
populate the context_data field with the user’s name after we convert the
name from a string to a sequence of octets.

const CORBA::ULong service_ctx_id = 0xdeed;

void ClientInterceptor::send_request (
 PortableInterceptor::ClientRequestInfo_ptr ri)
{
 std::cout << "Calling send_request()." << std::endl;

 IOP::ServiceContext sc;
 sc.context_id = service_ctx_id;

 const char user_name[] = "Ron Klein";
 std::cout << "User’s Name: " << user_name << std::endl;
 CORBA::ULong string_len = sizeof (user_name) + 1;
 CORBA::Octet *buf = new CORBA::Octet [string_len];

 ACE_OS::strcpy (reinterpret_cast<char *>(buf), user_name);

 sc.context_data.replace (string_len, string_len, buf, true);

 // Add this context to the service context list.

o c i w e b . c o m 229

9 . 2 U s i n g T A O R e q u e s t I n t e r c e p t o r s

 ri->add_request_service_context (sc, false);

}

Our receive_reply(), receive_other(), and receive_exception()
operations do nothing of any importance. They simply log information about
the request to standard output.

void ClientInterceptor::receive_reply (
 PortableInterceptor::ClientRequestInfo_ptr)
{
 std::cout << "Calling receive_reply()." << std::endl;
}

void ClientInterceptor::receive_other (
 PortableInterceptor::ClientRequestInfo_ptr)
{
 std::cout << "Calling receive_other()." << std::endl;
}

void ClientInterceptor::receive_exception (
 PortableInterceptor::ClientRequestInfo_ptr)
{
 std::cout << "Calling receive_exception()." << std::endl;
}

9.2.6.5 Developing the Client and Installing the Interceptor
To use our client request interceptor, we implement the post_init()
function of a ClientInitializer object, which inherits from
CORBA::LocalObject and PortableInterceptor::ORBInitializer.

#include <tao/PortableInterceptorC.h>
#include <tao/LocalObject.h>
#include <tao/PI/PI.h>

class ClientInitializer : public virtual PortableInterceptor::ORBInitializer,
 public virtual CORBA::LocalObject
{
 virtual void post_init (PortableInterceptor::ORBInitInfo_ptr info);
};

If we were registering another interceptor that needed access to this
interceptor’s initial services, we would choose to register this interceptor in
pre_init(). Since no other interceptors need access to this interceptor’s

230 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

services, we register this interceptor in post_init(). In contrast to
pre_init(), post_init() is executed at the point in ORB initialization
when all initial references are available. Our post_init() instantiates a
ClientRequestInterceptor and registers it by calling
ORBInitInfo::add_client_request_interceptor().

void ClientInitializer::post_init (
 PortableInterceptor::ORBInitInfo_ptr info)
{
 // Create and register the request interceptors.
 PortableInterceptor::ClientRequestInterceptor_var ci = new ClientInterceptor();
 info->add_client_request_interceptor (ci.in());
}

With the initializer written, we develop a client and install our interceptor by
creating and registering the ClientInitializer object before calling
CORBA::ORB_init(). We include header files for both the Messenger
interface and our Messenger initializer class definitions and instantiate an
ORBInitializer_var which is passed as a parameter to
PortableInterceptor::register_orb_initializer().

#include "MessengerC.h"
#include "ClientInitializer.h"
#include <orbsvcs/CosNamingC.h>
#include <iostream>

int main (int argc, char* argv[])
{
 try {
 // Create and register our ORBInitializer.
 PortableInterceptor::ORBInitializer_var orb_initializer =
 new ClientInitializer;

 PortableInterceptor::register_orb_initializer (orb_initializer.in());

 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init (argc, argv, "Client ORB");

Next, we acquire a reference to the Messenger object and use it to send a
message. The user name authentication is added transparently by the
interceptor and passed through the service context with the rest of the request
when send_message() is invoked.

 // Read and destringify the Messenger object's IOR.

o c i w e b . c o m 231

9 . 2 U s i n g T A O R e q u e s t I n t e r c e p t o r s

 CORBA::Object_var obj = orb->string_to_object("file://Messenger.ior");
 if (CORBA::is_nil(obj.in())) {
 std::cerr << "Could not get Messenger IOR." << std::endl;
 return 1;
 }

 // Narrow the IOR to a Messenger object reference.
 Messenger_var messenger = Messenger::_narrow(obj.in());
 if (CORBA::is_nil(messenger.in())) {
 std::cerr << "IOR was not a Messenger object reference." << std::endl;
 return 1;
 }

 // Send a message the the Messenger object.
 CORBA::String_var message = CORBA::string_dup ("Hello!");
 messenger->send_message ("TAO User", "TAO Test", message.inout());

 // Print the Messenger's reply.
 std::cout << "Reply: " << message.in() << std::endl;
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "CORBA exception: " << ex << std::endl;
 return 1;
 }

 return 0;
}

9.2.6.6 Defining the Server Request Interceptor
The server-side interceptor is defined in the ServerInterceptor class. This
class inherits from the CORBA::LocalObject and
PortableInterceptor::ServerRequestInterceptor classes.

#include <tao/PortableInterceptorC.h>
#include <tao/LocalObject.h>
#include <tao/PI_Server/PI_Server.h>

class ServerInterceptor :
 public virtual PortableInterceptor::ServerRequestInterceptor,
 public virtual CORBA::LocalObject
{
 public:
 ServerInterceptor (void);
 ~ServerInterceptor ();

 virtual char* name ();

232 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

 virtual void destroy ();

 virtual void receive_request (PortableInterceptor::ServerRequestInfo_ptr ri);

 virtual void receive_request_service_contexts (
 PortableInterceptor::ServerRequestInfo_ptr ri);

 virtual void send_reply (PortableInterceptor::ServerRequestInfo_ptr ri);

 virtual void send_exception (PortableInterceptor::ServerRequestInfo_ptr ri);

 virtual void send_other (PortableInterceptor::ServerRequestInfo_ptr ri);

 private:
 const char *myname_;
};

Recall that the server request interceptor class should inherit from
PortableInterceptor::ServerRequestInterceptor. In this example,
we have overridden the operations that correspond to the five interception
points as well as the name() and destroy() operations.

9.2.6.7 Implementing the Server Request Interceptor
Next, we implement the server request interceptor. The constructor initializes
the name of our interceptor. The name() operation’s implementation is
simple.

ServerInterceptor::ServerInterceptor (void)
 : myname_ ("Server_Authentication_Interceptor")
{
 std::cout << "Calling ServerInterceptor constructor." << std::endl;
}

char* ServerInterceptor::name ()
{
 std::cout << "Calling ServerInterceptor name() method" << std::endl;
 return CORBA::string_dup (this->myname_);
}

Recall that the client request interceptor passes information along with the
request in the service context list. We now want to extract this information on
the server side at the server’s receive_request() interception point.

In our interceptor’s receive_request() operation, we call
target_is_a() to verify that the remote invocation is requesting a

o c i w e b . c o m 233

9 . 2 U s i n g T A O R e q u e s t I n t e r c e p t o r s

Messenger object. Then we obtain the service context data, which contains
the user name as an octet sequence, and cast it to a char * so that it can be
compared to allowed_users[]. If the user name matches and element in
allowed_users[], authentication is successful.

const IOP::ServiceId service_id = 0xdeed;
const unsigned int num_allowed_users = 4;
const static char* allowed_users[num_allowed_users+1] =
 {"Ron Klein", "Scott Case", "Mark Hodge", "Greg Black", 0};
const char* restricted_interfaces[1] = {"IDL:Messenger:1.0"};

void ServerInterceptor::receive_request (
 PortableInterceptor::ServerRequestInfo_ptr ri)
{
 bool permission_granted = false;
 std::cout << "Calling receive_request()." << std::endl;

 if (ri->target_is_a(restricted_interfaces[0]))
 {
 IOP::ServiceId id = service_id;

 // Check that the request service context can be retrieved.
 IOP::ServiceContext_var sc = ri->get_request_service_context (id);
 CORBA::OctetSeq ocSeq = sc->context_data;
 const char * buf = reinterpret_cast<const char *>(ocSeq.get_buffer());

 for (unsigned int i=0; i<num_allowed_users; ++i) {
 if (ACE_OS::strcmp (buf, allowed_users[i]) == 0) {
 permission_granted = true;
 break;
 }
 }
 }

 if (permission_granted == true) {
 std::cout << "Permission Granted " << std::endl;
 }
 else {
 std::cout << "Permission Denied " << std::endl;
 throw CORBA::NO_PERMISSION();
 }
}

Our other interception point operations do nothing important. They log
information about the request to standard output.

void ServerInterceptor::receive_request_service_contexts (

234 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

 PortableInterceptor::ServerRequestInfo_ptr)
{
 std::cout << "Calling receive_request_service_contexts()." << std::endl;
}

void ServerInterceptor::send_reply (
 PortableInterceptor::ServerRequestInfo_ptr)
{
 std::cout << "Calling send_reply()." << std::endl;
}

void ServerInterceptor::send_exception (
 PortableInterceptor::ServerRequestInfo_ptr)
{
 std::cout << "Calling send_exception()." << std::endl;
}

void ServerInterceptor::send_other (
 PortableInterceptor::ServerRequestInfo_ptr)
{
 std::cout << "Calling send_other()." << std::endl;
}

9.2.6.8 Developing the Server and Installing the Interceptor
We develop a server and install our interceptor by registering it with the ORB.
The procedure is very similar to installation of the client interceptor. We are
extending the MessengerServer example from Chapter 3. Few changes to
the original code are required to use interceptors and we will explain them as
we go along.

The code for the server interceptor initializer is similar to its client
counterpart. The ServerInitializer class inherits from
CORBA::LocalObject and PortableInterceptor::ORBInitializer,
and we implement the post_init() operation by creating a
ServerRequestInterceptor and using it as a parameter to
ORBInitInfo::add_server_request_interceptor().

void ServerInitializer::post_init (
 PortableInterceptor::ORBInitInfo_ptr info)
{

 // Create and register the request interceptors.
 PortableInterceptor::ServerRequestInterceptor_var si = new ServerInterceptor();
 info->add_server_request_interceptor (si.in());
}

o c i w e b . c o m 235

9 . 2 U s i n g T A O R e q u e s t I n t e r c e p t o r s

In the server, we include header files for both the Messenger interface and
our Messenger interceptor initializer class definitions. We then instantiate a
new ServerInitializer object and register the server interceptor with a
call to PortableInterceptor::ORBInitializer(). Then we initialize
the ORB as usual.

#include "Messenger_i.h"
#include "MessengerS.h"
#include "ServerInitializer.h"
#include <iostream>
#include <fstream>

int main (int argc, char* argv[])
{
 try {
 // Create and register our ORBInitializer.
 PortableInterceptor::ORBInitializer_var orb_initializer =
 new ServerInitializer;
 PortableInterceptor::register_orb_initializer (orb_initializer.in ());

 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init (argc, argv, "Server ORB");

The next part of the server is unchanged from the MessengerServer in
Chapter 3.

 //Get reference to the RootPOA.
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj.in());

 // Activate the POAManager.
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();

 // Create a servant.
 PortableServer::Servant_var<Messenger_i> messenger_servant
 = new Messenger_i();

 // Register the servant with the RootPOA, obtain its object
 // reference, stringify it, and write it to a file.
 PortableServer::ObjectId_var oid =
 poa->activate_object(messenger_servant.in());
 CORBA::Object_var messenger_obj = poa->id_to_reference(oid.in());
 CORBA::String_var str = orb->object_to_string(messenger_obj.in());
 std::ofstream iorFile("Messenger.ior");
 iorFile << str.in() << std::endl;

236 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

 iorFile.close();
 std::cout << "IOR written to file Messenger.ior" << std::endl;

 // Accept requests from clients.
 orb->run();
 orb->destroy();
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "CORBA exception: " << ex << std::endl;
 return 1;
 }

 return 0;
}

9.2.7 Running the Application
Run the MessengerServer and MessengerClient as before. The
MessengerServer will write a stringified object reference to the file named
Messenger.ior. The MessengerClient will read the stringified object
reference from the file, convert it to an object reference, and use it to invoke
operations upon the Messenger object.

9.2.8 Program Output
Each operation invoked by the client will go through the client and server
request interceptors that have been registered with their respective ORBs. The
client’s output should look something like this:

> ./MessengerClient
Calling ClientInterceptor constructor.
Calling ClientInterceptor name() method
Calling send_request().
User’s Name: Ron Klein
Calling receive_reply().

The server’s output should look something like this:

> ./MessengerServer
Calling ServerInterceptor constructor.
Calling ServerInterceptor name() method

IOR written to file Messenger.ior
Calling receive_request_service_contexts().
Calling receive_request().
Permission Granted

o c i w e b . c o m 237

9 . 3 M a r s h a l i n g a n d t h e S e r v i c e C o n t e x t

Message from: TAO User
Subject: TAO Test
Message: Hello!
Calling send_reply().

9.3 Marshaling and the Service Context

Recall that data in the service context is a sequence of octets or raw bytes. In
the previous example, where it was intended that the client and server run on
the same machine, no special care was taken to ensure the integrity of the data
in the service context. Due to different hardware having different endianess,
the data in the service context can be corrupted if the client and server exist on
different machines. To keep this from occurring, octet sequences are
converted to a network byte order, or marshaled. This is accomplished by the
Codec.

9.3.1 The Codec
The Codec interface encodes and decodes between a sequence of octets and a
CORBA::Any. A codec is obtained from the CodecFactory. There are
multiple ways to obtain a reference to it. If the ORB is available, a reference to
the CodecFactory can be obtained from a call to
ORB::resolve_initial_references("CodecFactory"). During
interceptor initialization, when the ORB is not available, a reference to the
CodecFactory can be obtained from ORBInitInfo::codec_factory()
or ORBInitInfo::resolve_initial_references("CodecFactory").

The Codec interface has four distinct functions that encode/decode either the
value of the data or the value and typecode of the data. This interface is
defined in $TAO_ROOT/tao/CodecFactory/IOP_Codec.pidl:

local interface Codec
{
 exception InvalidTypeForEncoding {};
 exception FormatMismatch {};
 exception TypeMismatch {};

 CORBA::OctetSeq encode (in any data) raises (InvalidTypeForEncoding);
 any decode (in CORBA::OctetSeq data) raises (FormatMismatch);
 CORBA::OctetSeq encode_value (in any data) raises (InvalidTypeForEncoding);
 any decode_value (in CORBA::OctetSeq data, in CORBA::TypeCode tc)
 raises (FormatMismatch, TypeMismatch);

238 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

};

9.3.2 Example: Using the Codec
Encoding data with a codec is straightforward. First, a reference to the
CodecFactory is obtained. Then an encoding scheme is specified and used
to create a codec instance. This codec object can encode and decode
between a CORBA::Any and a CORBA::OctetSeq. Files that utilize the
CodecFactory interface should add the following include:

#include <tao/CodecFactory/CodecFactory.h>

This example extends the first interceptor example from 9.2.6 by encoding all
the request information. The simple authentication scheme has changed from
user name to user and group ids (uid/gid), which are passed as CORBA::Long,
and would be corrupted if client and server reside on different-endian hosts.
This example only shows the codec-specific code, as the majority of the
source has not changed. The complete source code for this example is in the
TAO source code distribution in the directory
$TAO_ROOT/DevGuideExamples/PortableInterceptors/SimpleCodec.

9.3.2.1 The Client
The user id is encoded before the send_message() function is invoked. First
we obtain an initial reference to the CodecFactory, then we obtain a codec by
passing an encoding scheme to the CodecFactory reference.

// Obtain a reference to the CodecFactory.
CORBA::Object_var obj2 = orb->resolve_initial_references ("CodecFactory");
if (CORBA::is_nil(obj2.in())) {
 std::cerr << "Error: codec_factory" << std::endl;
 return 1;
}

IOP::CodecFactory_var codec_factory = IOP::CodecFactory::_narrow (obj2.in());
std::cout << "got codec factory" << std::endl;

// Set up a structure that contains information necessary to
// create a GIOP 1.2 CDR encapsulation Codec.
IOP::Encoding encoding;
encoding.format = IOP::ENCODING_CDR_ENCAPS;
encoding.major_version = 1;
encoding.minor_version = 2;

o c i w e b . c o m 239

9 . 3 M a r s h a l i n g a n d t h e S e r v i c e C o n t e x t

// Obtain the CDR encapsulation Codec.
IOP::Codec_var codec = codec_factory->create_codec (encoding);

The user id is inserted into a CORBA::Any which is encoded and returns a
CORBA::OctetSeq that is used in the call to send_message().

// our user id
CORBA::Long uid = 64321;
CORBA::Any uid_as_any;
uid_as_any <<= uid;
CORBA::OctetSeq client_uid = *codec->encode (uid_as_any);
messenger->send_message (client_uid);

9.3.2.2 The Client Interceptor
In this example, the client interceptor passes group id information. Since the
gid is also a CORBA::Long, it too is marshaled. Recall that interceptors are
registered within the call to ORB_init(). Since an ORB reference is not yet
available, interceptors that need access to a codec must obtain it from
operations in the ORBInitInfo interface.

void
ClientInitializer::post_init (
 PortableInterceptor::ORBInitInfo_ptr info)
{
 // get Codec factory
 IOP::CodecFactory_var codec_factory = info->codec_factory();

The interceptor gets the CodecFactory reference through an argument passed
to its constructor by the ORBInitializer.

 // Create and register the request interceptors.
 PortableInterceptor::ClientRequestInterceptor_var ci =
 new ClientInterceptor (codec_factory);
 info->add_client_request_interceptor (ci.in());
}

The client interceptor constructor has been modified to accept the reference to
the CodecFactory and create a codec. The send_request() interception
point will use the codec to encode the gid. It then adds the encoded octet
sequence to the service context. The marshaling code is identical to that in the
client.

240 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

ClientInterceptor::ClientInterceptor (IOP::CodecFactory_var cf)
 : myname_ ("Client_Authentication_Interceptor")
{
 std::cout << "Calling ClientInterceptor constructor." << std::endl;

 // Set up a structure that contains information necessary to
 // create a GIOP 1.2 CDR encapsulation Codec.
 IOP::Encoding encoding;
 encoding.format = IOP::ENCODING_CDR_ENCAPS;
 encoding.major_version = 1;
 encoding.minor_version = 2;

 // Obtain the CDR encapsulation Codec.
 this->codec = cf->create_codec (encoding);
}

void
ClientInterceptor::send_request (
 PortableInterceptor::ClientRequestInfo_ptr ri)
{
 std::cout << "Calling send_request()." << std::endl;

 IOP::ServiceContext sc;
 sc.context_id = service_ctx_id;

 const CORBA::Long gid = 9007;
 std::cout << "GID: " << gid << std::endl;

 CORBA::Any gid_as_any;
 gid_as_any <<= gid;

 sc.context_data = *codec->encode(gid_as_any));

 // Add this context to the service context list.
 ri->add_request_service_context (sc, false);
}

9.3.2.3 The Server
The octet sequence is decoded in the send_message() function of the
server. The code is very similar to the code in the client. A reference to the
CodecFactory is passed an encoding structure and returns a codec that is
used to demarshal the uid. In practice, creating the codec could be moved to
the constructor, but in this example it is left in the send_message() function
for clarity.

// Obtain a reference to the CodecFactory.

o c i w e b . c o m 241

9 . 3 M a r s h a l i n g a n d t h e S e r v i c e C o n t e x t

CORBA::Object_var obj = orb->resolve_initial_references ("CodecFactory");
if (CORBA::is_nil(obj.in())) {
 std::cerr << "Error: codec_factory" << std::endl;
 return 1;
}

IOP::CodecFactory_var codec_factory = IOP::CodecFactory::_narrow (obj.in ());
std::cout << "Server got codec factory" << std::endl;

// Set up a structure that contains information necessary to
// create a GIOP 1.2 CDR encapsulation Codec.
IOP::Encoding encoding;
encoding.format = IOP::ENCODING_CDR_ENCAPS;
encoding.major_version = 1;
encoding.minor_version = 2;

// Obtain the CDR encapsulation Codec.
IOP::Codec_var codec = codec_factory->create_codec (encoding);

CORBA::Any uid_as_any;
uid_as_any = *(codec->decode(user_name));

CORBA::Long uid;
if (uid_as_any >>= uid) {
 std::cout << "UID: " << uid << std::endl;
} else {
 std::cerr << "Could not extract UID from any." << std::endl;
}

9.3.2.4 The Server Interceptor
As in the client, the server interceptor is not able to access the CodecFactory
through the ORB because an ORB reference is not available. Instead, a
reference to the CodecFactory is obtained in the ORBInitializer from
ORBInitInfo::codec_factory(). This reference is passed as an
argument to the interceptor’s constructor. The code that does this is identical
to the client code and is not shown here.

Decoding in the server interceptor is more complex than the decoding in the
server’s send_message() function. Previously we decoded an octet
sequence that was passed as a parameter to send_message(). At the
receive_request() interception point, we do not have direct access to an
octet sequence and must extract it from the service context. There is no service
context member function that returns the resident data as an octet sequence,
but there is a way to construct an octet sequence from the data in the service
context.

242 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

// need to construct an octet seq for decoding
CORBA::OctetSeq ocSeq = CORBA::OctetSeq(
 sc->context_data.length(),
 sc->context_data.length(),
 sc->context_data.get_buffer(),
 false);

Once the data has been obtained as a CORBA::OctetSeq, it can be decoded
using the codec that was created in the interceptor’s constructor.

CORBA::Any gid_as_any;
gid_as_any = *codec->decode(ocSeq);

CORBA::Long gid;
if (gid_as_any >>= gid) {
 for (int i=0; i<3; ++i) {
 if (gid == allowed_gid[i]) {
 permission_granted = true;
 }
 }
} else {
 permission_granted = false;
 std::cerr << "Could not extract GID from any." << std::endl;
}

9.3.3 Program Output
The output of this example is similar to the previous example. The client
output should resemble:

> ./MessengerClient
Calling ClientInterceptor constructor.
Calling ClientInterceptor name() method
got codec factory
Calling send_request().
GID: 9007
Calling receive_reply().
message was sent

The server output should resemble:

> ./MessengerServer
Calling ServerInterceptor constructor.
Calling ServerInterceptor name() method
IOR written to file Messenger.ior
Calling receive_request_service_contexts().

o c i w e b . c o m 243

9 . 4 I O R I n t e r c e p t o r s

Calling receive_request().
Permission Granted
Server got codec factory
UID: 64321
Calling send_reply().

9.4 IOR Interceptors

A second class of interceptors, IOR Interceptors, can add user-defined
information (called tagged components) to an object’s IOR at the time of the
creation of the IOR. This is useful in cases where developers might want to
add information about a server’s or object’s capabilities or requirements. IOR
interceptors implement the following interfaces, which are defined in
$TAO_ROOT/tao/IORInterceptor/IORInterceptor.pidl.

local interface IORInterceptor : Interceptor
{
 void establish_components (in IORInfo info);
};

local interface IORInterceptor_3_0 : IORInterceptor
{
 void components_established (in IORInfo info);

 void adapter_manager_state_changed (in AdapterManagerId id,
 in AdapterState state);
 void adapter_state_changed (in ObjectReferenceTemplateSeq templates,
 in AdapterState state);

};

The IORInterceptor_3_0 interface was added in CORBA 3.0 and adds
additional operations and capabilities to IOR Interceptors. In general, you
should use this interface when implementing your own IOR Interceptors.

The server calls establish_components() for all registered IOR
interceptors in the course of assembling the data that will be included in an
IOR, typically when the adapter (POA) is created. Per the CORBA
specification, the ORB ignores any exceptions thrown by
establish_components(). By using the IORInfo object passed, IOR
interceptors can access adapter information and add tagged components
during this call. The adapter template is not available during this call.

244 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

Once establish_components() is called on each IOR interceptor, the
ORB calls components_established() on each interceptor that
implements the IORInterceptor_3_0 interface. The adapter template is
available during this call. If this operation throws an exception, then POA
creation fails.

The orb calls the adapter_manager_state_changed() operation each
time an adapter manager (POA Manager) undergoes a state change. For
example a call to activate() on a POAManager results in a call to
adapter_manager_state_changed() with a value for state of
PortableInterceptor::ACTIVE. The id parameter identifies the
POAManager.

State changes on the adapter itself result in a call to
adapter_state_changed().

The IORInfo interface is used to get profile information and to add
components to an IOR. The IORInfo interface is defined in
$TAO_ROOT/tao/IORInterceptor/IORInfo.pidl.

local interface IORInfo
{
 CORBA::Policy get_effective_policy (in CORBA::PolicyType type);
 void add_ior_component (in IOP::TaggedComponent component);
 void add_ior_component_to_profile (
 in IOP::TaggedComponent component,
 in IOP::ProfileId profile_id);

 readonly attribute AdapterManagerId manager_id;
 readonly attribute AdapterState state;
 readonly attribute ObjectReferenceTemplate adapter_template;
 attribute ObjectReferenceFactory current_factory;
};

For more information about the IORInfo interface, Object Reference
Factories, and Object Reference Templates see the Portable Interceptors
chapter of the CORBA specification.

9.4.1 Defining and Implementing the IOR Interceptor
An IOR interceptor multiply inherits from
PortableInterceptor::IORInterceptor_3_0 and
CORBA::LocalObject. It must implement the establish_components(),

o c i w e b . c o m 245

9 . 4 I O R I n t e r c e p t o r s

components_established(), adapter_manager_state_changed(),
adapter_state_changed(), name(), and destroy() methods.

#include "tao/PortableInterceptorC.h"
#include "tao/LocalObject.h"
#include "tao/IORInterceptor/IORInterceptor.h"

class ServerIORInterceptor :
 public virtual PortableInterceptor::IORInterceptor_3_0,
 public virtual CORBA::LocalObject
{
public:
 virtual char* name ();

 virtual void destroy ();

 virtual void establish_components (PortableInterceptor::IORInfo_ptr info);
 virtual void components_established (PortableInterceptor::IORInfo_ptr info);
 virtual void adapter_manager_state_changed (
 const char* id,
 PortableInterceptor::AdapterState state);
 virtual void adapter_state_changed (
 const PortableInterceptor::ObjectReferenceTemplateSeq& templates,
 PortableInterceptor::AdapterState state);
};

9.4.2 Registering the IOR Interceptor
Similar to request interceptors, IOR Interceptors are registered in the
pre_init() or post_init() methods of the ORBInitializer. A newly
created instance of IORInterceptor is registered by passing it as an in
parameter to ORBInitInfo::add_ior_interceptor().

9.4.3 Extracting Tagged Information
Tagged components in an IOR can be extracted on the client-side at any of the
four implemented client interception points (send_poll() is not supported).
The tagged component of an IOR is returned from
ClientRequestInfo::get_effective_component().

9.4.4 Example: “ServerRequiresAuth” Tag in IOR
The previous examples in 9.2.6 and 9.3.2 show how interceptors can be used
to provide simple authentication. In a more complex environment, different

246 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

levels of security would exist and clients would not necessarily know what
types of authentication they might need to provide with remote requests.

This example demonstrates how IOR interceptors can allow an object to
advertise the type of authentication it requires. The following code extends the
codec example from 9.3.2 on the server side by publishing the string
"ServerRequiresAuth" as a component tag in the IOR. The client extracts
this new tag. The complete source code for this example is in the TAO source
code distribution in the directory
$TAO_ROOT/DevGuideExamples/PortableInterceptors/IOR.

9.4.4.1 Developing the IOR Interceptor
The name() method of the IORInterceptor is simple.

char* ServerIORInterceptor::name ()
{
 return CORBA::string_dup ("ServerIORInterceptor");
}

To implement establish_components(), we create an
IOP::TaggedComponent and choose an arbitrary numeric value for its
tagID.

Note Were we developing an application that needed to interface with other
CORBA applications, we would want to make sure our tagID was unique, and
would ask the OMG to assign a Component ID. See
ftp://ftp.omg.org/pub/docs/ptc/99-02-01.txt for additional information

We then copy the string “ServerRequiresAuth” into the TaggedComponent
buffer and call add_ior_component().

void ServerIORInterceptor::establish_components (
 PortableInterceptor::IORInfo_ptr info)
{
 const char * permission = "ServerRequiresAuth";

 // arbitrary tag.
 CORBA::ULong tagID = 9654;

 // populate the tagged component
 IOP::TaggedComponent myTag;

o c i w e b . c o m 247

9 . 4 I O R I n t e r c e p t o r s

 myTag.tag = tagID;
 myTag.component_data.length (ACE_OS::strlen(permission) + 1);

 CORBA::Octet *buf = myTag.component_data.get_buffer();
 ACE_OS::memcpy (buf, permission, ACE_OS::strlen(permission) + 1);

 // add the tagged component
 info->add_ior_component (myTag);
 std::cout << "Created Tagged IOR." << std::endl;
}

The remaining member functions (components_established(),
adapter_manager_state_changed(), adapter_state_changed(),
and destroy()) have empty definitions

9.4.4.2 Installing the IOR Interceptor
To install the IOR interceptor, we implement the post_init() method of the
ServerInitializer class. This method is similar to the post_init()
method previously shown for Request interceptors. The IOR interceptor is
registered by creating a new instance of the interceptor and passing it to the
add_ior_interceptor() method.

void ServerInitializer::post_init (
 PortableInterceptor::ORBInitInfo_ptr info)
{
 // get reference to the codec_factory
 IOP::CodecFactory_var codec_factory = info->codec_factory();

 // Create and register the request interceptors.
 PortableInterceptor::ServerRequestInterceptor_var si =
 new ServerInterceptor(codec_factory);
 info->add_server_request_interceptor (si.in());

 // add IOR Interceptor
 PortableInterceptor::IORInterceptor_var iori = new ServerIORInterceptor;
 info->add_ior_interceptor (ior.in());
}

9.4.4.3 Decoding the Tag in the Client
In this example, the client accesses the IOP::TaggedComponent
information at the send_request() interception point. It retrieves an
IOP::TaggedComponent based upon a known tagID. If the
TaggedComponent does not exist, the operation

248 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

get_effective_component() raises a CORBA::BAD_PARAM exception,
hence the try/catch block below.

 const CORBA::ULong tagID = 9654;
 try {
 IOP::TaggedComponent_var myTag = ri->get_effective_component(tagID);
 char *tag = reinterpret_cast<char *>(myTag->component_data.get_buffer());
 std::cout << "IOR Tag is : " << tag << std::endl;
 }
 catch(CORBA::BAD_PARAM&) {
 std::cerr << "Tagged Component not found" << std::endl;
 }

9.4.5 Program Output
The server generates a tagged IOR which can be viewed in a more readable
form using the utility tao_catior (in $TAO_ROOT/utils/catior):
> $TAO_ROOT/utils/catior/tao_catior -f Messenger.ior
reading the file Messenger.ior

here is the IOR
IOR:010000001200000049444c3a4d657373656e6765723a312e300000000100000000000000870
000000101020010000000636869702e6f63697765622e636f6d00878200001b00000014010f0052
53540e02573c698d0c0000000000010000000100000000030000000000000008000000010000000
04f415401000000140000000135b34001000100000000000901010000000000b625000013000000
53657276657252657175697265734175746800

decoding an IOR:
The Byte Order: Little Endian
The Type Id: "IDL:Messenger:1.0"
Profile Count: 1
IIOP Version: 1.2
 Host Name: chip.ociweb.com
 Port Number: 33415
 Object Key len: 27
 Object Key as hex:
 14 01 0f 00 52 53 54 0e 02 57 3c 69 8d 0c 00 00
 00 00 00 01 00 00 00 01 00 00 00
 The Object Key as string:
 RST..W<i...............
 The component <0> has tag <0>
 Component Value len: 8
 Component Value as hex:
 01 00 00 00 00 4f 41 54
 The Component Value as string:
 OAT
 The component <1> has tag <1>
 Component Value len: 20

o c i w e b . c o m 249

9 . 5 T h e P o r t a b l e I n t e r c e p t o r : : C u r r e n t

 Component Value as hex:
 01 35 b3 40 01 00 01 00 00 00 00 00 09 01 01 00
 00 00 00 00
 The Component Value as string:
 .5.@................
 The component <2> has tag <9654>
 Component Value len: 19
 Component Value as hex:
 53 65 72 76 65 72 52 65 71 75 69 72 65 73 41 75
 74 68 00
 The Component Value as string:
 ServerRequiresAuth.

At the send_request() interception point, the client obtains the
TaggedComponent and casts it to a char* for output. The output of the client
should resemble:

./MessengerClient
Calling ClientInterceptor constructor.
Calling ClientInterceptor name() method
got codec factory
Calling send_request().
IOR Tag is : ServerRequiresAuth
GID: 9007
Calling receive_reply().
message was sent

9.5 The PortableInterceptor::Current

The PortableInterceptor::Current or PICurrent is a slot table that is
used to transfer thread context information between the request and reply
service contexts. The PICurrent is an ancillary object to Portable
Interceptors. Its use is not required, but it is helpful in propagating data when
the service context is not available or not yet available.

9.5.1 Using PICurrent
The PortableInterceptor::Current interface is defined in
$TAO_ROOT/tao/PI/PICurrent.pidl:

module PortableInterceptor
{
 typedef unsigned long SlotId;

250 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

 exception InvalidSlot {};
 local interface Current : CORBA::Current
 {
 any get_slot (in SlotId id) raises (InvalidSlot);
 void set_slot (in SlotId id, in any data) raises (InvalidSlot);
 };
};

A reference to the PICurrent is obtained from a call to
ORB::resolve_initial_references("PICurrent"). Data in the form
of a CORBA::Any is inserted into a slot with set_slot() and is retrieved
with get_slot().

9.5.2 When to use PICurrent
There are special instances where PICurrent can be helpful on both the
server- and client-side. Recall that the
receive_request_service_context() interception point does not have
access to the service context. Any data that is needed at this interception point
can be copied into the PICurrent before the invocation and will be available
at the interception point. The CORBA specification discusses a client-side
case where the PICurrent is useful in stopping recursion. The following
example demonstrates how interceptors can be called recursively and how the
PICurrent can be used to pass a flag between the client and server service
contexts to allow the client to recognize that it is making a recursive call.

9.5.3 Example: Stopping Client-side Recursion
Infinite recursion can happen if an interceptor makes an ORB-mediated
invocation on a CORBA object. Suppose the client makes an invocation,
which calls send_message(), and send_message() makes its own
invocation, which will call send_message() indefinitely until somehow the
interceptor realizes it is recursing or the application crashes. The PICurrent
can be used to pass a flag that the ClientRequestInterceptor can use to
keep from making recursive calls.

Note Another way to solve this potential recursion problem may be to use the
Processing Mode Policy to disable interceptors for collocated invocations. If
the CORBA object that the interceptor is invoking an operation on is in the
same process, then disabling interceptors for collocated calls would avoid

o c i w e b . c o m 251

9 . 5 T h e P o r t a b l e I n t e r c e p t o r : : C u r r e n t

recursively calling the interceptor. See 9.6.1 for details of the Processing
Mode Policy.

In this example, we assume that the client needs to know the server’s date and
time with each invocation operation. Rather than returning the date and time
from a call to send_message(), we choose to extend our IDL to add a
get_time() function. The complete source code for this example is in the
TAO source code distribution in the directory
$TAO_ROOT/DevGuideExamples/PortableInterceptors/PICurrent.

Here is our Messenger interface with the addition of a get_time() operation:

interface Messenger
{
 boolean send_message (in string user_name,
 in string subject,
 inout string message);

 string get_time ();
};

The get_time() operation is implemented on the server as:

char* Messenger_i::get_time ()
{
 time_t thetime;
 struct tm* timeinfo;

 ACE_OS::time(&thetime);
 timeinfo = ACE_OS::localtime(&thetime);
 char* timestring = CORBA::string_dup(ACE_OS::asctime(timeinfo));

 return timestring;
}

The functionality we would like to see in the client is that every time
Messenger::send_message() is called, Messenger::get_time() is
called. If we add a call to get_time() in the send_request() interception
point, we will cause send_request() to be called recursively. Using the
PICurrent, we can detect this recursion.

Before we can use the PICurrent, we must get a reference to it. This is done
in the ORBInitializer. Because we want to call get_time(), we need a
reference to the Messenger object. In the earlier examples in this chapter, we

252 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

read an IOR from a file and called ORB::string_to_object() to obtain
the object reference, but interceptors do not have access to the ORB in the
ORBInitializer, so string_to_object() is not available. For this
example we made the Messenger object an initial reference by passing the
server’s IOR as part of the -ORBInitRef command line argument.
Alternately, we could bind the Messenger object in the Naming Service and
resolve the Naming Service as an initial reference in the ORBInitializer.

void ClientInitializer::post_init (
 PortableInterceptor::ORBInitInfo_ptr info)
{
 // resolve Messenger object
 CORBA::Object_var obj = info->resolve_initial_references ("Messenger");
 Messenger_var messenger = Messenger::_narrow (obj.in());
 if (CORBA::is_nil(messenger.in())) {
 std::cerr << "Not a Messenger reference" << std::endl;
 // We could throw an exception here, or just ignore the error and go on.
 }

We then allocate a slot in the current for our use. Since we cannot obtain a
reference to the PICurrent through
ORB::resolve_initial_references(), we obtain it through
ORBInitInfo::resolve_initial_references().

 // allocate slot
 PortableInterceptor::SlotId slot = info->allocate_slot_id();

 // get PICurrent
 CORBA::Object_var current_obj = info->resolve_initial_references ("PICurrent");
 PortableInterceptor::Current_var pic =
 PortableInterceptor::Current::_narrow (current_obj.in());

A CORBA::Boolean serves as our recursion flag. Initially there is no
recursion, so we set a false value in the PICurrent slot and finish installing
the interceptor.

 // set recurion flag
 CORBA::Any flag;
 CORBA::Boolean x = false;
 flag <<= CORBA::Any::from_boolean(x);

 pic->set_slot(slot, flag);

 // Create and register the request interceptors.
 PortableInterceptor::ClientRequestInterceptor_var ci =

o c i w e b . c o m 253

9 . 5 T h e P o r t a b l e I n t e r c e p t o r : : C u r r e n t

 new ClientInterceptor (messenger, pic.in(), slot);
 info->add_client_request_interceptor (ci.in());
}

In the client interceptor, the code pertinent to
Messenger::send_message() is unchanged.

void ClientInterceptor::send_request (
 PortableInterceptor::ClientRequestInfo_ptr ri)
{
 std::cout << "Calling send_request()." << std::endl;

 IOP::ServiceContext sc;
 sc.context_id = service_ctx_id;

 const char user_name[] = "Ron Klein";
 std::cout << "User’s Name: " << user_name << std::endl;
 CORBA::ULong string_len = sizeof (user_name) + 1;
 CORBA::Octet *buf = 0;
 ACE_NEW (buf, CORBA::Octet[string_len]);
 ACE_OS::strcpy (reinterpret_cast<char *>(buf), user_name);

 sc.context_data.replace (string_len, string_len, buf, true);

Before calling get_time(), the interceptor retrieves the flag from the
PICurrent. If it is false, the interceptor inserts a value of true, which will
stop the recursion on the next invocation. Then it calls get_time(). Finally,
before exiting send_request() the value in the PICurrent is reset to false,
so that later invocations will call get_time().

 // recursive call setup
 CORBA::Any* recurse = ri->get_slot(slot);
 CORBA::Boolean x;
 if (*recurse >>= CORBA::Any::to_boolean(x)) {

 CORBA::Any flag;
 if (x == false) {
 x = true;
 flag <<= CORBA::Any::from_boolean(x);

 pic->set_slot(slot, flag);

 // get server time
 std::cout << "Server Time = " << messenger->get_time() << std::endl;
 }
 } else {

254 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

 std::cerr << "Could not extract a boolean value from any" << std::endl;
 }

 // Add this context to the service context list.
 ri->add_request_service_context (sc, false);

 // reset recursion test
 x = false;
 flag <<= CORBA::Any::from_boolean(x);
 pic->set_slot(slot,flag);
}

9.5.4 Program Output
The server output should resemble:

> ./MessengerServer
Calling ServerInterceptor constructor.
Calling ServerInterceptor name() method

IOR written to file Messenger.ior
Calling receive_request_service_contexts().
Calling receive_request().
Permission Granted
Calling send_reply().
Calling receive_request_service_contexts().
Calling receive_request().
Permission Granted
Message from: TAO User
Subject: TAO Test
Message: Hello!
Calling send_reply().

The client output should resemble:

> ./MessengerClient -ORBInitRef Messenger=file://Messenger.ior
Calling ClientInterceptor constructor.
Calling ClientInterceptor name() method
Calling send_request().
User’s Name: Ron Klein
Calling send_request().
User’s Name: Ron Klein
Calling receive_reply().
Server Time = Tue Jan 29 13:19:16 2002

o c i w e b . c o m 255

9 . 6 I n t e r c e p t o r P o l i c y

Notice that send_request() is called twice. The first is from the
send_message() operation invocation. The second is from the get_time()
operation invocation.

9.6 Interceptor Policy

The CORBA 3.1 specification adds the ability to control interceptor behavior
by applying policies during the registration of interceptors. The
ORBInitInfo interface was extended, via inheritance to support this
capability. The new interface is called ORBInitInfo_3_1 and is defined in
$TAO_ROOT/tao/PI/ORBInitInfo.pidl:

local interface ORBInitInfo_3_1 : ORBInitInfo
{
 void add_client_request_interceptor_with_policy(
 in ClientRequestInterceptor interceptor,
 in CORBA::PolicyList policies)
 raises (DuplicateName, CORBA::PolicyError);
 void add_server_request_interceptor_with_policy(
 in ServerRequestInterceptor interceptor,
 in CORBA::PolicyList policies)
 raises (DuplicateName, CORBA::PolicyError);
 void add_ior_interceptor_with_policy(
 in IORInterceptor interceptor,
 in CORBA::PolicyList policies)
 raises (DuplicateName, CORBA::PolicyError);
};

In addition to supporting all the existing ORBInitInfo functionality, the new
interface adds the ability to register each of the three interceptor types with a
list of policies to apply. Applying an invalid or incompatible policy results in a
CORBA::PolicyError exception.

9.6.1 Processing Mode Policy
Currently, the only portable interceptor policy is the Processing Mode Policy.
This policy can limit the conditions under which the interceptor is invoked.
The supported values are:

• LOCAL AND REMOTE: Call the interceptor for both local and remote
invocations. This is the default value for this policy (when it is not
specified).

256 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

• REMOTE ONLY: Only call the interceptor for remote invocations. This
will suppress calling the interceptor for collocated invocations.

• LOCAL ONLY: Only call the interceptor for local invocations. This will
suppress calling the interceptor for remote invocations and only do so for
collocated invocations.

Here is a short example that shows registering a client interceptor with the
Processing Mode Policy set to REMOTE_ONLY:

#include "tao/PI/ProcessingModePolicyC.h"
#include "tao/PI/ORBInitInfo.h"

void
ClientInitializer::post_init (PortableInterceptor::ORBInitInfo_ptr info)
{
 PortableInterceptor::ORBInitInfo_3_1_var info_3_1 =
 PortableInterceptor::ORBInitInfo_3_1::_narrow(info);

 PortableInterceptor::ClientRequestInterceptor_var
 client_interceptor = new MyClientInterceptor;

 CORBA::Any client_proc_mode_as_any;
 client_proc_mode_as_any <<= PortableInterceptor::REMOTE_ONLY;

 CORBA::PolicyList policy_list (1);
 policy_list.length (1);
 policy_list[0] =
 orb->create_policy (PortableInterceptor::PROCESSING_MODE_POLICY_TYPE,
 client_proc_mode_as_any);

 info_3_1->add_client_request_interceptor_with_policy (
 client_interceptor.in (),
 policy_list);

 policy_list[0]->destroy ();
}

9.7 Summary

This chapter showed how to develop applications using TAO and its CORBA
3.1 compliant Portable Interceptors implementation. Several aspects of
Portable Interceptors were discussed, including:

o c i w e b . c o m 257

9 . 7 S u m m a r y

• Portable Interceptors are used to monitor and modify transparently the
requests and replies between clients and server. They can be implemented
with few modifications to existing code.

• Codecs (coders/decoders) can be used to marshal the service context, so
that byte order differences between systems do not corrupt request/reply
data.

• IOR Interceptors are used to add tagged components to IORs. This allows
servers and other objects to advertise their capabilities or requirements to
clients.

• The PICurrent is a table that can be used to transfer data between the
reply and request service contexts.

• The Processing Mode Policy can be applied to client request interceptors
to limit the conditions under which the interceptor is invoked.

258 o c i w e b . c o m

P o r t a b l e I n t e r c e p t o r s

o c i w e b . c o m 259

CHAPTER 10

Value Types

10.1 Introduction

The original CORBA specification focused on the challenges of remotely
invoking operations on objects, regardless of location. A number of data types
were introduced to allow rich interfaces to be defined, but a strict separation
was maintained between the functionality of a system, specified via interfaces,
and the data of a system, specified via data types. With value types (see
Chapter 9 the CORBA Core specification, OMG Document formal/08-01-04),
it is possible to define objects in IDL that contain both functionality and data
(called state members) that can be passed remotely by their value. These value
types are defined using the valuetype keyword. Value types can be helpful
for the case where an object role is primarily to hold data, or it is common to
copy an object with a large amount of data.

This chapter provides an introduction to the subset of value type features that
are implemented in TAO. For additional information about value types, see
Chapter 11 of Pure CORBA.

260 o c i w e b . c o m

V a l u e T y p e s

10.2 Uses for Value Types

A value type can be used in several situations that may otherwise be awkward
in CORBA. You can use a value type as a replacement for an IDL struct, as
another type of local interface, or as a way to combine data with operations,
like a C++ class. They can also be passed through any of the TAO CORBA
event services such as the Notification Service described in Chapter 25.

Using a value type in place of a struct allows you to use inheritance as a
way to organize your structures. This is easier to work with than building
complex structures using containment, because it can be tedious to access
many levels of nested structs.

In many cases, using value types can be more straightforward and more
efficient than using CORBA local interfaces. An operation invocation on a
value type does not go through an ORB. Public accessor and mutator
operations on value types do not transfer ownership, so there is no need for
_var types and reference counting, but operations and attributes still have
typical interfaces. Unlike a local interface, a value type is not derived from
CORBA::Object, and therefore avoids considerable compilation and memory
overhead.

Note It is important to keep in mind that for each language used in your distributed
system an implementation of your value type must be made. Each language
implementation must behave identically for your value type for work
correctly.

Perhaps the most common use of a value type is for passing objects by value.
A normal CORBA interface leaves the data portion of an object undefined,
allowing you to implement the interface operations with whatever servant best
suits the needs of your application. By using value types, your IDL interface
can constrain the data types, thus trading a little flexibility in how the servant
is implemented for having the ORB pass your objects by value. With value
types, you are still required to provide an implementation for the interface.

You can also pass value types through any of the included event services, or
through any custom interface that passes values using Any. Your value type
implementation need only be linked into the code that ultimately extracts the
value type from the Any.

o c i w e b . c o m 261

1 0 . 3 D e f i n i n g V a l u e T y p e s i n I D L

Note The CORBA eventtype is a specialization of the valuetype.

When a value type is passed from one process to another, only the state of the
object is passed. It is the responsibility of the receiving process to provide an
implementation of that value type, as well as a factory suitable for
reconstructing the object from the data marshalled using CORBA. A base
factory class will be generated and will contain virtual methods corresponding
to each of the factory operations defined in the value type IDL. Processes
operating on a value type are not required to use the same implementation.
You must register a factory object with the ORB using
CORBA::ORB::register_value_factory().

Note Value types with only state members will have a factory generated
automatically, although you must still register an instance of this factory with
the ORB.

Value types break one of CORBA’s original tenets, that the IDL is all that is
required for different processes to communicate, regardless of implementation
language, architecture, or location. When using value types, you are required
to supply value type implementations, which may restrict the processes and
implementations with which you can communicate. Although this restriction
is often offset by the potential efficiency of using value types, it sometimes
forces developers to avoid the use of value types in their applications.

10.3 Defining Value Types in IDL

A value type in IDL can be thought of as a hybrid of a struct and an
interface. Like a struct, the value type can have data members, and passes
all of its enclosed data across an interface. Like an interface, a value type
defines a set of operations that can be called upon objects of that type. In
addition, value types support inheritance from other value types as well as
interfaces, allowing for the definition of complex models.

For example, here is a definition for a simple value type:

valuetype Person {

262 o c i w e b . c o m

V a l u e T y p e s

 public string name;
 public long balance;

 factory create(in string name);

 void debit(in long amt);
};

The state members of a value type require the private or public keyword
to indicate the accessibility of the generated accessors and mutators. The
factory keyword is used to denote a special operation that will be used to
construct a Person. A value type can contain more than one factory
declaration, and the factory can have any name.

Note It is often unnecessary to declare factory methods in IDL, because you can
simply use normal C++ constructors to create the value type instances.

The value type can be used with an IDL operation:

interface Transaction {
 void update(in Person p);
};

As the Person object is passed via the update() operation, the entire object
(including its state) is copied from the client to the server. This means that a
Person object exists in both the client and server, and invocations in a
particular process only affect the state of the object local to that process.

10.4 A Value Type Example

In this section we show an example of using value types that is based on the
Messenger example introduced in Chapter 3.

10.4.1 Implementing Value Types
The first step in implementing value types is to use the IDL compiler to
generate the usual skeleton and stub C++ files from an IDL file defining one
or more value types and interfaces that use them. The IDL compiler generates
all the code required for value type support. It will generate the C++ classes

o c i w e b . c o m 263

1 0 . 4 A V a l u e T y p e E x a m p l e

Message and OBV_Message (OBV stands for object-by-value) as well as
POA_Messenger. The IDL compiler also generates Message_var,
Message_out, and Message_ptr types like those generated for interfaces.
The complete source code for this example can be found in the source code
distribution in
$TAO_ROOT/DevGuideExamples/ValueTypes/Messenger.

10.4.1.1 The valuetype IDL
The IDL for our example defines a simple Message value type which we pass
through a modified version of our Messenger interface. We provide
attributes and operations that will presumably give access to the internal data.
This example is meant to illustrate available features more than correct design.
We also forgo specification of a factory interface, because we create our
factory from the default base class.

valuetype Message {
 typedef sequence<string> AddrList;

 private AddrList addrs_;
 private string user_;
 private string subject_;
 private string text_;

 AddrList getAddresses();
 void addAddress (in string address);
 attribute string user;
 attribute string subject;
 attribute string text;
 void print ();
};

interface Messenger {
 boolean send (inout Message msg);
};

10.4.1.2 Implementing the Value Type Class
Implementing a value type class is analogous to implementing a servant class
for an interface. The IDL compiler generates an OBV_Message class from
which our implementation class must inherit. The OBV_Message class itself
inherits from the generated Message class and includes the state member
accessor/mutator functions. Think of the OBV_Message class as a partial
implementation of the abstract Message class.

264 o c i w e b . c o m

V a l u e T y p e s

Note The private and public qualifiers for state members do not directly map
to the C++ private and public keywords. For all state members the IDL
compiler generates pure virtual accessor and modifier functions. For public
members these functions map to public C++ functions. For private members
these functions map to protected C++ functions.

It is up to us to provide implementations for the value type state members and
operations. In our example, we need to provide implementations for the user,
subject, and text attributes, as well as the getAddresses() and
addAddress() operations.

Additionally, all value type objects use intrusive reference counting. The
ValueBase class, from which all value types derive, defines pure virtual
_add_ref(), _remove_ref(), and _refcount_value() functions. The
easiest way to provide a correct implementation for these is to mix in the
CORBA::DefaultValueRefCountBase type. This is analogous to mixing in
RefCountServantBase for servant classes.

Here is a portion of the code for our Message implementation class:

// Message_i.h
class MessageImpl : public virtual OBV_Message
 , public virtual CORBA::DefaultValueRefCountBase
{
public:
 MessageImpl (const char* address, const char* user, const char* subject,
 const char* txt);

 virtual char* user();
 virtual void user(const char*);
 // ...
};

// Message_i.cpp
MessageImpl::MessageImpl (const char* address, const char* user,
 const char* subject, const char* txt)
 : OBV_Message(Message::AddrList(), user, subject, txt)
{
 addAddress(address);
}

char* MessageImpl::user()
{
 return CORBA::string_dup(user_());
}

o c i w e b . c o m 265

1 0 . 4 A V a l u e T y p e E x a m p l e

void MessageImpl::user(const char* s)
{
 user_(s);
}

Notice that, in our constructor, we use the OBV_Message constructor to
initialize most of the attributes.

10.4.1.3 Implementing the Value Type Factory
A value type factory is required to allow the ORB to create and demarshal
value type objects that are included in GIOP Request and Reply messages.
This factory knows how to create value type objects of a specific type that are
registered with the ORB.

We must implement a factory class derived from the ValueFactoryBase
defined in TAO. If we had not specified any operations or attributes in our
value type IDL, then a complete factory class called Message_init would
have been generated automatically. If we had defined any factories in the IDL,
then a base class called Message_init would have been generated, and we
would have to provide implementation for each of its virtual methods. Here is
the definition for the factory:

#include <tao/Valuetype/ValueFactory.h>

// Message_i.h
class MessageFactory : public virtual CORBA::ValueFactoryBase
{
public:
 static void register_new_factory(CORBA::ORB& orb);
 virtual CORBA::ValueBase* create_for_unmarshal();
};

We add the static register_new_factory() function to make it easier to
register the factory with the ORB. We call this function from both the server
and client main() functions. The MessageFactory definition is as follows:

// Message_i.cpp
void MessageFactory::register_new_factory (ORB& orb)
{
 CORBA::ValueFactoryBase_var mf = new MessageFactory;
 CORBA::String_var id = ::_tc_Message->id();
 orb.register_value_factory(id.in(), mf.in());
}

266 o c i w e b . c o m

V a l u e T y p e s

CORBA::ValueBase* MessageFactory::create_for_unmarshal ()
{
 return new MessageImpl;
}

The register_new_factory() operation simply associates the Repository
ID of our factory class with an instance of our factory class. Later, when a
Message object is received, the ORB will use the
create_for_unmarshal() operation to create a local implementation for
the Message object.

A value type factory only needs to be registered with orbs that need to
unmarshal value types. Often this means that you can forgo this registration on
the client side, although in our example the Message object is passed through
an inout parameter, and therefore both sides must register a factory.

10.4.2 Using Value Types
A value type is typically referenced through a _var smart pointer that
manages memory allocated for a value type in a manner similar to the _var
smart pointer types used for CORBA object proxies. You can call the
operations on a value type by simply calling the corresponding member
function on the value type object. Public state members are accessed and
modified using member functions with the same name as the state member. In
our example, the client creates a Message, then sends it to the server. The
server simply calls the Message::print() function, then uses the same
Message object to reply to the client.

Here is our implementation class for the Messenger interface:

// Messenger_i.h
class Messenger_i : public virtual POA_Messenger
{
public:

 virtual CORBA::Boolean send_message (Message*& msg);
};

// Messenger_i.cpp
CORBA::Boolean Messenger_i::send_message (Message*& msg)
{
 // print the message sent from the client
 msg->print();

o c i w e b . c o m 267

1 0 . 5 A n E x a m p l e u s i n g V a l u e T y p e s a s E v e n t s

 // populate the return message
 msg->user("Son");
 msg->addAddress("Mom");
 msg->addAddress("Dad");
 std::ostringstream out;
 CORBA::String_var subject = msg->subject();
 out << "RE: " << subject.in();
 msg->subject(out.str().c_str());
 msg->text("Ok. I'm on my way.");

 return true;
}

10.5 An Example using Value Types as Events

It can be convenient to pass value types as events using the TAO Event
Service, RT Event Service, or Notification Service.

The complete source code for this example can be found in the source code
distribution in
$TAO_ROOT/orbsvcs/DevGuideExamples/ValueTypes/Notify.

10.5.1 Event Example IDL
valuetype MyEvent
{
 public string name;
 public long kind;
 private CORBA::LongSeq payload;

 void dump();
 long size();
 void add_long(in long n);
};

10.5.2 Event Example Supplier
The following is an excerpt from an example showing how to use a value type
with the Notification Service CosEvent interfaces. The supplier encapsulates
the MyEvent value type in an Any before pushing it to the Notification
Service channel using the PushConsumer interface.
...
MyEvent_var event_ = new MyEvent_i("TestName", 42);
...

268 o c i w e b . c o m

V a l u e T y p e s

bool push_next_event() {
 try {
 if (! connected_) {
 std::cout << "Trying to push when disconnected." << std::endl;
 return false;
 }
 std::cout << "+" << std::flush;

 ++event_count_;

 Any a;
 a <<= event_;
 consumer_->push(a);

 if (event_count_ >= num_events_ && num_events_ > 0) {
 std::cout << "Supplier stopping after sending "
 << event_count_ << " events." << std::endl;
 disconnect();
 } else {
 schedule_next_event(EVENT_DELAY);
 }
 return true;
 } catch (CORBA::Exception& e) {
 std::cerr << "TestSupplier::push_next_event() exception: " << e
 << std::endl;
 }
 return false;
}

10.5.3 Event Example Consumer
The following is an excerpt from the consumer code, showing how the value
type is extracted from the interface. The consumer code must register a value
factory with the ORB, or the extraction will trigger an CORBA::UNKNOWN
system exception.

...
virtual void push(const Any& a)
 {
 MyEvent* vt;
 a >>= vt;

 std::cout << std::endl
 << "Received MyEvent name=" << vt->name()
 << ", kind=" << vt->kind()
 << ", size=" << vt->size()
 << std::endl;

o c i w e b . c o m 269

1 0 . 6 V a l u e T y p e s a n d I n h e r i t a n c e

 vt->dump();

 if (++ event_count_ >= num_events_ && num_events_ > 0) {
 std::cout << "Consumer disconnecting after receiving "
 << event_count_ << " events." << std::endl;
 }
 }
...
// In main() after ORB_init()
CORBA::ValueFactoryBase_var factory = new MyEventFactory;
String_var id = _tc_MyEvent->id();
orb->register_value_factory(id.in(), factory.in());
...

10.6 Value Types and Inheritance

TAO supports multiple inheritance from abstract value types (discussed
later in this section), and single inheritance from regular non-abstract value
types. TAO also supports single inheritance from non-abstract interfaces and
multiple inheritance from abstract interfaces via the supports keyword.

An abstract interface can be used for defining parameters that can be passed
either object references or values. Resulting operation invocations on the
abstract interface parameter can result in remote CORBA invocations or local
value type execution.

10.6.1 Regular Value Types Inheritance
You can use inheritance between regular (also known as stateful or
non-abstract) value types as you might have done with a C++ struct in the
past, and it can be used to support a common interface as with C++
inheritance. For example, in our application, there might be other value types
that we wish to print:

valuetype Printable
{
 void print();
};

valuetype Message : Printable
{
 // ...
};

270 o c i w e b . c o m

V a l u e T y p e s

valuetype Document : Printable
{
 // ...
};

By moving the print() operation from our Message type to a Printable
base type, we are able to add a new type that can print. This will allow
Message and Document to be passed to any IDL operation that takes a
Printable type. However, you must still implement the print() operation
for Message and Document, because value type inheritance does not provide
implementation inheritance.

Of course, we can also have base types that contain data. Here is an example
of several value types that would have been extremely tedious to access with
the CORBA struct mapping:

valuetype Party
{
 public string name;
 public string address;
};

valuetype Person : Party
{
 public string birth_date;
};

valuetype Employee : Person
{
 public string date_of_hire;
};

valuetype Manager : Employee
{
 typedef sequence<Employee> Reports;
 public Reports reports;
};

If we had implemented these as nested structs, we would have had code that
called such things as mgr.employee.person.party.name = "Stan".
Instead, we simply use mgr.name().

o c i w e b . c o m 271

1 0 . 6 V a l u e T y p e s a n d I n h e r i t a n c e

10.6.1.1 Truncatable
When deriving one stateful value type from another, you can specify the
truncatable keyword. This keyword indicates that you are willing to let the
ORB instantiate a value of the base value type with a value instance of the
derived value instance. This would occur when an ORB is passed an instance
of a value type that it cannot instantiate but it can instantiate an instance of the
base value type. Because this substitution can modify the behavior and even
meaning of the passed value, the truncatable keyword is required for each
derivation where you want to allow the ORB to make these substitutions. Here
is the previous example with the truncatable keyword:

valuetype Party
{
 public string name;
 public string address;
};

valuetype Person : truncatable Party
{
 public string birth_date;
};

valuetype Employee : truncatable Person
{
 public string date_of_hire;
};

valuetype Manager : truncatable Employee
{
 typedef sequence<Employee> Reports;
 public Reports reports;
};

interface InterfaceType {
 void litigate (in Party p);
};

When a client passes an Employee value type to the litigate() operation,
the server’s ORB is free to instantiate the passed value as either an Employee,
Person, or Party value instance, depending on which types it has knowledge
of.

272 o c i w e b . c o m

V a l u e T y p e s

10.6.2 Abstract Value Type Inheritance
A value type may be defined as abstract. This allows the value type to be used
as a base class in combination with another value type. An abstract value type
may not contain any state members. However, it can contain operations and
attributes. A value type may inherit from one non-abstract value type, and
many abstract value types. Using abstract value types, we could add another
base type to our Message value type from the previous example:

valuetype Named {
 public name;
};

abstract valuetype Printable {
 void print();
};

valuetype Message : Printable, Named {
 // ...
};

By adding the abstract keyword, we are able to derive Message from both
Named and Printable.

10.6.3 Interface Inheritance
Inheriting a value type from an interface allows that the resulting value to be
passed by both a reference (using the interface type) or as a value (using the
value type). For example, modify the above example to make printable an
interface:

interface Printable {
 void print();
};

valuetype Message : supports Printable {
 // ...
};

interface MyInterface {
 void pass_by_value (in Message msg);
 void pass_by_reference (in Printable p);
};

o c i w e b . c o m 273

1 0 . 6 V a l u e T y p e s a n d I n h e r i t a n c e

When calling pass_by_value(), the client is passing the value to the server.
If the server calls print() using the parameter, it results in a local call to
print() on the value in the server’s process.

When calling pass_by_reference(), the client is passing a CORBA object
reference to the server. If the server calls print() using the parameter, it
results in a remote invocation on the value in the client’s process.

10.6.4 Abstract Interface Inheritance
In the previous section, the interface designer specifies whether a given
parameter is a CORBA object or a value type. The use of abstract interfaces,
as described in this section, allow this decision to be left until run-time. An
abstract interface defines a type that can be either a CORBA object or a value
type. Modifying the previous example to use an abstract interface, results in
the following:

abstract interface Printable {
 void print();
};

interface ConcretePrintable : Printable{
};

valuetype Message : supports Printable {
 // ...
};

interface MyInterface {
 void pass_flexible (in Printable p);
};

When pass_flexible() is passed a Message value, it is marshalled and
passed to the server. Subsequent calls to print() on it are handled by the
server’s value.

When pass_flexible() is passed an object reference to a
ConcretePrintable value, the reference is passed to the server. Subsequent
calls to print() result in a remote CORBA invocation on that reference and
are handled by that object’s server.

274 o c i w e b . c o m

V a l u e T y p e s

10.7 Value Boxes

Value boxes are a simplification to the IDL syntax and C++ mapping for value
types that define no inheritance, no operations, and a single attribute. Here are
some sample value box definitions in IDL:

valuetype ValueBoxString string;

typedef sequence<string> StringSeq;
valuetype ValueBoxStringSeq StringSeq;

Any IDL type can be used in a value box. Value boxes cannot be forward
declared, so forward declarations always refer to non-boxed value types.
Value boxes may not be derived from or derive from anything else.

Value boxes lead to a number of simplifications in their C++ mapping (as
compared to non-boxed value types):

• C++ classes representing value boxes are concrete and application
developers do not need to derive from and implement there own types.

• All value box classes are always reference counted.

• Value box classes do not need or use factories.

• All value boxes supply _boxed_in(), _boxed_inout() and
_boxed_out() member functions that return the appropriate type when a
given value box is passed as a parameter of the corresponding mode.

There is some variation in the interface to the C++ class representing a value
box. For details, refer to Section 4.19.7 of the C++ Language Mapping,
Version 1.2.

10.8 TAO Compliance

TAO supports many of the basic features of value types, including:

• Inheriting one value type from another

• The use of abstract value types

• Inheritance from IDL interfaces.

o c i w e b . c o m 275

1 0 . 8 T A O C o m p l i a n c e

• Most of the basic operations available to what Pure CORBA refers to as
regular value types.

• Value boxes (also called boxed values).

• The truncatable keyword and truncatable inheritance.

• eventtype keyword.

TAO’s support of value types does not include:

• Custom marshaling.

• ValueBase::_copy_value().

• PortableServer::ValueRefCountBase.

• ValueBase::_add_ref() returning ValueBase*.

Work is continuing on OBV features in TAO, and some of the above features
may be implemented within the near future. However, value types as they
currently exist in TAO are a functional and valuable tool that you can take
advantage of right now.

276 o c i w e b . c o m

V a l u e T y p e s

o c i w e b . c o m 277

CHAPTER 11

Smart Proxies

11.1 Introduction

Smart proxies are a TAO-specific feature that allows customization of proxy
behavior. Some other ORB implementations provide similar functionality, but
there is no standard for smart proxies.

A smart proxy is an alternative class to the default proxy generated by the
TAO IDL compiler. The purpose is to provide the client application developer
the ability to extend the default behaviors. It is written by the client
application developer and may contain member functions that never send
requests to the target object.

A proxy supplies a client application with an interface to a target CORBA
object that allows the client to access operations on the object in a location-
transparent manner (as if the remote object resides in the client’s address
space). When the TAO IDL compiler is invoked on an IDL interface, it
generates a proxy (stub) class that has the same name as the interface. For
each operation and attribute in the interface, the TAO IDL compiler generates
a corresponding member function in the proxy class. A client application
instantiates a proxy object at run time when it narrows an object reference.

278 o c i w e b . c o m

S m a r t P r o x i e s

For example, in the following code fragment, adapted from the familiar
Messenger example from Chapter 3, a generic object reference
(CORBA::Object) is narrowed to a more-specific type (Messenger),
yielding a proxy to a Messenger object:

 // Obtain the Messenger’s object reference.
 CORBA::Object_var obj = orb->string_to_object("file://Messenger.ior");

 // Narrow it to type Messenger.
 Messenger_var messenger = Messenger::_narrow(obj.in());

For more information on the role of proxies, see Advanced CORBA
Programming with C++, 2.5.4.

To invoke an IDL operation or access an attribute on a target object, a client
application calls the corresponding member function of the proxy class. This
member function (via the client ORB) marshals the invocation into a request
message and sends it to the server. The function then waits for the reply
(unless it is a oneway or AMI function). When the reply arrives, the function
(again via the client ORB) demarshals it and returns the reply values (the
return value, plus the out and inout parameters) to the client application.

For each IDL interface, the TAO IDL compiler generates a proxy factory class
that is used to construct the proxy object when an object reference is
narrowed. The proxy class static member function _narrow() calls the
factory’s create_proxy() member function, which in turn calls the proxy
class constructor.

For most client applications, the default proxy class generated by the TAO
IDL compiler is adequate. However, some applications can benefit from the
customization of proxy behavior. TAO provides a way for an application
developer to write a custom proxy class, known as a smart proxy class, that is
used by the client application in lieu of the default proxy class. Smart proxies
are not part of the CORBA specification, but since they are a client-side-only
issue, they do not affect interoperability between different ORBs. Because the
member functions of the smart proxy class have exactly the same signatures as
those of the default class, no changes are required in the calls made by the
client application on the proxy object. The added functionality of the smart
proxy class is entirely transparent to the client application.

o c i w e b . c o m 279

1 1 . 2 S m a r t P r o x y U s e C a s e s

11.2 Smart Proxy Use Cases

The following use cases provide some insight into how smart proxies can be
used.

• Client-side caching—The use of client-side caching is widespread in
distributed computing. There are at least two advantages to caching
information in the client:

- Minimization of access time.

- Minimization of the number of remote calls needed.

A common example is the caching of web pages by Internet browsers. By
caching web pages as they are accessed, the browser allows repeated
access to these pages without making repeated remote calls to the web
server. This is advantageous to the user, who can access repeated pages
more quickly, and to the web server, because its load is reduced.

The caching of pricing information can be quite useful in a purchasing
system. When the client is only providing a price to a customer, it is often
sufficient to provide this information from a client-side cache, rather than
making a remote call. In the simplest case, the system can be set up to
change prices only at specified times of the day. The smart proxy object
can then cache pricing information and update it at those specified times.
Remote calls are then only required during updates and purchases.

In a system that uses remote operations for time-consuming calculations
that are often repeated, the smart proxy can cache the results of these
operations and return them to the client application instead of making
repeated remote calls.

None of the above cases requires changes to the target object’s interface.
There are cases, however, where the efficiency of the system can be
improved by adding additional operations to the interface. One example is
the case of a client that frequently accesses multiple attributes of a target
object. If an operation that accesses all of the attributes at once is added to
the interface, the smart proxy can call this operation to get all the
information at once, cache the information on the client-side, and provide
the information to the client application through the individual attribute
functions. If the operation is added to a derived interface, then the original
interface need not be altered and can be provided to clients that do not use

280 o c i w e b . c o m

S m a r t P r o x i e s

smart proxies. (Another way to achieve similar behavior would be to
redesign the interface to return a value type; see Chapter 10.)

• Executing a sequence of operations—If a client repeatedly makes the
same sequence of operation invocations on one or more target object(s),
the client application can be provided with a much simpler interface by
building this functionality into a smart proxy and providing the client
application with a single operation that encapsulates the entire sequence.

• Choosing between target objects—If more than one target object is
available to serve a particular client request, the smart proxy can
implement functionality that chooses which, among a number of possible
target objects, to send the request to. One use of such functionality is to
provide a form of load balancing by always sending the request to a
lightly-loaded server.

• Batch processing—If a client application frequently makes a set of
changes to a particular target object, a “batch” operation can be added to
the target interface that makes all the changes at one time. The client will
continue to make individual function calls on the smart proxy, but the
smart proxy will cache these calls and combine them into a single request,
thus reducing the number of remote calls. (Care must be taken if the smart
proxy is used by multiple threads, of course.) If the batch operation is
added to a derived interface, then the original interface need not be altered
and can be provided to clients that do not use smart proxies.

• Logical target object—If a set of functions is to be provided to a client
application by a number of target objects (with different interfaces), a
smart-proxy class can be written to provide a single logical view of this
collection of objects, whether they are legacy objects or not-yet-defined
objects. The smart-proxy member functions contain the functionality
required to call the correct operation on the correct target object. If new
target operations are added later, only the smart proxy needs to be
modified. The changes will be transparent to the client.

11.3 TAO’s Smart Proxy Framework

This section describes the classes that make up TAO’s smart-proxy
framework, the responsibilities of each class, and how these classes interact.
There are six C++ classes in the framework, but developers are only

o c i w e b . c o m 281

1 1 . 3 T A O ’ s S m a r t P r o x y F r a m e w o r k

responsible for writing two of them; the other four are provided in TAO or are
generated by the IDL compiler. If you would like to get started writing and
using smart proxy classes, you may skip now to 11.4 and refer to this section
as needed.

Figure 11-1 shows the six classes that make up the TAO smart proxy
framework.

The TAO_Smart_Proxy_Base class is part of the TAO source code (see
$TAO_ROOT/tao/SmartProxies/Smart_Proxies.h). For each interface,
the TAO IDL compiler generates a smart proxy base class that inherits from
TAO_Smart_Proxy_Base. The smart proxy base classes are discussed in
11.3.3.

Invoking the TAO IDL compiler on an interface named MyInterface causes
the classes MyInterface, MyInterface_out, and MyInterface_var to
be generated. If the TAO IDL compiler is invoked with the -Gsp option on
this same interface, three additional classes are generated that support smart
proxies. They are:

• TAO_MyInterface_Proxy_Factory_Adapter

• TAO_MyInterface_Default_Proxy_Factory

• TAO_MyInterface_Smart_Proxy_Base

Figure 11-1 TAO’s Smart Proxy Framework

282 o c i w e b . c o m

S m a r t P r o x i e s

These three classes are discussed in 11.3.1 through 11.3.3.

Two classes are written by the application developer to provide application-
specific behavior for the smart-proxy factory and the smart proxy. Your
smart-proxy factory class will inherit from the default proxy-factory class
generated by the TAO IDL compiler, and your smart proxy class will inherit
from the smart-proxy base class, also generated by the IDL compiler. These
classes are discussed in 11.4.

11.3.1 The Proxy Factory Adapter
The proxy-factory adapter uses a proxy factory to create proxies. It provides a
consistent interface for both the default and developer-written proxy factories.
It “adapts” the various proxy-factory interfaces to a common one. The proxy-
factory adapter contains the following three member functions:

• register_proxy_factory()

• unregister_proxy_factory()

• create_proxy()

It also contains the proxy_factory_ member variable that stores a pointer to
the proxy factory currently in use. The type of this pointer is the type of the
default proxy factory. For the interface MyInterface, the type of this pointer
is TAO_MyInterface_Default_Proxy_Factory.

The proxy-factory adapter class is instantiated as an ACE_Singleton object.
For the interface MyInterface, it is defined by a typedef as the singleton
class TAO_MyInterface_Proxy_Factory_Adapter. The three member
functions of this class are discussed below.

• register_proxy_factory()

This function takes a pointer to a proxy factory as a parameter and stores it
in the proxy_factory_ member variable. The default proxy-factory
constructor calls this function to register itself with the adapter. A
developer-written proxy-factory constructor will implicitly call this
function because it inherits from the default factory, and thus implicitly
calls the default factory constructor.

• unregister_proxy_factory()

This function deletes the currently-registered proxy-factory object, then
sets the proxy_factory_ member variable to zero. It is called by the

o c i w e b . c o m 283

1 1 . 3 T A O ’ s S m a r t P r o x y F r a m e w o r k

member function register_proxy_factory() prior to storing a new
proxy factory pointer in the proxy_factory_ member variable. It is also
called by the smart-proxy-base get_proxy() member function. It is
necessary to unregister the currently-registered proxy-factory object
before registering a new one to avoid getting into an infinite loop.

• create_proxy()

When this function is called, if the proxy_factory_ member variable
points to a proxy factory, then that factory’s create_proxy() member
function is called to create a new proxy object.

If the proxy_factory_ member variable is zero when this function is
called (i.e., no factory object is currently registered), the default proxy-
factory constructor is called. This constructor will register itself with the
adapter by calling the adapter’s register_proxy_factory() member
function. Once the registration process is completed, the
proxy_factory_ member variable points to the default proxy factory.
The factory’s create_proxy() function is then called.

11.3.2 The Default Proxy Factory
The default proxy factory serves both as the base class for developer-written
proxy factories and as the default factory to be used in the absence of a
developer-written factory. Its create_proxy() member function simply
returns the proxy pointer that is passed to it as an argument. Because this
function is called only by the proxy-factory adapter’s create_proxy()
member function with an argument of a pointer to the default proxy, it always
returns a pointer to the default proxy.

11.3.3 The Smart Proxy Base Classes
The TAO_Smart_Proxy_Base class is the base class for all TAO-IDL-
compiler-generated smart-proxy base classes. Its constructor takes as an
argument a pointer to the default proxy object that it stores in the member
variable base_proxy_.

When the TAO IDL compiler is invoked with the -Gsp option, it generates a
smart-proxy base class that inherits from both the default proxy class and the
TAO_Smart_Proxy_Base class. For an interface named MyInterface, the
TAO_MyInterface_Smart_Proxy_Base class is generated. This class
contains:

284 o c i w e b . c o m

S m a r t P r o x i e s

• The member variable proxy_ that stores a pointer to the default proxy.

• The member function get_proxy() that returns the value of proxy_.

• Overridden member functions of the default proxy class that represent
operations and attributes.

11.3.3.1 The overridden member functions
Each member function in the default proxy that represents an operation or
attribute of the interface is overridden by a function in the smart-proxy base
class generated by the TAO IDL compiler. The overriding function first calls
the get_proxy() member function to get a pointer to the default proxy, then
uses this pointer to call the overridden member function. For a default proxy
function op(arg), the body of the overriding function in the smart proxy base
class is:

{
 return this->get_proxy()->op(arg);
}

11.3.3.2 The get_proxy() function
The get_proxy() function returns a pointer to the default proxy. Because the
value of the proxy_ member variable is zero upon the first invocation of this
function, a pointer to the default proxy must be obtained. This is accomplished
by narrowing the pointer held by the base_proxy_ variable, which is
inherited from the TAO_Smart_Proxy_Base class. For the MyInterface
default base class, the definition of get_proxy is:

MyInterface_ptr
TAO_MyInterface_Smart_Proxy_Base::get_proxy (void)
{
 // Obtain the real proxy stored in <base_proxy_>
 if (CORBA::is_nil (this->proxy_.in()))
 {
 TAO_MyInterface_PROXY_FACTORY_ADAPTER::instance()->unregister_proxy_factory);
 this->proxy_ = ::MyInterface::_unchecked_narrow(this->base_proxy_.in());
 }
 return this->proxy_.in();
}

o c i w e b . c o m 285

1 1 . 3 T A O ’ s S m a r t P r o x y F r a m e w o r k

11.3.4 An Overview of the Smart Proxy Creation Process
The key players in the smart proxy creation process are the proxy factory, the
proxy-factory adapter, and the _unchecked_narrow() function. The proxy-
factory adapter class and the default proxy-factory class are created along with
the default proxy class (the standard proxy class that is always generated)
when the TAO IDL compiler is invoked with the -Gsp option. A smart-proxy
factory class that inherits from the default proxy-factory class is then written
by the application developer.

11.3.4.1 The proxy factory and the proxy-factory adapter
The default proxy factory and the smart-proxy factory each contains a
function named create_proxy(). The default proxy factory version of this
function returns a pointer to the default proxy object, whereas the smart-proxy
factory version of this function returns a pointer to a smart-proxy object.
Neither function is called directly by the application to create a proxy. Instead,
the proxy-factory adapter provides its own version of create_proxy() that
chooses which factory to use when creating a proxy.

The proxy-factory adapter maintains a proxy-factory pointer as a data
member. At the time a smart-proxy factory is constructed, a pointer to this
factory is loaded into the adapter’s data member, replacing any previously-
constructed factory. When the adapter’s create_proxy() function is called,
it uses this pointer to call the create_proxy() function on the factory. If the
pointer value is zero (because no smart-proxy factory has been constructed),
the adapter will construct a default factory, then call create_proxy() on it.

11.3.4.2 The _unchecked_narrow() function
During the narrowing of an object reference, the _unchecked_narrow()
function is called to provide a pointer to a proxy object. This function first
loads a pointer to either the default proxy or a collocated object into the
variable proxy. If the object reference is being narrowed to the
MyInterface type, then the _unchecked_narrow() function will contain
the following code:

 return TAO_MyInterface_PROXY_FACTORY_ADAPTER::instance ()->create_proxy (proxy);

The proxy factory adapter singleton is instantiated and its create_proxy()
function is called with default_proxy as its argument. If a smart proxy

286 o c i w e b . c o m

S m a r t P r o x i e s

factory has already been constructed, the adapter calls create_proxy() on
that factory. Otherwise, the default proxy factory will be constructed and its
create_proxy() function will be called. In either case a pointer to the
created proxy is ultimately returned by _unchecked_narrow().

Note that there is a singleton instance of a proxy factory adapter for each
interface type.

11.4 Writing and Using Smart Proxy Classes

Using smart proxies in TAO involves the following steps:

• Compile the IDL interface(s) using the -Gsp option.

• Define the smart proxy class.

• Define the smart-proxy factory class.

• Instantiate a smart-proxy factory object.

11.4.1 The TAO IDL Compiler -Gsp Option
Compiling the IDL interface with the -Gsp option generates the additional
classes needed to support the smart proxy feature. Of these classes, the two
that are most relevant to using smart proxies are the smart-proxy base class
and the default proxy factory. Your smart-proxy class will inherit from the
generated smart-proxy base class. You will also need to create a smart-proxy
factory class that inherits from the generated default proxy-factory class.

When the TAO IDL compiler is invoked on MyInterface with the -Gsp
option, the generated smart-proxy base class and the default proxy-factory
class are:

• TAO_MyInterface_Smart_Proxy_Base

• TAO_MyInterface_Default_Proxy_Factory

These classes are found in MyInterfaceC.h and MyInterfaceC.cpp along
with the MyInterface proxy class.

The -Gsp option will automatically be added to the tao_idl options when
your MPC project inherits from the smart_proxies base project. In fact, it
also adds the TAO_SmartProxies library to the set of libraries linked into the
MPC project.

o c i w e b . c o m 287

1 1 . 4 W r i t i n g a n d U s i n g S m a r t P r o x y C l a s s e s

When a project involves multiple interfaces, some of which are used with
smart proxies and some of which are not, less code will be generated if the
interfaces that are not used with smart proxies are compiled separately without
the -Gsp option. The following is an MPC example which shows how to use
the -Gsp option with just the smart proxy related interfaces.

project: taoexe, smart_proxies {
 IDL_Files {
 with_smart_proxies.idl
 }
 IDL_Files {
 commandflags -= -Gsp
 without_smart_proxies.idl
 }
 Source_Files {
 main.cpp
 with_smart_proxiesC.cpp
 without_smart_proxiesC.cpp
 }
}

Note When an interface is compiled with the -Gsp option, the generated code uses
the TAO_Smart_Proxy_Base class. Since this class is defined in the file
$TAO_ROOT/tao/SmartProxies/Smart_Proxies.h, this file is
automatically included by the generated code.

11.4.2 The Smart Proxy Class
Your smart-proxy class should inherit from the smart-proxy base class
generated by the IDL compiler for your interface. You can name your smart-
proxy class anything you want. For example, you might define a smart-proxy
class called Smart_MyInterface_Proxy for the interface MyInterface as
follows:

class Smart_MyInterface_Proxy : public TAO_MyInterface_Smart_Proxy_Base
{ ... };

Your smart-proxy class may override any of the operations defined in the base
class. You only need to override the operations for which you want to provide
custom behavior in your smart-proxy class. The default behavior of these
operations defined in the base class is to simply delegate to a standard proxy

288 o c i w e b . c o m

S m a r t P r o x i e s

for the interface. The signatures of these operations follow the standard IDL-
to-C++ mapping rules for interface operations.

11.4.3 The Smart Proxy Factory Class
Proxy objects are created by a proxy factory. You need to implement a factory
to generate instances of your smart-proxy class. Your smart-proxy factory
class should inherit from the proxy-factory class generated by the IDL
compiler for your interface. You can name your proxy factory class anything
you want. For example, you might define a smart proxy factory class called
Smart_MyInterface_Proxy_Factory for the interface MyInterface as
follows:

class Smart_MyInterface_Proxy_Factory :
 public TAO_MyInterface_Default_Proxy_Factory
{
 public:
 virtual MyInterface_ptr create_proxy (
 MyInterface_ptr proxy);
 ...
};

Your factory’s create_proxy() function will be called by the proxy-factory
adapter whenever a new proxy is needed (e.g., when an object reference is
narrowed to the interface proxy type). Your implementation of the
create_proxy() function should return a pointer to a proxy object. For
example, it might create a new instance of your smart-proxy class or return a
pointer to a singleton instance of your smart-proxy class.

You may provide any other functionality you need in your smart proxy factory
class. For example, it may allocate resources it needs in its constructor and
deallocate them in its destructor.

11.4.4 Instantiating a Smart Proxy Factory Object
When you want to use smart proxies, your client code should create an
instance of your smart-proxy factory class before obtaining a proxy. When
your smart-proxy factory is created, it will register itself with the proxy
factory adapter, thereby replacing the adapter’s pointer to the default proxy
factory. Then, when a proxy is needed (e.g., when an object reference is
narrowed to the interface proxy type), the proxy-factory adapter will call your
proxy factory’s create_proxy() member function to obtain a proxy.

o c i w e b . c o m 289

1 1 . 5 L i n k i n g Y o u r A p p l i c a t i o n

All you need to do in your client code is instantiate your proxy factory. Its
base-class constructor contains the necessary logic to register your proxy
factory with the proxy-factory adapter. For example, here is code to create and
register a smart-proxy factory for the interface MyInterface:

// Create an instance of the smart proxy factory.
Smart_MyInterface_Proxy_Factory * factory =
 new Smart_MyInterface_Proxy_Factory();
// Obtain object references and narrow them as usual...

You should always instantiate your smart-proxy factory on the heap. The
proxy-factory adapter assumes ownership of it and deletes it in
unregister_proxy_factory(). Do not attempt to delete it yourself.

You can, of course, create more than one type of smart-proxy factory and/or
smart proxy for a given interface. Simply instantiate the factory you want to
use at run time. Only one proxy factory for a given interface type can be
registered with that interface’s proxy-factory adapter at a time. Instantiating a
new factory will cause the previous factory to be unregistered (and deleted)
from the adapter before the new one is registered.

11.5 Linking Your Application

A Smart Proxy enabled application must be linked with the
TAO_SmartProxies library. This library contains the
TAO_Smart_Proxy_Base class from which all generated smart proxy classes
inherit.

You can easily add this library (and the tao_idl -Gsp option) by adding the
smart_proxies base project to your MPC project inheritance list. You will
have to manually add the TAO_SmartProxies library to your list of libraries
if you are not using MPC.

11.6 A Smart Proxy Example

The Messenger example introduced in Chapter 3 is extended here to use the
smart proxy feature. We add a simple logging operation to the example
through the introduction of a Logger interface. The Logger interface has one
operation, log_message(), that writes a message to a log file. Our smart

290 o c i w e b . c o m

S m a r t P r o x i e s

proxy’s send_message() operation calls log_message() to log
information about usage of the Messenger both before and after it calls the
default proxy’s send_message() member function. The complete source
code for this example can be found in the TAO source code distribution in
$TAO_ROOT/DevGuideExamples/SmartProxies.

11.6.1 The Messenger Interface
The Messenger interface is unchanged from the original example:

interface Messenger
{
 boolean send_message(in string user_name,
 in string subject,
 inout string message);
};

When the TAO IDL compiler is invoked on this interface with the -Gsp
option, it generates the following classes in the files MessengerC.h and
MessengerC.cpp:

• The class Messenger is the normal proxy class for the Messenger
interface.

• The class TAO_Messenger_Smart_Proxy_Base inherits from both the
Messenger class and the TAO_Smart_Proxy_Base class.

• The class TAO_Messenger_Default_Proxy_Factory creates default
proxy objects and serves as the base for the Smart_Messenger_Proxy
class that we use in this example.

• TAO_Messenger_PROXY_FACTORY_ADAPTER is the proxy factory
adapter singleton.

11.6.2 Implementation of the Messenger Interface
Recall that the use of smart proxies is strictly a client-side issue; the server is
unaware of the existence of smart proxies. Therefore, the implementation of
the Messenger interface is unchanged from the original example and is not
shown here.

11.6.3 The Logger Interface
The Logger interface is:

o c i w e b . c o m 291

1 1 . 6 A S m a r t P r o x y E x a m p l e

// Logger.idl
interface Logger
{
 boolean log_message (in string message);
};

11.6.4 Implementation of the Logger Interface
To implement the Logger interface, we first generate starter code by invoking
the TAO IDL compiler on the Logger interface with the -GI option. Next, we
rename the generated LoggerI.{h,cpp} files to Logger_i{h,cpp} and
add our Logger’s implementation logic. In the code shown below, the added
implementation code is shown in bold type.

Note Smart proxies are not being used with the Logger interface, so the -Gsp
option does not need to be used when compiling it since doing so will add
unnecessary code to LoggerC.h and LoggerC.cpp.

The following code is from Logger_i.h:

#include "LoggerS.h"
#include <fstream>

class Logger_i : public virtual POA_Logger
{
public:
 Logger_i (void);
 virtual ~Logger_i (void);
private:
 std::ofstream log_file; // Output file stream to which messages are logged.
 time_t log_time; // Needed for creating a time stamp.
 char* log_time_string; // The time stamp string.

 virtual CORBA::Boolean log_message (const char * message);
};

The following code is from the implementation of class Logger_i found in
Logger_i.cpp:

#include "Logger_i.h"

Logger_i::Logger_i (void)

292 o c i w e b . c o m

S m a r t P r o x i e s

{
 log_file.open("Logger.txt");
}

Logger_i::~Logger_i (void)
{
 log_file.close();
}

CORBA::Boolean Logger_i::log_message (const char * message)
{
 ACE_OS::time(&log_time);
 log_time_string = ACE_OS::ctime(&log_time);
 // Replace carriage return with string delimiter.
 log_time_string[24] = '\0';
 log_file << log_time_string << " " << message << std::endl;
 return true;
}

11.6.5 The Smart Proxy Factory
In this example, the smart-proxy factory class for the Messenger interface is
named Smart_Messenger_Proxy_Factory. It inherits from the
TAO_Messenger_Default_Proxy_Factory class that is generated by the
IDL compiler. The factory class is defined in the file
Smart_Messenger_Proxy.h as follows:

#include "MessengerC.h"
#include "LoggerC.h"

class Smart_Messenger_Proxy_Factory : public TAO_Messenger_Default_Proxy_Factory
{
 public:
 Smart_Messenger_Proxy_Factory(CORBA::ORB_ptr orb);
 virtual Messenger_ptr create_proxy (
 Messenger_ptr proxy);
 private:
 Logger_var logger_;
};

The constructor, found in the file Smart_Messenger_Proxy.cpp, is
implemented as follows:

#include "Smart_Messenger_Proxy.h"
#include <iostream>
#include <stdexcept>

o c i w e b . c o m 293

1 1 . 6 A S m a r t P r o x y E x a m p l e

Smart_Messenger_Proxy_Factory::Smart_Messenger_Proxy_Factory(
 CORBA::ORB_ptr orb)
{
 std::cout << "Creating smart proxy factory" << std::endl;
 // Convert the contents of the Logger.ior file to an object reference.
 CORBA::Object_var obj = orb->string_to_object("file://Logger.ior");
 if (CORBA::is_nil(obj.in())) {
 throw std::runtime_error (
 "Smart_Messenger_Proxy_Factory::CTOR: Nil Logger reference");
 }

 // Narrow the object reference to a Logger object reference.
 logger_ = Logger::_narrow(obj.in());
 if (CORBA::is_nil(logger_.in ())) {
 throw std::runtime_error (
 "Smart_Messenger_Proxy_Factory::CTOR: Not a Logger object reference");
 }
}

The following definition overrides the create_proxy() virtual member
function from the base class:

Messenger_ptr
Smart_Messenger_Proxy_Factory::create_proxy (
 Messenger_ptr proxy)
{
 Messenger_ptr smart_proxy = 0;
 if (CORBA::is_nil(proxy) == 0)
 smart_proxy = new Smart_Messenger_Proxy(proxy, logger_.in());
 return smart_proxy;
}

11.6.6 The Smart Proxy Class
In this example, the smart-proxy class for the Messenger interface is named
Smart_Messenger_Proxy. It inherits from the
TAO_Messenger_Smart_Proxy_Base class that is generated by the IDL
compiler. The Smart_Messenger_Proxy class is defined as follows:

#include "MessengerC.h"
#include "LoggerC.h"

class Smart_Messenger_Proxy : public TAO_Messenger_Smart_Proxy_Base
{
 public:
 Smart_Messenger_Proxy (Messenger_ptr proxy, Logger_ptr logger);

294 o c i w e b . c o m

S m a r t P r o x i e s

 virtual CORBA::Boolean send_message(
 const char* user_name,
 const char* subject,
 char*& message);
 private:
 Logger_var logger_;
};

In the constructor, the Messenger proxy passed in is used to initialize the
TAO_Smart_Proxy_Base base class. In addition, the object reference of the
Logger object is duplicated and stored in a private data member of type
Logger_var.

#include "Smart_Messenger_Proxy.h"
#include <iostream>

Smart_Messenger_Proxy::Smart_Messenger_Proxy(
 Messenger_ptr proxy, Logger_ptr logger)
 : TAO_Smart_Proxy_Base(proxy),
 logger_(Logger::_duplicate(logger))
{
 std::cout << "Creating smart proxy" << std::endl;
}

Now we override the send_message() operation in the smart proxy class.
When the MessengerClient invokes send_message(), the smart proxy
calls log_message() on the Logger proxy object both before and after it
calls send_message() on the Messenger object. Note that it delegates the
call to send_message() to its base class.

CORBA::Boolean
Smart_Messenger_Proxy::send_message (
 const char* user_name,
 const char* subject,
 char*& message)
{
 logger_->log_message ("Before send_message()");
 CORBA::Boolean ret_val =
 TAO_Messenger_Smart_Proxy_Base::send_message (user_name, subject, message);
 logger_->log_message ("After send_message()");
 return ret_val;
}

o c i w e b . c o m 295

1 1 . 6 A S m a r t P r o x y E x a m p l e

11.6.7 The MessengerClient
The only changes needed in the original MessengerClient are to #include
the smart proxy’s header file and to create an instance of the smart-proxy
factory before obtaining and using a Messenger object reference. Here is the
modified MessengerClient program:

#include "MessengerC.h"
#include "Smart_Messenger_Proxy.h"
#include <iostream>
#include <stdexcept>

int main (int argc, char* argv[])
{
 try {
 // Initialize the ORB
 CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

 // Create a smart proxy factory. This will register it with the
 // smart proxy factory adapter so it will be used to create
 // Messenger proxies. Note that it is created on the heap, but is
 // otherwise unused here.
 new Smart_Messenger_Proxy_Factory (orb.in());

 // Convert the contents of the Messenger.ior file to an object reference.
 CORBA::Object_var obj = orb->string_to_object ("file://Messenger.ior");
 if (CORBA::is_nil(obj.in())) {
 std::cerr << "Nil Messenger reference" << std::endl;
 return 1;
 }

 // Narrow the object reference to a Messenger object reference.
 Messenger_var messenger = Messenger::_narrow(obj.in());
 if (CORBA::is_nil(messenger.in())) {
 std::cerr << "Not a Messenger object reference" << std::endl;
 return 1;
 }

 // Create a message and send it to the Messenger.
 CORBA::String_var message = CORBA::string_dup ("Hello!");
 messenger->send_message ("TAO User", "TAO Test", message.inout());
 std::cout << "Message was sent" << std::endl;

 // Release resources.
 orb->destroy();
 }
 catch (CORBA::Exception& e) {
 std::cerr << "Caught a CORBA exception: " << e << std::endl;
 return 1;

296 o c i w e b . c o m

S m a r t P r o x i e s

 }
 catch (std::exception& ex) {
 std::cerr << ex.what() << std::endl;
 return 1;
 }

 return 0;
}

11.6.8 The MessengerServer
Recall that the use of smart proxies on the client side is completely transparent
to the server side. Thus, the MessengerServer is unchanged from the
original example and is not shown here.

11.6.9 The LoggerServer
The LoggerServer is very simple. In fact, it is identical to the
MessengerServer except that every instance of the name “[Mm]essenger”
in the MessengerServer is replaced with the name “[Ll]ogger” in the
LoggerServer.

#include "Logger_i.h"
#include <iostream>
#include <fstream>

int
main(int argc, char* argv[])
{
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Get a reference to Root POA.
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj.in());

 // Activate the POA manager.
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();

 // Create a Logger_i servant.
 PortableServer::Servant_var<Logger_i> logger_servant = new Logger_i();

 // Register the servant with the RootPOA, obtain its object reference,
 // stringify it, and write it to a file.
 PortableServer::ObjectId_var oid = poa->activate_object(logger_servant.in());

o c i w e b . c o m 297

1 1 . 6 A S m a r t P r o x y E x a m p l e

 CORBA::Object_var logger_obj = poa->id_to_reference(oid.in());
 CORBA::String_var str = orb->object_to_string(logger_obj.in());
 std::ofstream iorFile("Logger.ior");
 iorFile << str.in() << std::endl;
 iorFile.close();
 std::cout << "IOR written to file Logger.ior" << std::endl;

 // Accept requests from clients.
 orb->run();

 // Release resources.
 orb->destroy();
 }
 catch (CORBA::Exception&) {
 std::cerr << "Caught a CORBA exception." << std::endl;
 return 1;
 }
 return 0;
}

11.6.10 Running the Programs
Compile the LoggerServer, MessengerServer, and MessengerClient
programs. Then, start the LoggerServer and MessengerServer before
running the MessengerClient.

11.6.11 The Output
When you run the MessengerServer, you will see the following output:

IOR written to file Messenger.ior

When you run the LoggerServer, you will see the following output:

IOR written to file Logger.ior

When you run the MessengerClient, you will see the following output from
the client:

Creating smart proxy factory
Creating smart proxy
Message was sent

and the following output from the MessengerServer:

298 o c i w e b . c o m

S m a r t P r o x i e s

Message from: TAO User
Subject: TAO Test
Message: Hello!

In addition, the Logger.txt file will contain something similar to the
following:

Mon Sep 15 12:07:57 2003 Before send_message()
Mon Sep 15 12:07:57 2003 After send_message()

o c i w e b . c o m 299

CHAPTER 12

Local Interfaces

12.1 Introduction

TAO implements the concept of “local” interfaces as described in the CORBA
3.1 specification (OMG Document formal/08-01-04, 7.8.7) and C++ mapping
(OMG Document formal/08-01-09, 4.37). The above specifications define a
standard set of behaviors for locality-constrained objects (cannot be invoked
externally or remotely). Previously, pseudo-IDL (PIDL) was used to define
operations that the ORB supported but were intended only for the local
application. PIDL has been deprecated in favor of standard IDL with
interfaces specified as local.

Note The file extension PIDL is still used on many files in the TAO distribution.
Many of these files are now true IDL. Some are still pseudo-IDL.

With the inclusion of local interfaces, specifications can avoid creation of
special pseudo-objects that are never called remotely, such as the POA and
ORB interfaces. Local interfaces permit you to define portable local classes
that are independent of any ORB-specific optimizations for local access (e.g.,

300 o c i w e b . c o m

L o c a l I n t e r f a c e s

interceptors are not called, POA policies are not honored). Local objects are
important for server-only components. They help improve performance and
minimize memory footprint by avoiding the overhead of ORB mediation. In
addition, the use of a local interface permits the consistent disposition of
objects because locality-constrained objects and remote objects share a
uniform method of definition (IDL).

A local interface is specified in the IDL with the keyword local before the
keyword interface. An instance of a local interface is a local object. A
standard IDL interface is an unconstrained interface. Local interfaces and
objects differ from unconstrained interfaces and objects in several ways:

• The ORB does not mediate any invocation on a local object.
Implementations of local interfaces are responsible for providing the
parameter copy semantics that clients expect.

• A local interface may inherit from other local or unconstrained interfaces.
However, an unconstrained interface may not inherit from a local
interface.

• Local types cannot be marshaled, externalized, or invoked from another
process. References to local objects cannot be converted to strings through
CORBA::ORB::object_to_string(). An attempt to do so raises a
CORBA::MARSHAL system exception with the minor code set to 4.

• A local object is valid only in the process in which it is instantiated.

• There is no concept of an “object id” for a local object. Its identity is
implementation specific (e.g., pointer or reference).

• Neither the Dynamic Invocation Interface (DII) nor Asynchronous
Method Invocation (AMI) is supported on local objects.

• Instances of certain local objects that are part of the OMG specification
(e.g., POA) are obtained via resolve_initial_references().

12.2 C++ Mapping for LocalObject

A locality-constrained class is derived from both CORBA::LocalObject and
the class mapping the interface. The class CORBA::LocalObject is used as a
base class for locality-constrained implementations. It is derived from
CORBA::Object. The CORBA::LocalObject class implements the

o c i w e b . c o m 301

1 2 . 3 C h a n g i n g E x i s t i n g I n t e r f a c e s t o L o c a l I n t e r f a c e s

following CORBA::Object pseudo-operations by throwing the
CORBA::NO_IMPLEMENT exception.

• get_interface()

• get_domain_managers()

• get_policy()

• get_client_policy()

• set_policy_overrides()

• get_policy_overrides()

• validate_connection()

• get_component()

• repository_id()

The CORBA::LocalObject class provides implementations of the following
CORBA::Object pseudo-operations:

• non_existent()—always returns FALSE.

• hash()—returns a consistent hash value for the lifetime of the object.

• is_equivalent()—returns TRUE if the references refer to the same
CORBA::LocalObject implementation.

• is_a()—returns TRUE if the LocalObject derives from or is itself the
type specified by the logical_type_id argument.

• get_orb()—The default behavior is to throw the CORBA::NO_IMPLEMENT
exception. Certain local objects will, when specified by the specification,
return their associated ORB. Examples include POAs, current objects, and
portable interceptors.

12.3 Changing Existing Interfaces to Local
Interfaces

With the adoption of local interfaces, the specification changed the following
into local interfaces:

• CORBA::Current

• All the interfaces in the DynamicAny module.

302 o c i w e b . c o m

L o c a l I n t e r f a c e s

• All the interfaces in the PortableServer module.

The following CORBA messaging interfaces have become local interfaces:

• CORBA::PolicyManager

• CORBA::PolicyCurrent

• CORBA::Pollable

• CORBA::DIIPollable

• CORBA::PollableSet

• All interfaces in the Messaging module that inherit from
CORBA::Policy

12.4 Example: ServantLocator

The POA determines which servant is associated with a particular request by
calling upon the application's Servant Manager. An application registers a
Servant Manager with a POA. There are two types of Servant Managers,
depending upon whether or not the POA retains the associations of objects to
servants in its Active Object Map. The ServantRetentionPolicy is used
to determine if the POA retains servant activations in the Active Object Map
(RETAIN) or does not (NON_RETAIN). When this policy is set to RETAIN, the
Servant Manager must activate the servant associated with the object and
implement the PortableServer::ServantActivator interface. When the
ServantRetentionPolicy is set to NON_RETAIN, the Servant Manager
must locate the servant associated with the object and must implement the
PortableServer::ServantLocator interface.

The following example modifies the Messenger example from Chapter 3. A
Servant Locator is used to locate the servant associated with the Messenger
object when a request is invoked on this object. The complete source code for
this example can be found in the TAO source code distribution in
$TAO_ROOT/DevGuideExamples/LocalObjects/ServantLocator.

12.4.1 The Messenger Locator Implementation
The following implementation of the Messenger_Locator_i class will find
the Messenger servant that incarnates the target object of the request. The
PortableServer::ServantLocator interface provides two operations:

o c i w e b . c o m 303

1 2 . 4 E x a m p l e : S e r v a n t L o c a t o r

preinvoke() and postinvoke(). The preinvoke() operation is invoked
by the POA to bind a servant to the target CORBA object when an incoming
request is received. The postinvoke() operation is invoked by the POA to
release the servant once the request has been fulfilled. The following code
shows the definition of the Messenger_Locator_i implementation class:

#include <tao/corba.h>
#include <tao/PortableServer/PortableServer.h>

class Messenger_Locator_i :
 public PortableServer::ServantLocator,
 public CORBA::LocalObject
{
 public:
 Messenger_Locator_i ();

 // Preinvoke function
 virtual PortableServer::Servant preinvoke (
 const PortableServer::ObjectId& oid,
 PortableServer::POA_ptr poa,
 const char* operation,
 void*& cookie);

 // Postinvoke function
 virtual void postinvoke (
 const PortableServer::ObjectId& oid,
 PortableServer::POA_ptr poa,
 const char* operation,
 void* cookie,
 PortableServer::Servant servant);

};

The Messenger_Locator_i class inherits from both its skeleton class,
PortableServer::ServantLocator, and CORBA::LocalObject. To
implement a PortableServer::ServantLocator, you must inherit from
both PortableServer::ServantLocator and CORBA::LocalObject.

The preinvoke() operation converts the ObjectId to a string. If the ID is
valid, a new servant is created and returned. The cookie allows the
ServantLocator to pass data from an invocation of preinvoke() to the
corresponding postinvoke() invocation. The following code shows the
implementation of the preinvoke() operation:

PortableServer::Servant
Messenger_Locator_i::preinvoke (

304 o c i w e b . c o m

L o c a l I n t e r f a c e s

 const PortableServer::ObjectId& oid,
 PortableServer::POA_ptr,
 const char*,
 void*& cookie)
{
 // Get the ObjectId in string format.
 CORBA::String_var oid_str = PortableServer::ObjectId_to_string (oid);

 std::cout << "preinvoke called..." << oid_str << std::endl;

 // Check if the ObjectId is valid.
 ACE_CString cstr(oid_str.in());
 if (cstr == "Messenger") {
 // Create the required servant
 PortableServer::ServantBase_var servant = new Messenger_i ();

 // Set a flag so that we know to delete it in postinvoke().
 cookie = (void *)1;

 return servant._retn();
 }
 else {
 throw CORBA::OBJECT_NOT_EXIST ();
 }
}

In the postinvoke() operation, the servant is simply destroyed:

void
Messenger_Locator_i::postinvoke (
 const PortableServer::ObjectId&,
 PortableServer::POA_ptr,
 const char*,
 void* cookie,
 PortableServer::Servant servant)
{

 std::cout << "postinvoke called..." << std::endl;

 // Delete the servant as it is no longer needed.
 if (cookie != 0) {
 delete servant;
 }
}

o c i w e b . c o m 305

1 2 . 4 E x a m p l e : S e r v a n t L o c a t o r

12.4.2 The Server Implementation
We now modify the original MessengerServer.cpp to use our
newly-created Messenger_Locator_i class.

First, we replace #include “Messenger_i.h” with #include
“MessengerLocator_i.h”.

We create a new POA (the childPOA) with the USE_SERVANT_MANAGER
value for the RequestProcessingPolicy and NON_RETAIN for the
ServantRetentionPolicy as follows:

// Create the policies and assign them for the child POA
CORBA::PolicyList policies (3);
policies.length (3);

policies [0] = rootPOA->create_id_assignment_policy (
 PortableServer::USER_ID);
policies [1] = rootPOA->create_request_processing_policy (
 PortableServer::USE_SERVANT_MANAGER);
policies [2] = rootPOA->create_servant_retention_policy (
 PortableServer::NON_RETAIN);

// Create the POA with these policies
PortableServer::POA_var childPOA =
 rootPOA->create_POA ("childPOA", mgr.in(), policies);

// Destroy the policy objects
for (CORBA::ULong i = 0; i != policies.length(); ++i)
 policies[i]->destroy();

Now that we have a POA that can support Servant Managers, we need to
create an instance of a ServantLocator and set it as the Servant Manager
for the childPOA:

// Create our Messenger’s ServantLocator.
PortableServer::ServantLocator_var locator = new Messenger_Locator_i;

// Set the Servant Manager with the childPOA.
childPOA->set_servant_manager (locator.in());

The ServantLocator is now registered with the childPOA. We now create
a Messenger reference via the childPOA with the user-defined ObjectId:

// Get the object id for the user-created ID in the childPOA
PortableServer::ObjectId_var child_oid =
 PortableServer::string_to_ObjectId ("Messenger");

306 o c i w e b . c o m

L o c a l I n t e r f a c e s

// Create the object without creating a servant.
CORBA::Object_var messenger_obj =
 childPOA->create_reference_with_id (child_oid.in(), ::_tc_Messenger->id());

As before, we write the object reference as a stringified IOR to the file
Messenger.ior:

// Put the object reference into an IOR string
CORBA::String_var str = orb->object_to_string (messenger_obj.in());

// Write the IOR string to a file
std::ofstream iorFile ("Messenger.ior");
iorFile << str.in ();
iorFile.close ();
std::cout << "IOR written to the file Messenger.ior." << std::endl;

We then handle incoming requests from clients:

// Accept requests from clients.
orb->run();

12.4.3 An Example Using a Local Object
In this section, we discuss a rather contrived example, where the Messenger
interface itself is defined as local:

// Messenger.idl
local interface Messenger
{
 boolean send_message (
 in string user_name,
 in string subject,
 inout string message);
};

The Messenger interface is now locality-constrained. The ORB will not
mediate requests to instances of the Messenger class. The overhead
associated with a call to send_message() is on the order of one virtual
function call, making possible performance improvements of large magnitude
over collocated operation invocations on normal CORBA objects.

o c i w e b . c o m 307

1 2 . 4 E x a m p l e : S e r v a n t L o c a t o r

The complete source code for this example can be found in the TAO source
code distribution:
$TAO_ROOT/DevGuideExamples/LocalObjects/Messenger.

The definition of the Messenger_i class becomes:

// Class Messenger_i
class Messenger_i :
 public virtual Messenger,
 public virtual CORBA::LocalObject
{
public:
 //Constructor
 Messenger_i (void);

 //Destructor
 virtual ~Messenger_i (void);

 virtual CORBA::Boolean send_message (
 const char* user_name,
 const char* subject,
 char*& message
);

};

Note The TAO IDL compiler’s -GI option should not be used to automatically
generate implementation-class starter code for IDL files containing local
interfaces.

The definition of the Messenger_i class is identical to the earlier example
with the unconstrained interface:

#include "Messenger_i.h"

// Implementation skeleton constructor
Messenger_i::Messenger_i (void)
{
}

// Implementation skeleton destructor
Messenger_i::~Messenger_i (void)
{
}

308 o c i w e b . c o m

L o c a l I n t e r f a c e s

CORBA::Boolean Messenger_i::send_message (
 const char* user_name,
 const char* subject,
 char*& message
)

{
 // my implementation
 std::cout << "Message from: " << user_name << std::endl;
 std::cout << "Subject: " << subject << std::endl;
 std::cout << "Message: " << message << std::endl;
 CORBA::string_free(message);
 message = CORBA::string_dup("Thanks for the message.");
 return true;
}

The server and client are, by definition, collocated for this example. The code
below shows the construction and use of a Messenger object:

#include "Messenger_i.h"
#include <iostream>

int main (int argc, char * argv[])
{
 try {
 // Construct a Messenger object and use it "as if" it's a corba object.
 // Put it into CORBA object reference
 // comparable to activation, narrow, etc.
 Messenger_var messenger(new Messenger_i);

 // Send a message to the Messenger object.
 CORBA::String_var message = CORBA::string_dup ("Hello!");
 messenger->send_message("TAO User", "TAO Test", message.inout());

 // Print the Messenger's reply.
 std::cout << "Reply: " << message.in() << std::endl;
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "Caught CORBA::Exception : " << ex << std::endl;
 return 1;
 }

 return 0;
}

Recall that if you initialize a _var reference with a _ptr reference, as shown
here:

o c i w e b . c o m 309

1 2 . 4 E x a m p l e : S e r v a n t L o c a t o r

 Messenger_var messenger (new Messenger_i);

the _var takes ownership (without incrementing the reference count on the
proxy) and eventually calls CORBA::release() on the underlying _ptr.
The usage of this _var is equivalent to the _var of unconstrained objects.

12.4.4 Reference Counting and Local Objects
Local objects can use reference counting to manage their life cycles just as
unconstrained CORBA objects. The class CORBA::LocalObject defines
two virtual functions:

• _add_ref(): This member function is called when the reference is
duplicated.

• _remove_ref(): This member function is called when the reference is
released.

Beginning in the Version 1.2 C++ Mapping specification (OMG Document
formal/08-01-09, 4.37), the default is that all local objects have reference
counting enabled. CORBA::LocalObject supplies default implementations
of _add_ref() and _remove_ref() with this behavior. To avoid this,
simply override these member functions in your local object implementations.

Older versions of the C++ mapping (and TAO), do not have reference
counting enabled by default and users must implement it themselves or use the
TAO-specific base class TAO_Local_RefCounted_Object in place of
ORBA::LocalObject. This class is no longer needed in TAO 2.2a, but is still
supported for backward compatibility.

Note When porting applications that implement local objects to TAO 2.2a, it is
important to ensure that local object reference counts are properly managed.
Improperly managed reference counts can lead to system crashes.

310 o c i w e b . c o m

L o c a l I n t e r f a c e s

o c i w e b . c o m 311

CHAPTER 13

IOR Table

13.1 Introduction

When a client sends a request to a server, the object key portion of the
interoperable object reference (IOR) of the target object is included in the
GIOP request message header. The server’s ORB uses the object key to
demultiplex the request to the appropriate target servant. Typically, the ORB
looks up the POA via the POA name portion of the object key, then the POA
locates the servant via the ObjectId portion of the object key.

The CORBA specification defines the corbaloc object URL scheme to
provide for convenient exchange of human-readable IORs. Here is an example
of a corbaloc object URL:

corbaloc:iiop:malory:5555/ObjectKeyString

See 17.13.36 for more information on corbaloc object URLs.

Unfortunately, object keys are often not human-readable, making it difficult
for users to construct simple corbaloc object URLs such as the example
above. Users need a way to specify a simple object key string in corbaloc

312 o c i w e b . c o m

I O R T a b l e

object URLs and servers need a way to map these simple object key strings to
target objects. This chapter describe’s TAO’s IOR Table feature that allows a
server to map simple object key strings to the actual IORs of target objects.

13.2 IOR Table

The IOR Table is a TAO-specific local object that allows a server to expose an
object reference as a simple corbaloc object URL by mapping simple object
key strings to stringified IORs. The IOR Table provides a form of indirect
binding similar to that provided by the TAO Implementation Repository
(ImR), and can be used by any server. Many TAO services, such as the
Naming Service, Notification Service, and Implementation Repository
support such indirect binding.

The TAO IORTable::Table local interface is defined in
$TAO_ROOT/tao/IORTable/IORTable.pidl. It provides simple bind(),
rebind(), and unbind() operations. A portion of the interface definition is
shown here:

module IORTable
{
 exception AlreadyBound {};
 exception NotFound {};

 local interface Table
 {
 void bind (in string object_key,in string IOR)
 raises (AlreadyBound);
 void rebind (in string object_key, in string IOR);
 void unbind (in string object_key)
 raises (NotFound);

 // ...
 };

Your server can access the ORB’s IOR Table by calling
resolve_initial_references("IORTable"). You then use the bind()
operation to bind a simple object key string to a stringified IOR, as shown in
this example:

#include <tao/IORTable/IORTable.h>
...

o c i w e b . c o m 313

1 3 . 2 I O R T a b l e

 // Initialize the ORB, get the RootPOA, activate servants, and
 // generate object references as usual (not shown).

 // Stringify your object references for binding in the IORTable.
 CORBA::String_var messenger_str1 = orb->object_to_string (ior1.in());
 CORBA::String_var messenger_str2 = orb->object_to_string (ior2.in());

 // Get the IORTable from the ORB.
 CORBA::Object_var table_obj = orb->resolve_initial_references("IORTable");
 IORTable::Table_var table = IORTable::Table::_narrow(table_obj.in());

 // Bind your objects to simple object key strings.
 tbl->bind("Messenger1", messenger_str1);
 tbl->bind("Messenger2", messenger_str2);

The simple object key strings can also indicate the persistent POA name in
which the object is activated (if not the Root POA), as shown here:

 tbl->bind("MessengerService/Messenger1", messenger_str1);
 tbl->bind("MessengerService/Messenger2", messenger_str2);

Now, if clients know the simple object key string of the object they want to
access, and the endpoint on which the server is listening, they can use simple
corbaloc ObjectURLs such as the following:

corbaloc:iiop:malory:5555/Messenger1

The client would normally provide this ObjectURL to the ORB’s
string_to_object() operation, as follows:

 CORBA::Object_var obj =
 orb->string_to_object ("corbaloc:iiop:malory:5555/Messenger1");
 Messenger_var myobj = Messenger::_narrow (obj.in());

In this case, we assume the server was stared using and endpoint specification
such as:

-ORBListenEndpoints iiop://malory:5555

and that the object reference bound to "Messenger1" in the server
implements the Messenger interface.

Typically, the first request sent to the object is an invocation of the implicit
is_a() operation that results from a call to the static _narrow() function as

314 o c i w e b . c o m

I O R T a b l e

shown in the above example. When the request reaches the server’s ORB, it
matches the simple object key string from the ObjectURL to a binding in the
IORTable. It then returns a LOCATION_FORWARD reply containing the IOR
that was bound to the simple object key string to the client. The client’s ORB
automatically reinvokes the request on this returned IOR. This second
invocation will be demultiplexed to the target object as usual. The client will
continue to use the returned IOR for subsequent requests.

The IORs bound in the IORTable can be of any valid format accepted by
string_to_object(), including IOR:, corbaloc, and file://. (See
17.13.36 for more information on valid IOR formats.) Clients will be
forwarded to the location indicated by the returned IOR using a
LOCATION_FORWARD reply. Note that a client could be forwarded to a
different server than that from which it received the LOCATION_FORWARD
reply, depending upon the profiles in the returned IOR.

13.3 Locator

In addition to mapping simple object key strings to IORs as described above,
you can also interact with the IORTable by registering a Locator object. A
Locator is a user-defined local object that the IORTable can use to find
objects. If the table is unable to find a binding for the object key string in an
incoming request, it will call a function in your Locator object, passing the
object key string. The Locator can use any user-defined mechanism to return a
valid IOR. For example, you could use this mechanism to support
case-insensitive IORTable lookup.

The IORTable::Locator local interface is defined in
$TAO_ROOT/tao/IORTable/IORTable.pidl. It provides a simple
locate() operation that takes an object key string and returns a stringified
IOR. You register your Locator with the IORTable via the table’s
set_locator() operation. These interfaces are shown here:

module IORTable
{
 local interface Locator; // forward declaration

 exception NotFound {};

 local interface Table
 {

o c i w e b . c o m 315

1 3 . 3 L o c a t o r

 // Other operations shown previously...

 void set_locator (in Locator the_locator);
 };

 local interface Locator
 {
 string locate (in string object_key)
 raises (NotFound);
 };
};

To use a Locator with the IORTable, simply create a class that derives from
IORTable::Locator and CORBA::LocalObject and override the
locate() method to return a stringified IOR for the given object key string.
For example:

#include <tao/IORTable/IORTable.h>

class MessengerLocator :
 public IORTable::Locator,
 public CORBA::LocalObject
{
 // Our Locator will use an internal map of key strings to stringified IORs.
 std::map<string, string> map_;

public:
 MessengerLocator ()
 {
 // Initialize the map of keys and stringified IORs (not shown).
 }
 // Override IORTable::Locator::locate().
 virtual char* locate (const char* key)
 {
 return map_[key];
 }
};

For more information on implementing local interfaces, see Chapter 12.

Register your locator with the IORTable by calling set_locator() in your
server’s startup code:

class MessengerServer
{
 MessengerLocator locator_;
public:
 void run();

316 o c i w e b . c o m

I O R T a b l e

};

void MessengerServer::run()
{
 // Initialize the ORB, get the RootPOA, activate servants, and
 // generate object references as usual (not shown).

 // Get the IORTable from the ORB.
 CORBA::Object_var obj = orb->resolve_initial_references("IORTable");
 IORTable::Table_var tbl = IORTable::Table::_narrow(obj.in());

 // Bind some objects to simple object key strings (as before).
 tbl->bind("Messenger1", messenger_str1);
 tbl->bind("Messenger2", messenger_str2);

 // Use our Locator to resolve any object key string not bound in the table.
 tbl->set_locator(&locator_);

 // ...
}

13.4 IOR Refresh

A new feature added to OCI TAO 2.2a with patch 7, IOR Refresh addresses
the problem of servers started before the host’s network interfaces are
completely initialized. When enabled, this feature will refresh the list of IP
addresses contained in an IOR bound to the IORTable.

The problem is illustrated with the following example. A TAO server using a
defaulted IIOP listen endpoint argument or one for which the specified IP
address implies "all interfaces," queries the host networking infrastructure to
obtain a list of available IP addresses. This happens at POA initialization time,
or ORB initialization, if a listen endpoint argument is used. If sometime later a
new interface is enabled, for example a wifi association is made, clients using
IORs published by the server are unable to reach the server through the new
interface. Clients using CORBALOC IORs composed with the new
interface’s IP address or host name will reach the IORTable in the server, but
will not be able to use the forwarded IOR.

The solution to this problem is to ensure the forwarded IOR contains as up to
date list of endpoints as possible when requested by a client. This is done
automatically by the IORTable when the refresh feature is enabled.

o c i w e b . c o m 317

1 3 . 4 I O R R e f r e s h

The TAO IORTable interface definition has been expanded to include a
switch for enabling refresh.

module IORTable
{
 local interface Table
 {
 // Other operations shown previously...

 void refresh (in boolean enable);

 };

After resolving the IORTable reference, use IORTable::refresh (true)
to enable IOR refresh. As client requests cause individual IORs to be updated,
the binding is updated. Once the network topology is stable and the bindings
are all updated, the active refresh can be disabled.

Note As of TAO 2.2a patch 7, there is no way to force IORs to be refreshed through
the IORTable interface. There is also no way to detect or be notified of
network interface state changes.

See Section 18.2.12 to see how to enable the IOR Refresh feature via a service
configuration directive.

318 o c i w e b . c o m

I O R T a b l e

o c i w e b . c o m 319

CHAPTER 14

Using Pluggable Protocols

14.1 Introduction

With the adoption of CORBA version 2.0, the OMG defined a wire protocol
for inter-ORB communication. This protocol is defined as a messaging layer,
known as the General Inter-ORB Protocol (GIOP), combined with at least one
transmission protocol, TCP/IP. The mapping of GIOP on to TCP/IP is known
as the Internet Inter-ORB Protocol (IIOP). The CORBA specification also
defines a protocol known as the DCE Environment Specific Inter-ORB
Protocol (DCE ESIOP). To be compliant with the standard, all ORB vendors
must supply an implementation of IIOP. Vendors may additionally supply
ESIOPs to enable inter-ORB communication using varied IPC mechanisms.

Like many CORBA implementations, TAO provides several ESIOPs. This
chapter describes how to use and configure the different protocols. TAO
additionally provides a programming framework so that others may produce
alternative inter-ORB protocols. Section 14.18, “Developing Pluggable
Protocols” describes how to develop your own ESIOP and integrate it with
TAO.

320 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

Note What has been historically referred to as a “pluggable protocol” in TAO is
really a pluggable transport. TAO does not currently support pluggable
messaging (i.e., only GIOP is supported), nor is it possible to choose
alternative marshaling schemes (i.e., only CDR is supported). However, for
historical reasons, all of the pluggable transports described in this chapter
are referred to as pluggable protocols.

14.2 Protocol Introduction

Each inter-ORB protocol consists of three basic components: messaging,
marshaling, and transport. A given ESIOP consists of concrete definitions of
all three of these. As an example, the IIOP protocol, as defined by the OMG,
uses GIOP messaging, CDR marshaling, and the TCP/IP transport. Chapter 9
of Part 2 of the CORBA 3.1 specification (OMG Document formal/08-01-06,
Chapter 17) provides details of all the layers of inter-ORB protocols. Further
insight into these protocols may be found in IIOP Complete: Understanding
CORBA and Middleware Interoperability by William Ruh, Thomas Herron,
and Paul Klinker (1999).

14.2.1 Messaging
All of TAO's protocols use the General Inter-ORB Protocol (GIOP) as their
messaging layer. TAO does not currently provide a way to replace the
messaging layer.

Part 2 of the CORBA 3.1 Core specification (OMG Document
formal/08-01-06) defines GIOP as a description of the messages that clients
and servers exchange, and many other details of their interaction. The
messages are defined as IDL structures in Chapter 9 of this specification.

Although GIOP is defined as transport-independent, it does make several
transport assumptions that restrict the use of transports. The main assumptions
are that the transport:

• is connection-oriented.

• connection initiation is similar to TCP (the server can publish a network
address at which it’s listening in an IOR).

• is reliable according to the TCP definition (bytes are delivered in order, at
most once, and are acknowledged).

o c i w e b . c o m 321

1 4 . 3 P r o t o c o l s P r o v i d e d w i t h T A O

• can be viewed as a byte stream (no message size limitations,
fragmentation, or alignments).

• provides notification of disorderly connection loss.

This does not mean that the transport must directly adhere to these features,
just that the transport layer shows this behavior to the messaging layer.

14.2.2 Marshaling
The marshaling layer defines the transformation of inter-ORB messages into
and out of a transmission (wire) format. The Common Data Representation
(CDR), performs this role for all of TAO’s provided protocols. TAO does not
currently provide a way to replace the marshaling layer. CDR is able to
account for variable byte ordering on different hardware architectures,
efficiently align data types, and transfer any data type defined in IDL.

14.2.3 Transport
The most common CORBA protocol, IIOP, is GIOP mapped to TCP/IP. The
transport layer defines connection establishment and inter-ORB message
transmission. The transport layer also defines how connection “endpoints” are
represented in the profiles of Interoperable Object References (IORs).

When protocols utilize low-level transports that do not support the messaging
layer’s transport assumptions, the transport layer of the protocol must simulate
the behavior that meets these assumptions. For example, transports that are not
connection oriented (like UDP or shared memory) must simulate connections.

TAO’s pluggable protocol framework provides an easy way to replace the
transport layer. When you write a pluggable protocol, you are writing a new
transport layer. Future work may provide for replacement of the other layers.

14.3 Protocols Provided with TAO

The rest of this chapter discusses the inter-ORB protocols supplied with TAO,
how to use them in your application, and how to control their behavior. The
main motivator for using these protocols is typically higher performance,
although security or reduced bandwidth consumption may also motivate their
use. Since CORBA allows multiple profiles in an object reference, it is

322 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

possible to access the same CORBA object using more than one protocol. The
protocols provided with TAO are shown in Table 14-1.

The following sections describe each of these protocols in detail, including the
exact steps needed to use the protocol. In general, the steps needed to use each
existing protocol are:

1. Build the library supplying the protocol.

2. Load and initialize the protocol. TAO’s pluggable protocols are all
defined as dynamically-loadable services. A factory object creates the
components that collaborate to implement the protocol.

3. Identify the protocol to the ORB. This allows the ORB to request the
creation of protocol components from each of the identified factories.

4. Supply any required endpoint information to be used by the ORB
initialization run-time code.

Table 14-1 Available Pluggable Protocols

IIOP
(default) Internet Inter-ORB Protocol. This protocol is required for
CORBA 2.0+ compliance (found in -lTAO).

UIOP
Local IPC (i.e., Unix domain) socket-based transport protocol (found
in -lTAO_Strategies).

SHMIOP
Shared memory transport protocol (found in
-lTAO_Strategies).

DIOP
Datagram (UDP) transport protocol (found in
-lTAO_Strategies).

SSLIOP
IIOP over Secure Sockets Layer (SSL) session protocol (found in
-lTAO_SSLIOP). This protocol requires the freely available
OpenSSL library.

SCIOP
SCTP Inter-ORB Protocol (found in -lTAO_Strategies). An
SCTP-based protocol, currently only for UNIX platforms.

HTIOP
HTTP Tunneling Inter-ORB Protocol (requires -lTAO_HTIOP and
-lACE_HTBP). An asymmetric protocol for communication across a
firewall using HTTP tunnels.

MIOP/UIPMC
Multicast Inter-ORB Protocol (MIOP) Unreliable IP Multicast
(UIPMC) protocol (found in -lTAO_PortableGroup).

ZIOP
This is an IIOP-variant with compression of the messages (found in
-lTAO_ZIOP).

COIOP
Collocated-Only Inter-ORB Protocol (found in
-lTAO_Strategies). Intended for use in systems without
network interfaces.

o c i w e b . c o m 323

1 4 . 4 B u i l d i n g t h e P r o t o c o l L i b r a r i e s

14.4 Building the Protocol Libraries

As noted in Table 14-1, the base TAO library includes IIOP.

The SSLIOP components are built in a separate ORB service library, which
depends on a third-party security package, as described in 14.10.

The UIPMC protocol is included as part of TAO’s Portable Group
implementation in the TAO_PortableGroup library. This library is located in
$TAO_ROOT/orbsvcs/orbsvcs/PortableGroup.

HTIOP depends upon the HTBP library for the communication between the
inside and outside peer through a firewall. This library is located in
$ACE_ROOT/protocols/ace/HTBP. The HTIOP library is located in
$TAO_ROOT/orbsvcs/orbsvcs/HTIOP.

ZIOP is included in its own library, TAO_ZIOP. The source for this library is
in $TAO_ROOT/tao/ZIOP.

The remaining protocols are all available as part of the TAO_Strategies
library. This library is located in $TAO_ROOT/tao/Strategies. The default
makefile or project file for TAO will build the strategy library in the course of
building the base TAO library. Separate make and project files are available if
you wish to build the strategy library individually. Note that COIOP is, by
default, not built. See 14.15 for details about performing a COIOP-enabled
build.

14.5 Loading Pluggable Protocols

To use a protocol in TAO, you must declare its protocol factory by using the
ACE Service Configurator (see 18.6.13). This factory instantiates such things
as the acceptor and connector responsible for establishing connections.
Declaring a protocol factory is done through options passed to the ORB’s
resource factory (Chapter 18) in the service configurator’s (Chapter 16)
configuration file. The resource factory option used is
-ORBProtocolFactory, described in 18.6.13 Further details about
individual protocol factories are given below.

Protocol factories are dynamically loadable. If you wish to use a non-default
protocol, or one which is loaded automatically as a result of using a specific
resource factory, you must direct the service configurator to load the protocol

324 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

factory object, in addition to supplying the argument to the resource factory. A
dynamic directive, as shown in 16.3.2, is used to load the protocol factory
code. Specific directives for loading the various protocol factories are shown
below.

Pay close attention to the syntax for the dynamic directive. It is tricky, and
incorrect syntax is the cause of most problems encountered when dynamically
loading protocols.

14.6 IIOP

The Internet Inter-ORB Protocol is the most widely used CORBA protocol,
and is required by the CORBA standard. IIOP specifies how GIOP messages
are sent, such that invocations may be made from client to server over a
TCP/IP network. IIOP, along with TAO’s other protocols, is implemented as a
pluggable protocol. This enables IIOP to be combined with other protocols, or
excluded if it is not needed.

IIOP is the default protocol for TAO. If no action is taken to specifically
declare an alternative protocol, IIOP will be automatically available. This also
means that an endpoint will be selected for any TAO server that does not
otherwise specify its endpoint(s).

14.6.1 Loading and Declaring the Protocol
The IIOP protocol is included in the TAO library. If IIOP is the only protocol
used, no action is required to load and declare the protocol. However, if IIOP
is to be used along with other protocols, then it must be explicitly declared,
along with the other protocols. As mentioned in 14.5, this is done through an
argument to the resource factory. The name of the IIOP protocol factory is
“IIOP_Factory,” as shown in the following example:

static Resource_Factory "-ORBProtocolFactory IIOP_Factory ... "

14.6.2 Address Definition
If your TAO server must always be available on a well-known address, you
must specify its endpoint(s) as arguments to CORBA::ORB_init().

o c i w e b . c o m 325

1 4 . 6 I I O P

Often, programs pass command-line arguments to CORBA::ORB_init(), so
you can also specify endpoints on the command line.

You can also use an implicit endpoint declaration with IIOP-based servers.
These endpoints choose a port, possibly from a constrained range, and listen
on that same port across multiple network interfaces.

Occasionally, it is desirable to limit the server to a particular network
interface, with or without regard to a particular port. Explicit declaration of an
endpoint for TAO servers is done with the -ORBListenEndpoints option.
See 17.13.14 for a full explanation of this option.

When making endpoint specifications, IIOP uses the prefix iiop://
followed by an optional host name, port number, and any per-endpoint
options.

A canonical, or fully-qualified, name should be used whenever supplying a
host name to avoid possible inconsistencies in mapping between the host
name and the IP address actually used.

Here is a sample IIOP endpoint:

server -ORBListenEndpoints iiop://example.ociweb.com:12345

Occasionally, IIOP is used in environments where DNS is not available, or is
not desirable. In those situations, the IP address of the host is used in place of
the host name. For example:

server -ORBDottedDecimalAddresses 1 -ORBListenEndpoints
iiop://192.168.1.10:3000

When you set -ORBDottedDecimalAddresses 1, TAO places the IP
address in the profile. Otherwise, TAO places whatever is specified on the
command line in the profiles.

Communication between processes on the same host may be optimized by
using the loopback interface. This is achieved by using the reserved loopback
IP address 127.0.0.1.

According to RFC 1912 and several other RFCs, the name localhost should
always resolve to the reserved loopback address 127.0.0.1. Thus, it is
permissible to use localhost to identify the host portion of an endpoint.
However, some machines do not have name resolution properly configured, so
it is safest to always specify 127.0.0.1.

326 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

TAO's IIOP pluggable protocol tries to find all IP-based network interfaces.
With no endpoint specification, TAO listens on all interfaces on an ephemeral
port, and publishes profiles for all the interfaces it can find.

TAO usually gets this right, but finding IP interfaces requires different
techniques and APIs on different platforms, so there’s always a possibility
TAO might miss a more exotic interface.

You can optionally specify only a port, with profiles published for all
interfaces TAO can find:

server -ORBListenEndpoints iiop://:12345

Or, you can specify just a host name, allowing for port selection from the
ephemeral range:

server -ORBListenEndpoints iiop://example.ociweb.com:

14.6.3 IIOP Options
Endpoints may be extended with optional values added to the end of each
declaration. In general, these options are supplied in the form “name=value.”.
Multiple options can be fed by separating them with an ’&’ e.g.
“name=value&name=value”

14.6.3.1 portspan
The portspan option constrains port selection for an IIOP endpoint to a
user-specified limited range. To use this feature, a base port value is specified
as shown above. The “span,” or number of ports, including the base, is given
as the portspan value. For example:

server -ORBListenEndpoints iiop://example.ociweb.com:12345/portspan=5

This instructs the server to open an endpoint on the specified interface on any
port from 12345 and 12349.

The portspan option is particularly useful if a server or collection of services
is to be accessed through a firewall.

o c i w e b . c o m 327

1 4 . 6 I I O P

14.6.3.2 hostname_in_ior
This option is used to explicitly specify the host name used in IORs. The
server ORB will not validate the specified host name. This option allows the
same host name to be used in the IORs of objects from multiple servers. This
technique can be used for redundancy or as a load-balancing strategy.

For example, two separate servers could be started on separate hosts with the
same hostname_in_ior option value, as follows:

Start a server on host 10.20.1.100:
server -ORBListenEndpoints iiop://10.20.1.100:12345/hostname_in_ior=malory

Start another copy of the server on host 10.20.1.200:
server -ORBListenEndpoints iiop://10.20.1.200:12345/hostname_in_ior=malory

In the above example, the IORs generated by both servers would have the host
name malory encoded within their IIOP profiles.

14.6.3.3 reuse_addr
This option allows users to set the SO_REUSEADDR socket option on an
endpoint. By default, this behavior is disabled and applications may fail to
open an endpoint that was used by a another recently terminated application.
Enabling it, by setting its value to 1, bypasses the TCP TIME_WAIT and can
be used to open an endpoint on a port still in TIME_WAIT state. A typical use
case for this option is when a fixed endpoint is used and the application cannot
tolerate the start-up delay that is necessary to avoid the TIME_WAIT.

Note This option is not recommended for the general use-case. Setting
SO_REUSEADDR has been observed to cause unexpected side-effects on
some platforms (e.g. Solaris 5.7 x86 allows programs run as same or different
users to bind to the same port when SO_REUSEADDR is set by all users).

Here is an example of enabling this option:

server -ORBListenEndpoints iiop://example.ociweb.com:12345/reuse_addr=1

328 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

14.7 UIOP

UIOP stands for the Unix Inter-ORB Protocol. The TAO UIOP specifies how
GIOP messages are sent, such that invocations may be made from client to
server over Unix Domain Sockets, also known as local IPC. Local IPC often
offers better performance for messaging between processes on the same host,
while still presenting application developers a sockets-based interface.
Though Unix Domain Sockets are supported on many platforms, a few
platforms, such as Win32, pSOS and QNX, do not support them.

Unlike IIOP, UIOP is not available by default. When available, servers will
present UIOP profiles only when you explicitly specify a UIOP endpoint.

14.7.1 Loading and Declaring the Protocol
The UIOP factory and its components are included in the TAO_Strategies
library. It is possible to directly link the strategies library to your application
by adding TAO_Strategies to the list of libraries in your makefile or project
settings. UIOP, along with the other protocols included in the strategies
library, may be made available by default as well by including the following
TAO-specific header in your application’s main source file:

#include <tao/Strategies/advanced_resource.h>

Including this file makes all of the protocols supplied in the strategies library
available to the application.

You may want to limit the available protocols, which you can do by
specifying the UIOP protocol factory name, UIOP_Factory, as an argument
to the -ORBProtocolFactory option when initializing the resource factory.
For example:

static Advanced_Resource_Factory "-ORBProtocolFactory UIOP_Factory"

Either the default Resource Factory or the Advanced Resource Factory may be
used when the strategies library is statically linked.

If you also want to use IIOP, you will need to include IIOP_Factory as an
additional argument to -ORBProtocolFactory.

You can also load the UIOP protocol dynamically through the service
configurator. This removes the need to include the TAO-specific header or

o c i w e b . c o m 329

1 4 . 7 U I O P

explicitly link the strategies library. However, the TAO_Strategies library
must exist in your platform’s library search path (e.g., LD_LIRBARY_PATH on
may Unix systems). You also must use the following dynamic directives in
your svc.conf file (see 16.3.2 for more information):

dynamic UIOP_Factory Service_Object*
TAO_Strategies:_make_TAO_UIOP_Protocol_Factory () ""

dynamic Advanced_Resource_Factory Service_Object*
TAO_Strategies:_make_TAO_Advanced_Resource_Factory ()
"-ORBProtocolFactory UIOP_Factory"

Once the UIOP protocol factory is loaded, the ORB will be able to
communicate via this protocol.

14.7.2 Address Definition
For TAO servers to generate UIOP profiles for inclusion in object references,
an endpoint must be explicitly declared using the -ORBListenEndpoints
option. See 17.13.14 for more general information on this option.

UIOP Endpoints are composed of the prefix uiop:// followed by an optional
Unix domain rendezvous point. Unix domain rendezvous points appear as
directory entries in the local file system. As such, they are represented as a file
path, such as /tmp/my_uiop_endpoint. To use this rendezvous point as a
UIOP endpoint, the declaration is:

-ORBListenEndpoints uiop:///tmp/my_uiop_endpoint

You can cause TAO to create an ephemeral rendezvous point (similar to
ephemeral ports in TCP) by using an empty endpoint declaration. You still
must explicitly declare the endpoint:

-ORBListenEndpoints uiop://

TAO generates UIOP rendezvous points using a facility like the system
function tempnam() or tmpnam(), depending on your platform. It places
rendezvous points in the temporary directory defined for the environment,
usually /tmp, and generates a unique name prefixed with “TAO”. These
ephemeral rendezvous points are removed upon normal shutdown of the ORB.

330 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

14.7.3 Guidelines
The rendezvous point for UIOP is any valid path and filename that the ORB
has permission to read from and write to. However, UIOP rendezvous points
have the same restrictions as local IPC. The following guidelines will help you
use TAO’s UIOP pluggable transport protocol successfully:

• Limit the length of the endpoint. For the greatest platform portability of
your code, ensure that rendezvous points are no longer than 99 characters,
including path and filename. This limit may be greater on specific
platforms, but the POSIX.1g standard dictates a limit of no more than 100
characters, including null terminator. Endpoints longer than what the
platform supports are truncated. and a warning is issued.

• Use absolute paths whenever possible. This avoids the trouble of ensuring
that the client and server are started in a particular directory. For instance,
declaring a relative endpoint, such as -ORBListenEndpoints
uiop://myuiop, causes a local IPC rendezvous point called myuiop to
be created in the current working directory. If the client is not started in
the same directory, it cannot locate the rendezvous point, and fails to
communicate with the server. On the other hand, using an absolute path
insures that the client knows exactly where to find the rendezvous point.

Relative paths can also expose one to security risks through
man-in-the-middle attacks.

• Insure accessibility. It is up to the user to make sure that a given UIOP
rendezvous point is accessible by both the server and the client.

14.8 SHMIOP

SHMIOP stands for the Shared Memory Inter-ORB Protocol. The TAO
SHMIOP specifies the proper encoding of IORs, and how GIOP messages are
sent, such that invocations may be made from client to server via shared
memory.

TAO’s SHMIOP implementation uses ACE memory-mapped files as the
shared-memory substrate. It does not use the System V Unix shared-memory
IPC mechanism.

Like UIOP, SHMIOP is useful only between processes that can share
memory, typically limited to same-host processes. This protocol is only

o c i w e b . c o m 331

1 4 . 8 S H M I O P

available on platforms that support shared memory. Though supported on
many platforms, it is unavailable on a few, such as some single process
real-time operating systems. This protocol can provide a performance
advantage over IIOP, and is available on some platforms that do not support
UIOP, such as Win32.

An interesting feature of TAO’s SHMIOP protocol is how it solves the
notification problem. A requirement of pluggable protocols is to generate I/O
events. This is solved in SHMIOP by the use of a TCP/IP connection through
the loopback interface, ensuring that the ORB receives timely notification of
data availability.

14.8.1 Loading the Protocol
The SHMIOP factory and its components are in the TAO_Strategies
library. To directly link the strategies library to your application, add
TAO_Strategies to the list of libraries in your makefile or project settings.
SHMIOP, along with the other protocols included in the strategies library,
may be made available by default by including the following TAO-specific
header in your application’s main source file:

#include <tao/Strategies/advanced_resource.h>

By including this file, you make all of the protocols supplied in the strategies
library available to your application.

To limit the available protocols, specify the SHMIOP protocol factory name,
SHMIOP_Factory, as an argument to the -ORBProtocolFactory option
when initializing the resource factory. For example:

static Advanced_Resource_Factory "-ORBProtocolFactory SHMIOP_Factory"

Either the default Resource Factory or the Advanced Resource Factory may be
used when the strategies library is statically linked.

If you also want to use IIOP, then include IIOP_Factory as an additional
argument to -ORBProtocolFactory.

You can also load the SHMIOP protocol dynamically through the service
configurator, which makes it unnecessary to include the TAO-specific header
or explicitly link the strategies library. However, the TAO_Strategies
library must exist in your platform’s library search path (e.g.,

332 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

LD_LIRBARY_PATH on many Unix systems). You also must use the following
dynamic directives in your svc.conf file (see 16.3.2 for more information):

dynamic SHMIOP_Factory Service_Object*
TAO_Strategies:_make_TAO_SHMIOP_Protocol_Factory () ""

dynamic Advanced_Resource_Factory Service_Object*
TAO_Strategies:_make_TAO_Advanced_Resource_Factory ()
"-ORBProtocolFactory SHMIOP_Factory"

14.8.2 Configuring the SHMIOP Factory
The SHMIOP factory takes two options that globally affect the transports
created by it. These options control the name and the size of the memory-
mapped file that is used for virtual-memory backing storage.

• -MMAPFilePrefix prefix. This option sets the prefix on the backing
store filename. This prefix may be any string that is valid as the start of a
filename. If this option is omitted, then “MEM_Acceptor_” is used by
default. The remainder of the filename, appended to the prefix, is the
decimal representation of the port number used for I/O event notification.

• -MMAPFileSize size. This option sets the size of the backing store file.
The size value is in bytes. The default size is 10k bytes.

The largest message size that can be handled by SHMIOP is the size of the
backing store. The minimum size of the map file should be at least the size
of the message, including message headers and other overhead. You
should reserve a file size equal to the expected maximum size of a request
plus the expected maximum size of a reply, times a safety factor:

(MAX_REQUEST_SIZE + MAX_REPLY_SIZE) * SAFETY_FACTOR

For example, if you expect the maximum request size in your application
to be 4k bytes, the maximum reply size to be 16k bytes, and you assume a
safety factor of two, you would have:

(4k + 16k) * 2 = 40k

You specify these as options to the SHMIOP factory in the svc.conf file. For
example:

static SHMIOP_Factory "-MMAPFilePrefix server_shmiop -MMAPFileSize 40960"

o c i w e b . c o m 333

1 4 . 9 D I O P

14.8.3 Address Definition
For TAO servers to generate SHMIOP profiles for inclusion in object
references, an endpoint must be explicitly declared using the
-ORBListenEndpoints option. See 17.13.14 for more information on this
option.

SHMIOP endpoints are composed of the prefix shmiop:// followed by an
optional port number. For example:

-ORBListenEndpoints shmiop://12345

The port number specifies the TCP port used for notification of new data.
TAO uses an ephemeral port if you do not specify a port.

Although SHMIOP endpoints do not accept a host name in the declaration, the
canonical name of the host appears in the profile, which is embedded in object
references. This name is used to prevent processes on other hosts from
attempting to use that SHMIOP profile.

14.9 DIOP

DIOP stands for Datagram Inter-ORB Protocol and is a UDP-based transport
protocol. In TAO this protocol is only partially implemented and as such, has
some restrictions that will be covered later in this section. The DIOP
implementation uses connectionless UDP sockets, and therefore is intended
for use as a lower-overhead protocol for certain classes of applications.

The original motivation for this protocol came from applications that used
only oneway operations.

14.9.1 Loading the Protocol
The DIOP factory and its components are included in the TAO_Strategies
library. To directly link the strategies library to your application, add
TAO_Strategies to the list of libraries in your makefile or project settings.
DIOP, along with the other protocols included in the strategies library, may be
made available by default by including the following TAO-specific header in
your application’s main source file:

334 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

#include <tao/Strategies/advanced_resource.h>

By including this file, you make all of the protocols supplied in the strategies
library available to your application.

To limit the available protocols, specify the DIOP protocol factory name,
DIOP_Factory, as an argument to the -ORBProtocolFactory option when
initializing the resource factory. For example:

static Advanced_Resource_Factory "-ORBProtocolFactory DIOP_Factory"

Either the default Resource Factory or the Advanced Resource Factory may be
used when the strategies library is statically linked.

You can also load the DIOP protocol dynamically through the service
configurator, making it unnecessary to include the TAO-specific header, or
explicitly link the strategies library. However, the TAO_Strategies library
must exist in your platform’s library search path (e.g., LD_LIRBARY_PATH on
many Unix systems). You also must use the following dynamic directives in
your svc.conf file (see 16.3.2 for more information):

dynamic DIOP_Factory Service_Object*
TAO_Strategies:_make_TAO_DIOP_Protocol_Factory () ""

dynamic Advanced_Resource_Factory Service_Object*
TAO_Strategies:_make_TAO_Advanced_Resource_Factory ()
"-ORBProtocolFactory DIOP_Factory"

Once you have the DIOP protocol factory loaded, the ORB will be able to
communicate via this protocol.

14.9.2 Address Definition
For TAO servers to generate DIOP profiles for inclusion in object references,
an endpoint must be explicitly declared using the -ORBListenEndpoints
option. See 17.13.14 for more information on this option.

Endpoints for DIOP are composed of the prefix diop:// followed by a host
and port combination, similar to IIOP endpoints. An example of a DIOP
endpoint is:

-ORBListenEndpoints diop://example.ociweb.com:12345

o c i w e b . c o m 335

1 4 . 1 0 S S L I O P

14.9.3 Notes and Restrictions
Keep the following points in mind when using the DIOP protocol:

• There are no connections, and therefore no state; requests from different
clients all arrive at the same socket!

• The thread-per-connection concurrency model is supported.

• Only oneway operation invocations are supported.

DIOP was developed for applications satisfying the following assumptions:

• UDP communications are nearly 100 percent reliable (e.g., IP over ATM).
Even under less reliable conditions, DIOP can be used by restricting the
application to use oneway operations for both requests and responses in
combination with application-level time outs.

• TCP is inappropriate, due to its sluggishness on sudden disconnections
(e.g., it must be possible to “hot swap” CPU cards without impacting an
ORB’s communications with a particular CPU). For this reason, no state
is kept on the client side of the DIOP protocol.

• No GIOP message (and therefore no IDL signature) has a size greater than
ACE_MAX_DGRAM_SIZE (4 kilobytes). Thus, no data sent via DIOP can be
larger than 4 kilobytes.

Note that support for fragmented messages, as specified in GIOP 1.2, may
alleviate this restriction, and may be added to a future DIOP
implementation.

14.10 SSLIOP

SSLIOP stands for the Secure Sockets Layer (SSL) Inter-ORB Protocol. This
protocol is defined by the OMG as part of the CORBA Security Service
specification. SSLIOP uses GIOP as a messaging protocol and SSL as the
transport protocol. It is a drop-in replacement for IIOP, providing secure
communication between hosts.

TAO's SSLIOP pluggable protocol implementation supports both the standard
IIOP transport protocol and the secure IIOP over SSL transport protocol. No
changes were made to the core TAO source code to provide SSL support, nor
does TAO contain any security-related hooks. Details about TAO’s SSLIOP
and other security-related issues are covered in Chapter 27, particularly 27.3.

336 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

14.10.1 Loading the Protocol
The SSLIOP factory and its components are included in a separate
TAO_SSLIOP library. See 27.5 for details on building and using this library.
Specifically, 27.6.2 covers the various initialization options that are accepted
by the SSLIOP Factory.

14.10.2 Address Definition
SSLIOP endpoints are nearly identical to IIOP endpoints. The same prefix,
iiop:// is used, along with host name and port number. The only difference
is that SSLIOP takes a separate per-endpoint option, ssl_port, that allows
explicit specification of both the secure and insecure endpoints. The
portspan option of the IIOP connector is not used by SSLIOP. Here is an
example of an endpoint supplying both an insecure and a secure port:

-ORBListenEndpoints iiop://example.ociweb.com:12000/ssl_port=12001

14.10.3 Hostname in IOR Option
The hostname_in_ior option, which was described earlier in 14.6.3.3 as an
IIOP option, is also available for SSLIOP endpoints.

14.10.4 Portspan Option
The portspan option, which was described earlier in 14.6.3.1 as an IIOP
option, is also available for SSLIOP endpoints. When used in conjunction
with ssl_port as shown below:

-ORBListenEndpoints
iiop://example.ociweb.com:12000/ssl_port=12001&portspan=5

it instructs the server to open an endpoint on the specified interface on any
port from 12001 and 12006.

14.10.5 Reuse Address Option
The reuse_addr option, which was described earlier in 14.6.3.3 as an IIOP
option, is also available for SSLIOP endpoints.

o c i w e b . c o m 337

1 4 . 1 1 M I O P / U I P M C

14.11 MIOP/UIPMC

MIOP stands for Multicast Inter-ORB Protocol and UIPMC stands for
Unreliable IP Multicast. UIPMC underlies the OMG’s Multicast Inter-ORB
Protocol, defined in the MIOP specification. (OMG Document ptc/01-11-08 is
the Final Adopted Specification.) The current MIOP version is 1.0. The MIOP
protocol wraps a GIOP request in a MIOP Packet and transmits it via an
underlying connectionless transport protocol (e.g., UDP/IP). An MIOP Packet
is defined as the MIOP Packet Header information, which represents the state
information for a single MIOP Packet, as well as the raw GIOP data (body)
contained in the rest of the MIOP Packet. An MIOP Packet will be sent and
later reassembled on the receiving side. MIOP Packets are the atomic pieces
that comprise a Packet Collection. A Packet Collection is comprised of one or
more MIOP Packets and is defined as a complete, packaged, GIOP request
message or request message fragment. Only GIOP request messages and
associated request message fragments are allowed in an MIOP Packet in a
Packet Collection.

Note MIOP packet reassembly is not yet supported in TAO. Thus, the maximum
request size that can be transmitted via MIOP/UIPMC is currently limited to
roughly 5-6k bytes depending upon the platform.

TAO’s MIOP support enables servants to receive requests sent to multicast
addresses. A GroupId that identifies the multicast group is created and
associated with one or more servants. The UIPMC pluggable protocol is used
to send and receive multicast requests. MIOP/UIPMC is currently usable only
for oneway operations. Servers (receivers) join an IP Multicast group and
listen on the same group id for requests.

See $TAO_ROOT/orbsvcs/tests/Miop/McastHello for an example that
uses MIOP/UIPMC.

14.11.1 Loading the Protocol
The UIPMC factory and its components are included in the
TAO_PortableGroup library. You can load the UIPMC protocol
dynamically through the service configurator. The TAO_PortableGroup
library must exist in your platform’s library search path (e.g.,

338 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

LD_LIRBARY_PATH on many Unix systems). You also must use the following
dynamic directives in your svc.conf file (see 16.3.2 for more information):

dynamic UIPMC_Factory Service_Object*
TAO_PortableGroup:_make_TAO_UIPMC_Protocol_Factory() ""

static Resource_Factory "-ORBProtocolFactory IIOP_Factory -ORBProtocolFactory
UIPMC_Factory"

Once you have the UIPMC protocol factory loaded, the ORB will be able to
communicate via this protocol. The UIPMC protocol factory must be loaded
and configured on both the client and server sides. In addition, the server side
must add the following directive to load the Portable Group Loader service
object.

dynamic PortableGroup_Loader Service_Object*
TAO_PortableGroup:_make_TAO_PortableGroup_Loader() ""

14.11.2 Address Definition
The MIOP specification provides the following corbaloc Object URL syntax
for specifying an MIOP profile:

<corbaloc> = "corbaloc:"<obj_addr_list>["/"<key_string>]
<obj_addr_list> = [<obj_addr> ","]* <obj_addr>
<obj_addr> = <prot_addr>
<prot_addr> = <iiop_prot_addr> | <miop_prot_addr>
<miop_prot_addr> = <miop_prot_token><miop_addr>
<miop_prot_token> = "miop"
<iiop_prot_token> = "iiop"
<miop_addr> = <version><group_addr>[;<group_iiop>]
<version> = <major> "." <minor> "@" | empty_string
<group_addr> = <group_id>"/"<ip_multicast_addr>
<group_iiop> = <iiop_prot_token>":"<version> <hostname>":"\
 <port> "/" <objecy_key>
<ip_multicast_addr> = <classD_IP_address> | <IPv6_address> ":" <port>
<classD_IP_address> = "224.0.0.0" - "239.255.255.255"
<port> = number (default to be defined)
<group_id> = <group component version>"-"<group_domain_id>"-"
 <object_group_id>["-"<object group reference version>]
<group component version> = <major> "." <minor>
<group_domain_id> = string
<object_group_id> = unsigned long long
<object group reference version> = unsigned long
<major> = number (default 1)
<minor> = number (default 0)

o c i w e b . c o m 339

1 4 . 1 1 M I O P / U I P M C

An example of a valid MIOP corbaloc Object URL (taken from the example in
$TAO_ROOT/orbsvcs/tests/Miop/McastHello) is:

corbaloc:miop:1.0@1.0-TestDomain-1/225.1.1.225:1234;

Here, the group id is 1.0-TestDomain-1 and the IP multicast address is
225.1.1.225 at port 1234. (Any valid multicast address will do.) Multiple
servers using the MIOP/UIPMC protocol can share this same group id and
address; all the servers will be able to receive client requests directed to that
group.

The -ORBListenEndpoints option is not used to specify MIOP profiles as
with TAO’s other pluggable protocols. Instead, servers should generate an
object reference from the group’s corbaloc Object URL (using
CORBA::ORB::string_to_object()), then use the POA’s new
create_id_for_reference() operation to generate a
PortableServer::ObjectId from a group’s object reference. This object
id is then associated with servants via the POA’s usual
activate_object_with_id() or similar operation. The following server
code fragment shows how the above steps can be accomplished:

// ORB and POA initialization code not shown.

// Set up the object group’s corbaloc Object URL.
CORBA::String_var group_url =
 CORBA::string_dup ("corbaloc:miop:1.0@1.0-TestDomain-1/225.1.1.225:1234");

// Generate a group object reference.
CORBA::Object_var group_reference = orb->string_to_object (group_url.in());

// Create an Object Id for the group reference.
PortableServer::ObjectId_var id =
 poa->create_id_for_reference (group_reference.in ()

// Create and activate a servant.
PortableServer::Servant_var<Messenger_i> servant = new Messenger_i();
poa->activate_object_with_id (id.in(), servant.in());

// Activate the POAManager and accept client requests as usual.

Clients can simply convert the group’s corbaloc Object URL to an object
reference using CORBA::ORB::string_to_object(), then invoke oneway
operations on the object reference as usual. Since only oneway operations are

340 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

supported, clients cannot use a normal _narrow() function to narrow the
object reference since doing so may cause a two-way _is_a() operation to be
invoked; instead, clients should use _unchecked_narrow(). The following
client code fragment shows the steps we have just described:

// ORB initialization code not shown.

// Set up the object group’s corbaloc Object URL.
CORBA::String_var group_url =
 CORBA::string_dup ("corbaloc:miop:1.0@1.0-TestDomain-1/225.1.1.225:1234");

// Generate a group object reference.
CORBA::Object_var group_reference = orb->string_to_object (group_url.in());

// Narrow the object reference (use _unchecked_narrow() since _narrow() may
// result in a two-way _is_a() operation invocation).

Messenger_var messenger = Messenger::_unchecked_narrow (group_reference.in ());

if (CORBA::is_nil (messenger.in())) {
 std::cerr << "Could not narrow group reference." << std::endl;
 ACE_OS::exit(-1);
}

// Invoke oneway operations on the group reference.

14.11.3 Notes and Restrictions
Keep the following points in mind when using MIOP:

• There are no connections, and therefore no state; requests from different
clients are all sent to the same multicast address and will be received by
all servers that have joined the multicast group!

• The thread-per-connection concurrency model is supported.

• Only oneway operation invocations are supported.

• IP multicast communications are unreliable, therefore MIOP/UIPMC
should not be used where reliable transmission of requests/data is
required.

• Since TAO’s support of MIOP does not yet support message
fragmentation and MIOP Packet reassembly, request sizes are limited to
5-6 kilobytes, depending upon the platform.

o c i w e b . c o m 341

1 4 . 1 2 H T I O P

14.12 HTIOP

HTIOP stands for HTTP Tunneling Inter-ORB Protocol. It is a TAO-specific
protocol that allows inter-ORB communications to be transmitted across a
firewall. It does this by layering GIOP messages over HTTP packets.

HTIOP support in TAO consists of two libraries:

• The ACE_HTBP library, found in $ACE_ROOT/protocols/ace/HTBP,
implements the low-level HTBP protocol. This protocol allows for
communications to take place through a firewall between “inside” and
“outside” peers. HTBP supports both “direct” and “indirect” connections
through the firewall. The default is indirect, which requires the use of an
HTTP proxy. HTBP can be used independently of TAO.

• The TAO_HTIOP library, found in
$TAO_ROOT/orbsvcs/orbsvcs/HTIOP, implements HTIOP on top of
HTBP.

HTIOP is an asymmetric protocol. This means that applications inside the
firewall must be configured differently than applications outside the firewall.
Inside peers are the only ones that may initiate connections.

Note If a peer-to-peer relationship is desired wherein CORBA invocations flow in
either direction, then bi-directional GIOP must be used. See 6.4 for more
information on bi-directional GIOP.

One of the challenges imposed by the use of an HTTP proxy is that, if a
connection is idle for long enough, it may be closed. This means the inside
peer must establish a new connection by sending another request. Since the
outside peer cannot open a connection, it must queue messages destined to the
inside peer until the inside peer opens a new connection. Once a connection
has been established, all the queued messages are sent.

A second challenge is that, while a proxy will open multiple TCP/IP
connections to a server (the outside peer), when faced with multiple
simultaneous HTTP requests, it will reuse those connections at will to forward
any subsequent requests. This means that a socket is associated with a
particular HTIOP session for only one HTTP request/reply cycle.

342 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

Apart from loading the protocol and declaring an endpoint, no modifications
to application code are required to use HTIOP.

HTBP isolates HTIOP from differences in HTTP proxies by defining a filter
class that encapsulates the particular characteristics of the proxy that is being
used and that is responsible for marshaling and demarshaling binary data. At
the time of this writing, HTBP has a single filter class that works with the
Squid HTTP proxy. More information on the Squid web proxy cache can be
found via <http://www.theaceorb.com/references/>. This filter may also be used
as a null filter when the inside and outside peers are directly connected (i.e., a
proxy is not being used), which is mainly useful during testing.

14.12.1 Loading the Protocol
HTIOP is loaded via the service configurator. Since HTIOP is an asymmetric
protocol, the configurations are different for the server and client sides. Since
the server resides outside the firewall, its configuration is quite
straightforward. Here is an example of a server-side configuration:

dynamic HTIOP_Factory Service_Object *
TAO_HTIOP:_make_TAO_HTIOP_Protocol_Factory () ""

static Resource_Factory "-ORBProtocolFactory HTIOP_Factory"

The HTIOP_Factory protocol factory accepts the following initialization
parameters:

• -config <filename>—Specifies the name of a text file that contains an
HTBP-specific configuration. See Table 14-2 for a list of possible HTBP
configuration parameters. The -config parameter is optional.

• -env_persist <filename>—Specifies the name of a memory mapped
file that contains a previously saved HTBP configuration, or to which a
new HTBP configuration will be saved. If both -config and
-env_persist are specified, the memory mapped file will be loaded
first, then the text file will be interpreted. The new configuration will then
be persisted in the memory mapped file.

• -win32_reg—If this parameter is provided, the HTBP configuration will
be saved to the Windows registry (in the HTBP section) rather than to a
memory mapped file. This feature is available only on Windows.

• -inside (-1|0|1)—Explicitly declare whether the peer’s endpoint is
inside or outside the firewall. The default setting of -1 causes the

o c i w e b . c o m 343

1 4 . 1 2 H T I O P

HTIOP_Factory to use the ACE_HTBP_Environment’s proxy_host
setting to determine if it the peer is inside or outside the firewall. An
explicit setting of 1 means the peer’s endpoint is inside the firewall; an
explicit setting of 0 means it is outside the firewall.

You only need to explicitly specific if the peer is inside or outside the
firewall when you are testing without a real HTTP proxy. As stated
previously, HTIOP is an asymmetric protocol: only peers inside the
firewall can initiate connections; peers outside the firewall cannot initiate
connections to inside peers.

• -proxy_port <port>—Specifies the host name of the HTTP proxy
through which all requests will be sent.

• -proxy_host <hostname>—Specifies the port number on which the
HTTP proxy is listening and through which all requests will be sent

HTBP is configured independently of the HTIOP protocol factory. The HTBP
configuration contains a single [htbp] section that contains a list of name/value
pairs to configure HTBP. Table 14-2 lists the configuration parameters HTBP
accepts:

In the following example, we show the configuration of an HTIOP client in
which a proxy is not being used. Note that the client must explicitly specify
that it is an inside peer.

dynamic HTIOP_Factory Service_Object *
 TAO_HTIOP:_make_TAO_HTIOP_Protocol_Factory () "-inside 1"
static Resource_Factory "-ORBProtocolFactory HTIOP_Factory"

In this example, we show a client configuration that is using a proxy. The
HTBP configuration parameters are specified in a separate configuration file
called HTBP_Config.txt.

dynamic HTIOP_Factory Service_Object *
 TAO_HTIOP:_make_TAO_HTIOP_Protocol_Factory () "-config HTBP_Config.txt"

Table 14-2 HTBP Configuration Parameters

proxy_host
The host name of the HTTP proxy through which all requests
will be sent. This value overrides the value set by the
corresponding protocol factory option.

proxy_port
The port number on which the HTTP proxy is listening and
through which all requests will be sent. This value overrides
the value set by the corresponding protocol factory option.

344 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

static Resource_Factory "-ORBProtocolFactory HTIOP_Factory"

Here we show possible contents of the HTBP_Config.txt file.

[htbp]
proxy_port=3128
proxy_host=proxy.acme.com

14.12.2 Address Definition
For TAO servers to generate HTIOP profiles for inclusion in object
references, an endpoint must be explicitly declared using the
-ORBListenEndpoints option. See 17.13.43 for more information on this
option.

HTIOP endpoints are composed of the prefix htiop://, followed by the host
name and port number. For example:

-ORBListenEndpoints htiop://malory.acme.com:12345

14.12.3 HTIOP Options

14.12.3.1 hostname_in_ior
This option is used to explicitly specify the host name used in IORs. For
example:

-ORBListenEndpoints htiop://malory.acme.com:12345/hostname_in_ior=www.acme.com

See 14.6.3.2 for more information on the hostname_in_ior option.

14.13 SCIOP

SCIOP stands for SCTP Inter-ORB Protocol. It layers the TAO pluggable
protocol framework atop the Stream Control Transmission Protocol (SCTP).

SCTP is defined in Internet Engineering Task Force (IETF) Requests for
Comments (RFC) 2960 as the transport layer to carry signaling messages over
IP networks. According to the RFC, “SCTP is a reliable transport protocol

o c i w e b . c o m 345

1 4 . 1 3 S C I O P

operating on top of a connectionless packet network such as IP. It offers the
following services to its users:

• acknowledged error-free non-duplicated transfer of user data,

• data fragmentation to conform to discovered path MTU size,

• sequenced delivery of user messages within multiple streams, with an
option for order-of-arrival delivery of individual user messages,

• optional bundling of multiple user messages into a single SCTP packet,
and

• network-level fault tolerance through supporting of multi-homing at either
or both ends of an association.

The design of SCTP includes appropriate congestion avoidance behavior and
resistance to flooding and masquerade attacks.”

TAO’s implementation of SCIOP depends upon an external implementation
of the SCTP APIs. Currently, the only supported SCTP implementation is the
Linux Kernel Stream Control Transmission Protocol (lksctp). lksctp is
available in the Linux kernel source tree in versions 2.5.36 and later. For this
reason, TAO’s SCIOP support is currently limited to the Linux platform.

14.13.1 SCTP Association
SCTP provides a means for each SCTP endpoint to provide the other endpoint
(during association startup) with a list of transport addresses (i.e., multiple IP
addresses in combination with an SCTP port) through which that endpoint can
be reached and from which it will originate SCTP packets. The association
spans transfers over all of the possible source/destination combinations that
can be generated from each endpoint’s lists. Each GIOP connection is mapped
to a single SCTP association. At startup, a primary path is selected, which is
indicated in the IOR profile. This primary path is used for normal
communication. Using SCIOP, a TAO application is able to access the fault
tolerance capabilities of the SCTP protocol.

14.13.2 Loading the Protocol
The SCIOP implementation is included in the TAO_Strategies library. It
can be loaded and configured either dynamically or statically.

SCIOP can be dynamically loaded via the service configurator. An example
configuration file is shown below:

346 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

dynamic SCIOP_Factory Service_Object*
 TAO_Strategies:_make_TAO_SCIOP_Protocol_Factory () ""
dynamic Advanced_Resource_Factory Service_Object*
 TAO_Strategies:_make_TAO_Advanced_Resource_Factory ()
 "-ORBProtocolFactory SCIOP_Factory"

See 14.7.1 for information on statically loading the TAO_Strategies library.

14.13.3 Address Definition
SCIOP addresses must encapsulate the SCTP association information.
Multiple host names separated by a ‘+’ are allowed for a single endpoint. As
with TAO’s other pluggable protocols, the -ORBListenEndpoints option is
used to create an SCIOP endpoint. SCIOP endpoints are composed of the
prefix sciop://, followed by one or more host names and a port number.
Some sample SCIOP endpoint specifications are shown below:

-ORBListenEndpoints sciop://malory:12345
-ORBListenEndpoints sciop://malory+arthur+gawain:12345

14.13.3.1 hostname_in_ior
This option is used to explicitly specify the host name used in IORs. For
example, the following option:

-ORBListenEndpoints sciop://malory+arthur+gawain:12345/hostname_in_ior=host4

will cause the ORB to encode host4 in the SCIOP profiles of the IORs that it
generates (i.e., host4 will be the primary host for the service).

See 14.6.3.2 for more information on the hostname_in_ior option.

14.13.3.2 portspan
The portspan option, which was described earlier in 14.6.3.1 as an IIOP
option, is also available for SCIOP endpoints.

o c i w e b . c o m 347

1 4 . 1 4 Z I O P

14.14 ZIOP

The ZIOP protocol is based on the proposed GIOP Compression specification
(OMG Document mars/08-12-20). This specification defines a compression
mechanism for GIOP. The ZIOP protocol in TAO is an experimental
proof-of-concept implementation of this proposed standard. It utilizes TCP/IP
using the open source zlib compression library.

The ZIOP protocol is not built unless TAO is built with TAO_HAS_ZIOP
explicitly set to 1. Set this macro at the top of your config.h, rebuild TAO, and
you are ready to experiment with this protocol. Once built with ZIOP, TAO’s
use of compression is controlled by the ZIOP policies defined in 14.14.1.

See the test in $TAO_ROOT/tests/ZIOP for an example that uses this
protocol.

14.14.1 ZIOP Policies
ZIOP defines four policies that can be used to configure the ORB’s use of the
protocol. These are set on the client and server as described in 6.3.1.

14.14.1.1 Compression Enabling Policy
This policy takes a boolean value and must be enabled for both the client and
server for the ORB to use compression between the two. TAO’s default value
of this policy is to disable compression.

14.14.1.2 Compressor Level List Policy
This policy takes as its value a sequence of structures that each take a pair of
CompressionId/CompressionLevel values in order of preference. Each
CompressorId identifies a unique compression algorithm or library. The client
or server will go through its compressor level list until it finds a CompressorId
that the other supports. This is then the selected compression algorithm and
the lowest specified level between the two is used. TAO’s default value of this
policy, when no list is specified, is to support ZLIB compression at level 0.

14.14.1.3 Compression Low Value Policy
This policy takes a long value that specifies a message length. The ORB will
not compress any messages with application data length fewer than the

348 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

specified length. TAO’s default value of this policy is 0, meaning that the
ORB will attempt to compress all messages with application data.

14.14.1.4 Compression Min Ratio Policy
This policy takes a long value that is the minimum compression ratio that must
occur before a compressed message is used. TAO does not currently support
this option and all compressed messages are sent, regardless of compression
ratio.

14.15 COIOP

COIOP stands for Collocated-Only Inter-ORB Protocol. This protocol is
intended for use when TAO is used in systems with no network interfaces
enabled. In this use case, TAO should be built with COIOP enabled via
TAO_HAS_COIOP (this protocol is not built unless explicitly enabled) and
other protocols should be disabled. For example, the following could be added
to the top of your config.h:

#define TAO_HAS_IIOP 0
#define TAO_HAS_UIOP 0
#define TAO_HAS_DIOP 0
#define TAO_HAS_SHMIOP 0
#define TAO_HAS_COIOP 1

This would build TAO with COIOP support enabled and without IIOP, UIOP,
DIOP, or SHMIOP support. Because COIOP is the only protocol available, no
factory configuration is necessary. Simply link your application with the
TAO_Strategies library and COIOP will be used for all CORBA
invocations.

If the CORBA object is located in the same process as the client invocation,
then it proceeds using the TAO’s collocation optimizations. If the CORBA
object is located in another process or collocation optimization is disabled, a
CORBA::Transient exception is thrown.

o c i w e b . c o m 349

1 4 . 1 6 C o m b i n i n g P r o t o c o l s

14.16 Combining Protocols

You may use multiple protocols simultaneously with TAO. Using the
-ORBListenEndpoints option, you can instruct the ORB to listen on
multiple endpoints for different protocols. For example, to instruct the IIOP
protocol to listen on an ephemeral port on 192.168.1.6, and the SHMIOP
protocol to listen on port 12345, use the following command:

-ORBListenEndpoints iiop://192.168.1.6 -ORBListenEndpoints shmiop://12345

or alternatively:

-ORBListenEndpoints iiop://192.168.1.6;shmiop://12345

Creating multi-protocol endpoints, as in the example above, requires the
service configurator to load and initialize the protocol-specific factory objects.
The IIOP factory is initialized by default unless another protocol is explicitly
loaded via the service configurator. Therefore, the example above requires
both IIOP and SHMIOP factories to be statically or dynamically initialized.
The dynamic directives for this are shown below:

dynamic IIOP_Factory Service_Object*
 TAO_Strategies:_make_TAO_IIOP_Protocol_Factory () ""
dynamic SHMIOP_Factory Service_Object*
 TAO_Strategies:_make_TAO_SHMIOP_Protocol_Factory () ""

dynamic Advanced_Resource_Factory Service_Object*
 TAO_Strategies:_make_TAO_Advanced_Resource_Factory ()
 "-ORBProtocolFactory IIOP_Factory -ORBProtocolFactory SHMIOP_Factory"

When a multi-endpoint server generates an IOR, that IOR will contain a
profile for each protocol in the order in which they appear on the command
line. Without using the capabilities of real-time CORBA, there is no standard
way for the client to specify at run-time which protocol to use for a particular
invocation. A TAO server and a TAO client, however, can leverage the fact
that the client connection code iterates over profiles in the IOR in the order in
which they appear. Thus, for the endpoints specified above, the client ORB
first tries to establish a connection and send a request using IIOP and, if that
fails, tries SHMIOP.

350 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

Reversing the order of the endpoints on the server’s command line causes the
client ORB to first attempt to use SHMIOP, then IIOP:

-ORBListenEndpoints shmiop://12345 -ORBListenEndpoints iiop://192.168.1.6

The standard and more portable way to accomplish this is through the use of
the real-time-CORBA protocol selection policies. An example of this can be
found in $TAO_ROOT/tests/RTCORBA/Client_Protocol and in 8.3.12.

14.17 TAO and IPv6

TAO’s support for IPv6 has progressed steadily through the last few releases.
When TAO is built to support IPv6, each of this section’s protocols that uses
IP addresses in its endpoint can also use IPv6 addresses. By default, TAO’s
IPv6 support is not enabled.

14.17.1 Building TAO with IPv6 Support
The easiest way to enable IPv6 support is to add the ipv6 feature to your
default.features file:

// $ACE_ROOT/bin/MakeProjectCreator/default.features
ipv6=1

After making this modification, you should regenerate your build files using
MPC. As an alternative to changing default.features, you could add
ACE_HAS_IPV6 to the top of your $ACE_ROOT/ace/config.h file:

#define ACE_HAS_IPV6 1

// remainder of config.h...

After either of these you will need to rebuild your TAO and your applications.
See Appendix A for further details about configuring ACE/TAO builds.

14.17.2 Using IPv6 with TAO
In order to distinguish between IPv4 and IPv6 address, IPv6 addresses must be
placed within square brackets. Here is an example of a Naming Service server

o c i w e b . c o m 351

1 4 . 1 8 D e v e l o p i n g P l u g g a b l e P r o t o c o l s

specifying an IPv6 endpoint and a client using that endpoint to construct a
corbaloc to find that service:

tao_cosnaming -ORBListenEndpoints iiop://[01ef::1]:1234
tao_nslist -ORBInitRef NameService=

There are a number of IPv6-related ORB_init() options that become available
when TAO is built with IPv6 enabled. See 17.9 for details on these
IPv6-related options.

14.18 Developing Pluggable Protocols

This section is intended as a brief introduction to how you can develop your
own pluggable protocols for TAO. The best source for up to date information
about the APIs required are the source code of the various pluggable protocols
that are included in the TAO distribution.

14.18.1 Background
As with the use of the existing TAO protocols, the main motivator for using
custom protocols is typically higher performance, although reduced
bandwidth consumption, security, or custom network hardware may also
motivate their use. If the requirements of your application are such that IIOP
or one of the other protocols provided with TAO is not sufficient, then you can
take full advantage of TAO’s open pluggable-protocol framework to architect
your own transport for seamless use with the rest of the TAO ORB.

Note What has been historically referred to as a “pluggable protocol” in TAO is
really a pluggable transport. TAO does not currently support pluggable
messaging (i.e., only GIOP is supported), nor is it possible to choose
alternative marshaling schemes (i.e., only CDR is supported). However, for
historical reasons, pluggable transports in TAO are referred to as pluggable
protocols.

Generally, as a CORBA application programmer, you need not be concerned
with the internal workings of the ORB, beyond the configuration options
provided to you by the ORB vendor. When developing pluggable protocols
however, you need to be familiar with the patterns, mechanisms, and APIs

352 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

used by the ORB internal code, so that you can quickly and effectively add
your own transport. After covering the requirements that any transport must
satisfy to be used for GIOP messaging, this section outlines the basic steps
you need to take to develop your custom protocol and integrate it with TAO.

14.18.2 Pluggable Protocol Requirements
This section discusses the preconditions that must be met by any candidate
transport protocol considered for use with TAO.

14.18.2.1 Transport Behavior
Any transport protocol used in inter-ORB communication must be both
connection-oriented and reliable. Basic TCP/IP is a representative example,
because it fulfills both of these requirements. UDP is an example of a protocol
that does not fulfill these minimum requirements, being neither
connection-oriented nor reliable. Of course, a connection-oriented, reliable
layer could be built on top of UDP.

Additionally, the candidate protocol must have a way to multiplex I/O events,
using either the Unix select() system call or its Win32 equivalent,
WaitForMultipleObjects(). Such event notification may be supplied
through an alternate channel if the native transport mechanism does not
support it. For example, the shared-memory transport protocol, SHMIOP, uses
a socket on the loopback interface to notify the peer connection that data is
available for reading. As an extreme example, it may be possible to use some
other stimulus, such as signals or semaphores, for notification, but integrating
such a mechanism with TAO is difficult and beyond the scope of this book.

14.18.2.2 Identifier Tags
Transport protocols are identified with a magic number, which is defined by
the OMG. Throughout the following class descriptions, all of the constructors
defined by the TAO pluggable-protocol framework take a CORBA::ULong
value as an argument. This value represents the protocol’s tag, which is
incorporated into the profile section of an IOR, and therefore must be unique
across all CORBA vendors. To obtain a tag assignment when constructing a
new protocol, it is necessary to register the protocol with the OMG. Any value
may be used as the tag, but failure to register it leaves your code liable to

o c i w e b . c o m 353

1 4 . 1 8 D e v e l o p i n g P l u g g a b l e P r o t o c o l s

inconsistent behavior when interacting with clients or servers produced by
others.

14.18.3 Details of the Pluggable-Protocol Framework
There are a small number of classes that you need to define and implement to
enable your protocol to work with the TAO pluggable-protocol framework.
This framework allows you to add new protocols without changing TAO itself
by providing an interface between TAO and your custom protocol. As long as
your protocol classes conform to expectations and patterns of the framework,
the task of producing a TAO pluggable protocol can be as simple as following
a recipe. Using existing protocols as models for your protocol can make your
job much easier.

The TAO pluggable-protocol framework provides abstract base classes from
which your protocol-specific classes must derive. Table 14-3 shows the
framework components that must be implemented for each protocol, the base
classes that define each interface, and the header files in which the base
classes are defined.

The source code for the derived types is typically divided into several files,
which are usually named for the protocol and component expressed within.
For instance, IIOP-related classes are in files such as IIOP_Acceptor.h and
IIOP_Connector.h, located in the $TAO_ROOT/tao directory. Other
protocol implementations, such as UIOP and SHMIOP, are located in the
$TAO_ROOT/tao/Strategies directory. SSLIOP implementations are
located in the $TAO_ROOT/orbsvcs/orbsvcs/SSLIOP directory.

Table 14-3 Pluggable-Protocol Classes and Files

Component Base Class Base-Class Header File

Acceptor TAO_Acceptor $TAO_ROOT/tao/Transport_Acceptor.h

Connector TAO_Connector $TAO_ROOT/tao/Transport_Connector.h

Connection
Handler TAO_Connection_Handler $TAO_ROOT/tao/Connection_Handler.h

Endpoint TAO_Endpoint $TAO_ROOT/tao/Endpoint.h

Profile TAO_Profile $TAO_ROOT/tao/Profile.h

Protocol
Factory TAO_Protocol_Factory $TAO_ROOT/tao/Protocol_Factory.h

Transport TAO_Transport $TAO_ROOT/tao/Transport.h

354 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

The rest of this section is devoted to describing the interfaces that must be
implemented by any pluggable protocol. As is typical with any complex
programming exercise, simply fulfilling the interface is not sufficient for
providing a robust implementation.

There are seven fundamental classes included in a TAO pluggable protocol.
These classes are described in general below and in detail in the following
sections:

• The Acceptor provides the passive endpoint in servers that opens new
connections as requested by clients. Within the context of the
pluggable-protocol framework, there are several distinct acceptor classes:

- The abstract base-class TAO_Acceptor serves as the interface
supplied by the framework. In the following discussion it is referred
to as the “the TAO acceptor.”

- A protocol-specific acceptor class that you provide to implement this
interface. It is referred to as the “pluggable acceptor,” or simply,
“your acceptor.” The name “TAO_*_Acceptor” is used to refer to
any protocol-specific acceptor type, of which there are several.

- The class that is actually responsible for accepting new connections.
This class is commonly the ACE_Strategy_Acceptor template
class. It is referred to as the “base acceptor.”

- In many protocols, there is another acceptor class, which is one of
the template parameters to the ACE_Strategy_Acceptor class,
and is referred to as the “peer acceptor.” This acceptor provides an
extra level of indirection that leverages the existing ACE framework
classes that assist in implementing the protocol-specific behavior.
Examples of these classes include ACE_SOCK_Acceptor (for IIOP)
and ACE_MEM_Acceptor (for SHMIOP). Later sections show how
to leverage the existing ACE framework classes to support your
protocol.

• The Connector provides an active endpoint for creating connections.
Within the context of the pluggable-protocol framework, there are several
distinct connector classes:

- The abstract base-class TAO_Connector, which serves as the
interface supplied by the framework. In the following discussion it is
referred to as “the TAO connector.”

o c i w e b . c o m 355

1 4 . 1 8 D e v e l o p i n g P l u g g a b l e P r o t o c o l s

- A protocol-specific connector class that you provide to implement
this interface as dictated by the TAO-connector base class. It is
referred to either as the “pluggable connector” or “your connector.”
The name “TAO_*_Connector” is used to refer to any
protocol-specific connector type, of which there are several.

- The class that is responsible for establishing new connections. This
class is commonly the ACE_Strategy_Connector template class,
and is referred to as “the base connector.”

- In many protocols, there is another acceptor class, which is one of
the template parameters to the ACE_Strategy_Connector class,
and is referred to as the “peer connector.” This connector provides
an extra level of indirection that leverages the existing ACE
framework classes that assist in implementing the protocol-specific
behavior. Examples of these classes include ACE_SOCK_Connector
(for IIOP) and ACE_MEM_Connector (for SHMIOP). Later sections
show how to leverage the existing ACE framework classes to
support your protocol.

• The Connection Handler manages the interface between TAO and the
actual communication protocol as managed by the transport abstraction.
Your protocol implementation must include a subclass of the base-class
TAO_Connection_Handler. There is only one connection-handler class
that is used by both clients and servers.

• The Endpoint represents a single point of contact for the server, and is
the smallest unit of addressing information necessary for a client to
connect to a server. Your protocol implementation must include a subclass
of the TAO_Endpoint base class and must contain the addressing
information specific to your custom protocol.

• The Profile is used to communicate protocol information between the
various objects within an application. This information is encoded within
an IOR that is used to communicate endpoint information from servers to
clients. Your protocol implementation must include a subclass of the
TAO_Profile base class. It must also contain the necessary
protocol-specific information to be encoded into an IOR, exported to
clients, decoded by clients, and used to contact the server via the custom
protocol.

356 o c i w e b . c o m

U s i n g P l u g g a b l e P r o t o c o l s

• The Protocol Factory is responsible for constructing acceptors and
connectors. Your protocol implementation must include a subclass of the
TAO_Protocol_Factory base class.

• The Transport works in conjunction with the connection handler to
provide an interface to the higher-level messaging layer of TAO, and a
level of indirection down to the send and receive mechanics of the
concrete protocol.

To learn more about these objects and their interfaces, refer to the header file
comments from the framework’s base classes. Refer to the concrete protocol
implementations of each them for sample implementations.

o c i w e b . c o m 357

CHAPTER 15

Multithreading with TAO

15.1 Introduction

TAO is used in many application domains, across a wide variety of platforms
and operating systems, and often subject to wide-ranging performance
requirements. Often, overall throughput of an application can be improved by
using multithreaded programming techniques. For example, multithreading
can be useful in the following situations:

• The application is characterized by long-running operations that are
largely independent of one another.

• The application must support a large number of clients whose requests
must be executed concurrently.

• Data and resource sharing among operations is minimal and easily
identifiable.

• Operations can be executed in parallel.

• Servant implementations are thread-safe (reentrant) (i.e., can be safely
executed concurrently by different threads) and appropriate

358 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

synchronization mechanisms (e.g., mutex locks) are used to protect
critical regions of code from concurrent execution.

• Legacy and third-party code and libraries used by servant
implementations are also thread-safe; or if they are not they are protected
from concurrent execution.

Note This chapter assumes the reader is somewhat familiar with the fundamental
concepts of multithreaded programming. For more information, see Chapter 5
of C++ Network Programming: Volume 1 (C++NPv1) and Chapter 2 of
Threads Primer.

15.1.1 Road Map
This chapter describes several aspects of multithreading for TAO applications,
including application programming interfaces (both CORBA-compliant and
TAO-specific), policies, configuration options, and design choices. While the
chapter is intended to be read in its entirety, you may find benefit in reading
certain sections independently.

• Section 15.2, “Overview of Client/Server Roles in CORBA,”defines the
client and server roles in CORBA and reviews the stages of request
invocation by clients and request processing by servers.

• Section 15.3, “Multithreading in the Server,” describes configuration and
behavior for a thread in the server role.

- Section 15.3.1, “Event Handling,” and Section 15.3.3, “Shutdown
and Destruction,” describe ORB operations for providing one or
more threads to the ORB, shutting down the ORB, and destroying
the ORB. TAO’s ORB supports the thread-related operations
defined by the CORBA specification and provides certain
TAO-specific extensions.

- Section 15.3.4, “Request Processing,” describes how TAO chooses a
thread for dispatching a request and describes the POA threading
models and associated policy settings that affect concurrent
processing of requests. It also describes the various server
concurrency models provided by TAO and the options and
mechanisms to configure them, including the motivating factors for
each concurrency model and the consequences of using each one.

o c i w e b . c o m 359

1 5 . 2 O v e r v i e w o f C l i e n t / S e r v e r R o l e s i n C O R B A

This section includes examples of applications using the various
concurrency models.

• Section 15.4, “Multithreading in the Client,” describes configuration and
behavior for a thread in the client role. We provide guidelines for
configuring TAO clients to achieve intended behavior while avoiding
common pitfalls that can arise from incorrectly applying TAO’s
concurrency-related configuration options.

- Section 15.4.1, “Establishing a Connection to the Server,” describes
TAO’s connection strategies, by which a TAO client will wait for a
connection to a server to be established.

- Section 15.4.2, “Multiplexing Requests on a Connection,” describes
how a single connection can be used for multiple simultaneous
requests.

- Section 15.4.3, “Flushing Requests to the Server,” describes TAO’s
flushing strategies, by which a TAO client thread will write request
messages to the transport layer.

- Section 15.4.4, “Waiting for a Reply from the Server,” describes
TAO’s wait strategies, the client-side concurrency strategies
affecting both how a client waits for a reply to come from a server
and what types of activities it might do in the meantime.

- Section 15.4.5, “Optimizing Performance of Collocated Objects,”
describes TAO’s collocation optimizations, through which a client
can configure trade-offs between performance and behavior for
collocated objects.

15.2 Overview of Client/Server Roles in CORBA

Usually, a discussion of multithreading with respect to CORBA applications
is oriented toward server-side behavior. Indeed, CORBA servers typically
benefit most from the use of multithreading techniques. However, some
multithreading issues are relevant to client behavior as well.

In practice, few CORBA applications are either pure clients (making only
outbound requests and receiving replies) or pure servers (only processing
inbound requests and returning replies). Hybrid applications that play the role
of both server and client, depending upon the semantics of a particular task or

360 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

object interaction, are typical. Therefore, in many places in this chapter, to
clarify the discussion of TAO’s strategies associated with client/server
behavior, the following definitions apply:

• A client thread is a thread playing the role of a client; i.e., invoking a
request, waiting for a reply.

• A server thread is a thread playing the role of a server; i.e., available to
the ORB to handle connections from clients, process inbound requests,
send replies, etc.

Note that a given thread can switch between these two roles. For example,
while processing an inbound request, a server thread may invoke an outbound
request on another CORBA object, thereby switching to the client role. It may
remain in the client role until the reply to that outbound request is received. It
then switches back to the server role to prepare and send the reply to the
original inbound request.

Likewise, under certain conditions a client thread may temporarily switch to
the server role. For example, while waiting for a reply to an outbound request,
a thread may be made available to the ORB for processing incoming client
connections and requests, then return to the client role to handle its reply when
it arrives.

It is important to note that by invoking a request on another CORBA object,
the application controls when a thread switches from the server role to the
client role. However, the configuration of the ORB at run time influences
whether a thread’s role can change in the opposite direction, from the client
role to the server role. It may only happen under certain conditions, such as
when a single-threaded hybrid application must respond to client connections
and requests even while it is waiting for a reply to an outbound request.

15.2.1 The Client’s Role: Overview of Request Invocation
Invoking a synchronous CORBA request can be viewed as a four-step
process:

1. A client thread invokes an operation defined in the target object’s IDL
interface.

The client invokes the operation on a client-side proxy or stub. The proxy
prepares a CORBA request message to send to the target object. For our
purposes, we assume the target object is located in a different address
space (and possibly on a different host) than the client.

o c i w e b . c o m 361

1 5 . 2 O v e r v i e w o f C l i e n t / S e r v e r R o l e s i n C O R B A

2. The client-side ORB sends the request message to the target object.

The client requires a connection to transmit the request message. The
client-side ORB may already have established a connection to the server.
If not, a connection must be established to transmit the client’s request.

3. The client waits for the reply.

How the client thread waits for the reply depends upon the wait strategy
configured at run-time. In some cases, the thread may be made available
for handling inbound CORBA requests or other events until its reply is
received. If so, the thread may temporarily switch to the server role.

4. The client receives and processes the reply.

The client-side ORB receives the reply message sent from the server and
returns it to the proxy. The proxy demarshals the reply and returns to the
client application code that initially invoked the operation. The client
thread then continues.

The steps above assume the invocation was a synchronous (two-way) request
on a remote CORBA object. Different steps may be followed in the case of
either a oneway request, an Asynchronous Method Invocation (AMI), or an
invocation on a collocated object. Policies that affect invocation behavior for
oneway requests, as well as the technique of AMI, are described in Chapter 6.
Strategies for controlling thread behavior for invocations on collocated objects
are discussed later in this chapter in 15.4.5.

15.2.2 The Server’s Role: Overview of Request Processing
Processing a CORBA request can be generalized as a five-step process:

1. The ORB binds the request to a thread.

A request message sent to a server remains queued in the transport’s input
buffer until a thread is available to process it. How the ORB selects a
thread to process the request depends upon several factors, such as how
the application developer has chosen to make threads available to the
ORB and strategies configured at run-time that affect threading behavior.
Often, the same thread is used throughout the processing of the request.

2. The ORB dispatches the request to a POA.

After selecting a thread to process the request, the ORB identifies the
target POA and invokes the POA to process the request.

3. The POA dispatches the request to an application object (servant).

362 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

To dispatch a request to a servant, a POA applies a threading model to
enforce constraints on concurrent processing and a request processing
policy to identify and invoke the target object, or servant. In addition,
some POAs may employ customized servant dispatching strategies. The
application developer chooses the threading model and request processing
policy used by the POA.

4. The servant executes and returns.

The server thread executes application code to satisfy the request.
Depending upon the application, this code may switch to the client role
and invoke outbound requests on other CORBA objects. If so, it then must
wait for its reply, in which case it may switch back (temporarily) to the
server role, as described in 15.2.1. Eventually, the request that was
invoked on this servant is satisfied and the application code returns.

5. The server-side ORB creates a reply message and sends it to the client.

In the case of a synchronous (two-way) request, the return from the
servant causes a reply message to be generated and sent back to the client.

The CORBA specification (OMG Document formal/08-01-04) defines
operations to enable CORBA servers to process requests. For example, a
server thread calls CORBA::ORB::run() to run the ORB’s event loop, thus
making that thread available to the ORB for dispatching requests. In addition,
the specification defines POA policies that applications can use to enforce
constraints on concurrent request processing and control how the POA
chooses the target object for each request.

Often, the operations and policies defined in the CORBA specification are
insufficient for application developers to effectively control and manage the
request processing behavior of their CORBA applications. For example:

• A server may need to provide multiple threads to efficiently process
incoming requests, perhaps from multiple clients, in a timely manner.

• A single-threaded server that also acts in a client role may need to be able
to respond to incoming requests while it is waiting for a reply to an
outbound request to avoid a possible deadlock situation.

• A middle-tier server in a three-tier architecture may be used to break up
large blocks of incoming data into smaller blocks that can be processed
independently. This middle-tier may delegate processing of these smaller
blocks of data to back-end servers, gather together the individual results

o c i w e b . c o m 363

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

from the back-end servers, then formulate and return a single reply to the
originating client.

• A server may need to de-couple threads allocated to receiving client
requests from threads used to process and reply to such requests.

In fact, the CORBA specification gives ORB implementers a great deal of
latitude in how they deal with threading and concurrency issues. Therefore,
TAO provides several strategies that applications can use to control
concurrency and request processing by servers. Some of these strategies can
be completely configured at run time; others require use of specific APIs in
code. We discuss several such strategies later in this chapter.

TAO’s Custom Servant Dispatching (CSD) framework, gives application
developers the ability to insert custom code that performs the actual servant
dispatching of step 3 above, in an application-specific way. One common use
of this is to select a particular thread to process a request. See 15.3.9 for more
details about CSD.

In addition, TAO provides a technique called Asynchronous Method Handling
(AMH) that allows an application to delegate processing of a synchronous
request and transmission of a reply to a thread other than the one from which
the servant’s method was invoked. For more information on Asynchronous
Method Handling, please see Chapter 7.

15.3 Multithreading in the Server

The server’s role in a distributed application is a passive one, as the server
waits for requests from clients. The server-side ORB has several operations to
control the server’s handling of requests from clients. The ORB’s
thread-related operations are used to do the following:

• Provide one or more threads to an ORB to handle events.

• Shut down an ORB.

• Destroy an ORB.

The relevant portions of the ORB’s interface definition are:

// IDL
module CORBA
{

364 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

 // Portions of the CORBA module omitted.

 interface ORB
 {
 // Portions of the ORB interface omitted.

 void run();
 void shutdown(in boolean wait_for_completion);
 void destroy();
 boolean work_pending();
 void perform_work();
 };
};

The relevant operations can be summarized as follows:

• CORBA::ORB::run() provides a thread to the ORB to handle events. In
appropriate circumstances, this operation can be called from multiple
threads to provide more than one thread to the ORB.

• CORBA::ORB::perform_work() provides a thread to the ORB for a
single unit of work. The definition for a unit of work is left to ORB
implementers; often it is a single invocation. The perform_work()
operation is best used in conjunction with
CORBA::ORB::work_pending() to implement a polling loop that
interleaves ORB processing with other activities.

• CORBA::ORB::shutdown() instructs an ORB to halt processing. This
operation is typically invoked just prior to the ORB’s destruction.

• CORBA::ORB::destroy() destroys an ORB and releases its resources
so they can be reclaimed by the application.

The remainder of the section elaborates on each operation.

15.3.1 Event Handling
There are two CORBA-compliant operations for handling requests from
clients. The CORBA::ORB::run() operation provides a self-contained
CORBA event loop. The CORBA::ORB::perform_work() operation is
designed to act as part of a larger event loop that interleaves non-CORBA
behavior with a CORBA event loop. Both of these operations are
CORBA-compliant, but provide TAO-specific extensions.

In addition, a TAO server can interleave non-CORBA behavior with CORBA
events by registering an event handler with TAO’s Reactor. Accessing TAO’s

o c i w e b . c o m 365

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

Reactor is discussed in more depth in 15.3.2. Further information on the
Reactor is available in Chapter 3 of C++ Network Programming: Volume 2
(C++NPv2) by Douglas C. Schmidt and Stephen D. Huston.

15.3.1.1 CORBA::ORB::run()
CORBA::ORB::run() provides a thread to the ORB to handle events. In
appropriate circumstances, this operation can be called from multiple threads
to provide more than one thread to the ORB. This is a blocking operation from
the thread’s perspective; each thread that calls run() becomes dedicated to
the ORB. The run() operation does not return until the ORB has shut down.
More information on providing multiple threads to the ORB is available in the
discussion of the thread-pool concurrency model in 15.3.6.

TAO Extensions
TAO provides overloaded versions of CORBA::ORB::run() that accept an
ACE_Time_Value indicating the maximum amount of time the ORB should
run its event loop before returning. The declarations of these functions, in
C++, are as follows (found in $TAO_ROOT/tao/ORB.h):

// C++
namespace CORBA
{
 class ORB
 {
 // Portions of the ORB class definition omitted.

 public:
 void run (ACE_Time_Value &tv);
 void run (ACE_Time_Value *tv);

 };
};

ACE_Time_Value, defined in $ACE_ROOT/ace/Time_Value.h, expresses
time in seconds and microseconds. For more information on
ACE_Time_Value, please see Chapter 3 of C++ Network Programming:
Volume 2 (C++NPv2) by Douglas C. Schmidt and Stephen D. Huston.

If a time value is passed to the ORB’s run() method, it will block until the
ORB has shut down or until it has completed processing events that are
initiated within the specified time-out period. If run() returns before the
time-out period has expired (e.g., due to ORB shut down, the process receives

366 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

a signal, etc.), the value of the ACE_Time_Value parameter will have been
reduced by the amount of time spent in the call. In the second form of the
function above, a pointer value of 0 specifies an infinite time-out period.

Note Using these overloaded versions of CORBA::ORB::run() reduces the
portability of your application code to other ORB implementations.

Note You should not use these overloaded versions of CORBA::ORB::run() in
more than one thread unless each thread passes its own ACE_Time_Value
instance. If multiple threads call run() with the same time value instance,
they may concurrently modify the time value instance, leading to unexpected
behavior.

15.3.1.2 CORBA::ORB::perform_work()
CORBA::ORB::perform_work() provides a thread to the ORB for a single
unit of work. This is a non-blocking operation from the calling thread’s
perspective; the thread can perform tasks unrelated to the ORB between calls
to perform_work(). The definition for a unit of work is left to ORB
implementers; often it is a single invocation.

The perform_work() operation is best used in conjunction with
CORBA::ORB::work_pending() to implement a polling loop that
interleaves ORB processing with other activities, such as servicing another
external interface. However, this can lead to jittery performance compared
with calling CORBA::ORB::run() in its own thread. The boolean return
value from work_pending() indicates whether or not an ORB has an
immediate need for a thread to perform ORB-related activities.

TAO Extensions
TAO provides overloaded versions of CORBA::ORB::perform_work() that
accept an ACE_Time_Value indicating the maximum amount of time the
ORB should stay in perform_work() before returning. The declarations of
these functions, in C++, are as follows (found in $TAO_ROOT/tao/ORB.h):

namespace CORBA
{
 class ORB
 {

o c i w e b . c o m 367

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

 // Portions of the ORB class definition omitted.

 public:
 void perform_work (ACE_Time_Value &tv);
 void perform_work (ACE_Time_Value *tv);

 };
};

Note In TAO, when CORBA::ORB::perform_work() is called without a time
value, the ORB may handle multiple events before returning. These events
may include input events (such as inbound requests or replies), output events
(such as outbound requests or replies), timers, or signals. There is no
guarantee that perform_work() will return after dispatching just one event.

Note The CORBA specification states that only the main thread should use
work_pending() and perform_work(). There is no such restriction in
TAO.

Guidelines for Application Developers
For an application to behave in the server role, at least one thread must be
made available to the ORB by calling CORBA::ORB::run() or by
periodically calling CORBA::ORB::perform_work(). A thread from which
run() is called becomes dedicated to the ORB. A thread that calls
perform_work() can be used to perform other tasks in addition to
ORB-related tasks.

Typical CORBA server architectures include:

• A single-threaded server that has all of its activities initiated via CORBA
invocations typically calls run() from the main thread after the
application is initialized.

• A multithreaded server that has all of its activities initiated via CORBA
invocations typically calls run() from each thread.

• A single-threaded server that has processing tasks unrelated to CORBA
invocations has three options:

368 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

1. Implement a polling loop, using work_pending() and
perform_work(), to interleave CORBA invocations with other
processing tasks. A typical polling loop is similar to the following:

for(;;)
{
 if(orb->work_pending())
 {
 orb->perform_work();
 }
 // do other tasks
}

In most cases, perform_work() should be called only when
work_pending() returns true to prevent the application from
blocking in the absence of CORBA invocations. However, TAO
allows time-bounded calls to perform_work() and thus removes
the need to call work_pending(). This use of perform_work() is
shown in the following code fragment:

for(;;)
{
 // wait for incoming requests for a maximum of 100 milliseconds
 ACE_Time_Value tv(0, 100000); // 100 msec == 100000 usec
 orb->perform_work(tv);
 // do other tasks
}

This call to perform_work() blocks until either a unit of work is
processed or at least one second passes, whichever comes first. The
time spent in perform_work() is not deterministic, as is discussed
below.

2. Implement a time-bounded CORBA::ORB::run() loop, using
TAO’s ACE_Time_Value-based extensions. For example:

for(;;)
{
 // wait for incoming requests for 100 milliseconds
 ACE_Time_Value tv(0, 100000); // 100 msec == 100000 usec
 orb->run(tv);
 // do other tasks
}

o c i w e b . c o m 369

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

This call to run() blocks until at least one second passes. The time
spent in run() is not deterministic.

3. Register an event handler with TAO’s reactor and handle both ORB
and non-CORBA events with orb->run(), thus interleaving ORB
events with events from other sources. This is discussed in more
detail below.

• A multithreaded server that has tasks unrelated to CORBA invocations
has two options:

1. Dedicate each thread to either performing ORB-related activities
using orb->run(), or to other activities using the appropriate
mechanism.

2. Dedicate a group of threads to the ORB using orb->run() and use
a polling loop to interleave ORB-related and other activities on
another thread or group of threads.

3. Register an event handler with TAO’s reactor and handle both ORB
and non-CORBA events with multiple threads using orb->run(),
thus interleaving ORB events with events from other sources. This is
discussed in more detail below.

Whether or not to use multiple threads for activities unrelated to the ORB
depends upon the nature of those activities and the applicable concurrency
constraints. When a polling loop is used in multithreaded applications, it
is often executed on the main thread after other threads that are dedicated
to the ORB have been spawned.

The run time of perform_work() is not deterministic. Using
perform_work() to interleave CORBA invocations with other processing
activities can be tricky. Numerous factors, including long-running CORBA
requests, outbound CORBA requests that are issued during the processing of
an inbound CORBA request, timers, and signals influence the run time of
perform_work(). As described above, TAO extends perform_work() to
permit specification of a maximum run time, but typically this is not sufficient
to place an absolute limit on perform_work()’s run time. For example,
when a synchronous outbound request is issued during the processing of an
inbound request, the run time for the inbound request becomes a function of
the outbound request’s run time, which is beyond the scope of the local ORB.

370 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

15.3.2 Interleaving ORB Events with Events from Other
Sources
Often, an application that plays the role of a CORBA server must also be
responsive to events from other sources, such as a graphical user interface or a
socket-based messaging or data distribution infrastructure. These applications
may need to interleave ORB events (inbound client connections and requests,
outbound requests and replies) with these non-CORBA events. As discussed
above, there are several options for accomplishing this interleaving of events.
For example, the application could:

• Use non-blocking ORB event handling operations (work_pending()
and perform_work()) to implement a polling loop. See the discussion
above for more information.

• Dedicate separate threads for CORBA request processing and for
processing events from other sources. See the discussion above for more
information.

• Register its own custom event handlers with the ORB’s reactor and handle
both ORB and non-CORBA events with orb->run(). For example:

// get TAO’s reactor
ACE_Reactor* reactor = orb->orb_core()->reactor();

// ... create an event handler, register it with the Reactor ...

// handle CORBA and non-CORBA events
orb->run();

More information on creating an event handler and registering it with the
reactor is available in Chapter 3 of C++ Network Programming: Volume
2 (C++NPv2) and in Chapter 7 of The ACE Programmer’s Guide (APG).

• Use one of the special resource factory and reactor types provided by
TAO that are designed for integrating with other event sources. For
example, see 18.3 for information on integrating TAO with the Qt GUI
toolkit, 18.4 for information on integrating TAO with the X Window
System XtIntrinsics toolkit, and 18.7.6 for information on using the
WFMO reactor with TAO.

• Implement a custom reactor type that integrates CORBA events with
events from other sources.

o c i w e b . c o m 371

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

15.3.3 Shutdown and Destruction
The CORBA::ORB::shutdown() and CORBA::ORB::destroy() operations
halt the ORB’s processing and release the ORB’s resources, respectively.
Both of these operations are CORBA-compliant; neither has TAO-specific
extensions. This sections contains descriptions of both operations and
guidelines for successful execution of shutdown and destruction.

15.3.3.1 CORBA::ORB::shutdown()
CORBA::ORB::shutdown() instructs an ORB to halt processing. This
operation is typically invoked just prior to the ORB’s destruction. If the
wait_for_completion parameter is true, this operation blocks until the
ORB has concluded request processing and other object adapter related
activities, and all object adapters have been destroyed. If
wait_for_completion is false, then shutdown() may return before the
ORB completes the process of shutting down.

Note The ORB continues normal processing activities while it is shutting down, so
there may be a significant delay after shutdown() is called before the ORB
actually stops processing. For example, if shutdown() is called with
wait_for_completion equal to true, the ORB waits for all threads that
are processing ORB events to exit before returning.

Exceptions
The following exceptions may be raised by the ORB’s thread-related
operations or by circumstances arising from the use of those thread-related
operations:

• work_pending() or perform_work() called on an ORB after it has
been shut down raises CORBA::BAD_INV_ORDER.

• shutdown() with wait_for_completion equal to true called from a
thread processing a CORBA request raises CORBA::BAD_INV_ORDER
with an OMG minor code of 3 and a completion status of COMPLETED_NO.

• Any operation other than duplicate(), release(), or is_nil()
invoked on an ORB after it has shut down, or invoked on an object
reference obtained through an ORB that has since shut down, raises
CORBA::BAD_INV_ORDER with an OMG minor code of 4. Scenarios may
arise in which operations other than those cited here may be called while

372 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

an ORB is shutting down. Application developers should be prepared to
handle this exception when such scenarios may occur because the time
required to shut down an ORB is not predictable.

15.3.3.2 CORBA::ORB::destroy()
CORBA::ORB::destroy() destroys an ORB and releases its resources so
they can be reclaimed by the application. This operation initiates the shutdown
process when called on an ORB that has not been shut down. If destroy()
initiates the shutdown process, then it blocks until the ORB has shut down as
if shutdown() had been called with wait_for_completion equal to true.

Exceptions
The following exceptions may be raised by the ORB’s thread-related
operations or by circumstances arising from the use of those thread-related
operations:

• Any operation invoked on an ORB after its destruction raises
CORBA::OBJECT_NOT_EXIST.

• destroy() called from a thread processing an invocation raises
CORBA::BAD_INV_ORDER with an OMG minor code of 3.

Guidelines for Application Developers
Terminating a CORBA server gracefully is often a complicated matter
because the ORB continues normal processing while it shuts down. An
application dedicated to processing requests can be signaled to shut down via
a CORBA request. An application that performs activities unrelated to
CORBA requests can be signaled to shut down via a CORBA request as well
as any other interfaces that are serviced outside the scope of CORBA requests.

If signaled to shut down via a CORBA interface, shutdown() can be invoked
with wait_for_completion equal to false from the thread that processes
the request; invoking shutdown() with wait_for_completion equal to
true would raise an exception in this situation. If signaled to shut down
outside the scope of a CORBA request, the responding thread can invoke
shutdown() with wait_for_completion equal to true or false;
wait_for_completion equal to true in this case will block the calling
thread until the ORB has shut down.

o c i w e b . c o m 373

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

Once shutdown() has been called, all calls to run() will return once the
ORB has shut down. However, the time required to shut down an ORB
depends upon the volume of client activity when shutdown is requested. In
extreme cases, a complete cessation of client activity may be necessary to
allow the ORB to shut down.

Here are some options, both graceful and ungraceful, for shutting down a
CORBA-based application:

• The application can be killed with the appropriate platform-specific
mechanism. This is the simplest solution but it is not graceful and may
have undesirable side-effects.

• CORBA::ORB::shutdown() can be called with
wait_for_completion equal to false from a thread processing a
CORBA request that was invoked via some maintenance or administrative
interface. All calls to CORBA::ORB::run() return once the ORB has shut
down and thus release the threads dedicated to the ORB. Some
mechanism should be used to prevent the main thread from exiting before
the other threads exit.

The application may continue to run for a relatively long time. If this is
unacceptable, another mechanism should be used to forcibly terminate the
application.

• The application can block the main thread on a condition variable or
sempahore until the application is signaled to shut down. (In this case, the
main thread is not used for ORB-related activities.) Once unblocked, the
main thread calls CORBA::ORB::shutdown() to terminate ORB-related
processing. If shutdown() is called with wait_for_completion equal
to false, some other mechanism should be used to prevent the main
thread from exiting before all other threads have exited.

This option provides some additional flexibility. After the main thread
initiates shutdown, it might then block until all other threads have exited
or a specified time interval has elapsed. If the other threads exit before the
time interval elapses, the main thread conducts any other cleanup
activities and then exits. If the time period elapses, the main thread
performs some, perhaps not all, of the usual clean-up activity and then
exits causing a forced termination.

The next section contains more information on gracefully shutting down a
TAO server.

374 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

15.3.3.3 Gracefully Shutting Down a TAO Server
In practice, CORBA applications are often designed for 24/7 operation. If a
server is not running, the system is non-functional. Still, there are often
situations in which a server needs to be gracefully shut down (e.g., to replace a
running server with a newer version or to move a running server to a different
host). By a graceful shutdown, we mean something slightly more elegant than,
for example, sending the process a kill signal.

Gracefully shutting down a TAO server can be tricky. An application could do
one of the following:

• Use non-blocking ORB event handling operations (work_pending()
and perform_work()) to implement a polling loop as described in . An
application-specific flag could be used to indicate when the loop should
be terminated.

The following code fragment shows how this could be done:

bool done = false;
do
{
 // wait for incoming requests for a maximum of 100 milliseconds
 ACE_Time_Value tv(0, 100000); // 100 msec == 100000 usec
 orb->perform_work(tv);
 // do other tasks
 if (/* some exit condition exists */)
 done = true;
}
while (!done);

• Use CORBA::ORB::run() in one or more threads to process CORBA
requests, then invoke CORBA::ORB::shutdown() from a thread that is
not being used to process CORBA requests. For example, the application
could provide one thread that monitors console input for an
application-specific command such as “quit.” If the
wait_for_completion parameter to shutdown() is true, request
processing could continue for some time after the call the shutdown().

• Call CORBA::ORB::shutdown() within the context of processing a
request. For example, the application could implement an interface that
has a shutdown() operation, such as the following:

interface MyAppAdmin
{

o c i w e b . c o m 375

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

 oneway void shutdown ();
};

One possible implementation of the MyAppAdmin::shutdown()
operation could be as follows:

void MyAppAdmin_i::shutdown ()
{
 // shut down the ORB (stored in a CORBA::ORB_var variable orb_)
 orb_->shutdown (false);
}

Note that the application passes false for the wait_for_completion
parameter to CORBA::ORB::shutdown() as required when
shutdown() is called within the context of a request; otherwise, the ORB
raises the CORBA::BAD_INV_ORDER system exception with an OMG
minor code of 3.

• Register a timer (derived from ACE_Event_Handler) with the ORB’s
reactor (or a separate reactor) and call CORBA::ORB::shutdown() in the
timer’s handle_timeout() method.

The following code fragment shows how such a timer class could be
implemented:

class MyAppShutdownTimer : public ACE_Event_Handler
{
public:
 // Constructor
 MyAppShutdownTimer (CORBA::ORB_ptr orb)
 : orb_(CORBA::ORB::_duplicate(orb)) { }

 // Receive timeout events from the Reactor
 virtual int handle_timeout (const ACE_Time_Value ¤t_time,
 const void *act)
 {
 orb_->shutdown (false);
 return 0;
 }

private:
 CORBA::ORB_var orb_;
};

The following code fragment shows how to create and schedule a timer
with the ORB’s reactor:

376 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

 // Portions of int main(int, char *argv[]) omitted.

// Initialize the ORB.
CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

// Intervening code omitted.

// Create a shutdown timer.
MyAppShutdownTimer * timer = new MyAppShutdownTimer (orb.in());

// Schedule the timer to shutdown the ORB in 30 seconds.
ACE_Time_Value timeout (30,0);
orb->orb_core()->reactor()->schedule_timer(
 timer, 0, timeout);

// Run the ORB’s event loop.
orb->run();
orb->destroy();

• Register a signal handler (derived from ACE_Event_Handler) with
either the ORB’s reactor, a separate reactor, or directly via
ACE_Sig_Handler. It is probably not safe to call
CORBA::ORB::shutdown() in the signal handling context, so the signal
handler must somehow notify another thread to actually call
shutdown(). One way to do this is via the reactor’s notify() member
function.

Note Signal handlers cannot be registered with the thread-pool reactor.

• Use the overloaded version of CORBA::ORB::run() or
CORBA::ORB::perform_work() that processes events for a specified
time interval.

An example showing many of the above techniques for gracefully shutting
down a TAO server can be found in the
$TAO_ROOT/DevGuideExamples/Multithreading/GracefulShutdown
directory.

15.3.4 Request Processing
A CORBA request is processed in five stages:

o c i w e b . c o m 377

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

1. The ORB binds the request to a thread.

2. The ORB dispatches the request to a POA.

3. The POA dispatches the request to an application object (servant).

4. The servant completes the request and returns.

5. The ORB sends a reply to the client.

Strategies employed by a multithreaded ORB as it receives and dispatches
requests determine the extent to which requests may be processed
concurrently. Since the CORBA specification does little to address how an
ORB should select a thread for dispatching requests, different ORB
implementations employ different concurrency models for request
dispatching. TAO employs the following concurrency models for request
dispatching:

• single-threaded — all requests are processed on a single thread.

• thread-per-connection — a separate thread is spawned to process all
requests received via a distinct network connection. At least one thread
must be available to handle incoming client connections.

• fixed thread-pool — request processing is distributed amongst a group
(pool) of threads. The threads in the pool are supplied by the application.

• dynamic thread-pool — request processing is distributed amongst a pool
of threads. The threads in the pool are spawned by the ORB. The pool
may grow or shrink based on the server load.

Each concurrency model has its strengths and weaknesses, which motivates
understanding an application’s request processing characteristics to choose the
most appropriate strategy or combination of strategies.

The remainder of this section describes the POA’s threading models. See
Chapter 11 of Advanced CORBA Programming with C++ for more
information on the Portable Object Adapter. See 15.3.6 for a complete
discussion of TAO’s threading models.

15.3.5 The POA’s Threading Models
The POA threading models establish concurrency constraints that are imposed
during request processing in a multithreaded environment. These constraints
further qualify the extent to which CORBA requests may be processed
concurrently.

378 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

A POA’s threading model is determined by its ThreadPolicy value. The
CORBA specification defines three standard ThreadPolicy values:

• ORB_CTRL_MODEL—requests are dispatched to application objects from
the thread with which the ORB invoked the POA. Concurrent servant
upcalls may occur if the ORB’s strategies allow requests to be dispatched
concurrently. ORB_CTRL_MODEL is the default ThreadPolicy setting.

• SINGLE_THREAD_MODEL—the POA dispatches requests to application
objects sequentially. Concurrent servant upcalls cannot occur within the
scope of one SINGLE_THREAD_MODEL POA.

• MAIN_THREAD_MODEL—requests for all main-threaded POAs are
dispatched sequentially. Concurrent servant upcalls cannot occur within
the scope of all MAIN_THREAD_MODEL POAs.

Note TAO does not support the MAIN_THREAD_MODEL POA ThreadPolicy value.

15.3.5.1 ORB-Controlled Model
An ORB-controlled POA places no constraints on concurrent requests; the
POA effectively abdicates responsibility for threading and concurrent request
processing to the ORB. Figure 15-1 shows servants activated in POAs using
the ORB-controlled threading model.

Figure 15-1 ORB-Controlled Threading Model

o c i w e b . c o m 379

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

In the ORB-controlled threading model, concurrent servant upcalls may occur
at the POA level in multithreaded environments if the ORB dispatches
requests concurrently. Application objects activated in an ORB-controlled
POA in a multithreaded environment should be multithread safe. Ensuring
that those application objects are multithread safe is the responsibility of the
application developer.

15.3.5.2 Single Thread Model
A single-threaded POA constrains request processing such that concurrent
upcalls cannot occur at the POA level, even in multithreaded environments.
Figure 15-2 shows servants activated in POAs using the single-thread model.

A multithreaded ORB may dispatch concurrent requests to a single-threaded
POA, but the subsequent servant upcalls will occur sequentially; thus an
application object activated in one single-threaded POA will not be subject to
concurrent requests. However, an application object activated in multiple
single-threaded POAs may be subject to multiple concurrent requests in a
multithreaded environment, as shown in Figure 15-3. Therefore, activating an
application object in multiple POAs is not recommended.

Figure 15-2 Single-Thread Threading Model

380 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

15.3.5.3 Main Thread Model
In this model, requests are dispatched to all main-thread POAs sequentially.
This model effectively serializes requests dispatched by main-thread POAs at
the ORB level. Figure 15-4 shows servants activated in POAs using the
main-thread model.

Figure 15-3 Servant Activated in Multiple Single-threaded POAs

Figure 15-4 Main-Thread Model

o c i w e b . c o m 381

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

An application object activated by a main-thread POA will not be subject to
concurrent requests. The main-thread model is also applicable in processing
environments where some code must execute on the main thread. In such
environments, the main-thread model insures that servant upcalls are
processed on that thread. However, the application must make the main thread
available to the ORB by calling either CORBA::ORB::run() or
CORBA::ORB::perform_work().

Note TAO does not support the MAIN_THREAD_MODEL POA ThreadPolicy value.

15.3.5.4 Configuring a POA’s Threading Model
A POA’s thread policy, like all other POA policies, can be assigned only when
the POA is created. In most cases, the default ThreadPolicy of
ORB_CTRL_MODEL is desired, so no intervention is required on the part of the
developer. If a single-threaded environment is desired, simply give the ORB
exactly one thread.

However, if you’d like to create a POA using the SINGLE_THREAD_MODEL,
the remainder of this section demonstrates how to do that.

The relevant portions of the PortableServer module and the POA’s
interface are:

module PortableServer {

 // Portions of the PortableServer module omitted.

 const CORBA::PolicyType THREAD_POLICY_ID = 16;

 enum ThreadPolicyValue {
 ORB_CTRL_MODEL,
 SINGLE_THREAD_MODEL,
 MAIN_THREAD_MODEL
 };

 local interface ThreadPolicy : CORBA::Policy {
 readonly attribute ThreadPolicyValue value;
 };

 local interface POA {

 // Portions of interface POA omitted.

382 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

 POA create_POA(
 in string adapter_name;
 in POAManager a_POAManager,
 in CORBA::PolicyList policies
) raises (AdapterAlreadyExists, InvalidPolicy);

 ThreadPolicy create_thread_policy(
 in ThreadPolicyValue value);

 };
};

The following code fragment demonstrates how to create a single-threaded
POA:

 // Portions of int main(int, char *argv[]) omitted.

 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

 // Get a reference to the RootPOA.
 CORBA::Object_var obj = orb->resolve_initial_references ("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow (obj.in());

 // Create and populate a policy list.
 CORBA::PolicyList policies(1);
 policies[0] = poa->create_thread_policy(PortableServer::SINGLE_THREAD_MODEL);

 // Use the RootPOA’s POAManager.
 PortableServer::POAManager_var mgr = poa->the_POAManager ();

 // Create a child POA.
 // Threading model is single-threaded.
 // All other policies assume their default values.
 PortableServer::POA_var st_poa = poa->create_POA("ST POA", mgr.in(), policies);

 // Release memory allocated to the policy list.
 policies[0]->destroy();

Guidelines for Application Developers
The ORB-controlled threading model (ORB_CTRL_MODEL) is the default, and
usually the desired, threading model. It allows application developers to make
the most of an ORB’s concurrent processing capabilities and performance
optimization strategies. An application using this threading model can also
take advantage of fine-grained contention management techniques to resolve
application objects’ contention for shared resources and services. However,

o c i w e b . c o m 383

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

this model obligates application developers to assume concurrent requests will
occur, and to identify and resolve points of contention that may arise during
concurrent CORBA requests.

The following scenarios might motivate use of the ORB-controlled threading
model for a CORBA-based application that is subject to concurrent requests:

• The application’s mission is to provide access to and resolve contention
for a shared resource or service, i.e. the application is effectively a
contention manager so using an ORB-controlled threading model does not
add additional complexity.

• The application serializes and dispatches events, perhaps received from
disparate sources, to discrete event processors (application objects) so
multiple events can be processed concurrently. As with the previous
scenario, applications such as this are obligated to resolve contention.

• The application is a CORBA interface to an existing system that permits
concurrent invocations.

• Acceptable performance can only be achieved with concurrent processing
and fine-grained contention management.

• The application is stateless, i.e. the context carried with each CORBA
request is sufficient to process the request.

The single-threaded model (SINGLE_THREAD_MODEL) can simplify an
application’s design and implementation by guaranteeing that an application
object will not be subject to concurrent invocations from a single POA.
Applied within its constraints, this model shifts some responsibility for
contention management away from the application.

However, this mechanism can only resolve contention for distinct servants
arising from concurrent requests; it cannot resolve contention for services and
resources shared by application objects. Resolving contention for
commonly-used services and resources remains the application’s
responsibility.

The single-threaded model is appropriate when:

• The likelihood of concurrent requests is acceptably low.

• The increased latency caused by the serialization of requests is acceptable.

384 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

• The potential performance improvement resulting from concurrent request
processing does not justify the added complexity associated with
fine-grained contention management.

• An application depends upon software libraries or legacy code that
effectively prohibits concurrent processing.

The main-thread model (MAIN_THREAD_MODEL) is applicable in two
circumstances:

• An application’s environment mandates that certain portions of code
execute only on the main thread. However, the application is obligated to
make the main thread available to the ORB by calling run() or
perform_work() on the ORB from the main thread.

• An application requires protection from concurrent requests more rigorous
than that provided by the single-thread model.

This model imposes the most stringent constraints upon an application and
likely reduces a multithreaded ORB’s efficiency. Application developers may
want to compare performance of this threading model with that of a
single-threaded ORB before committing to this model.

Note TAO does not support the MAIN_THREAD_MODEL POA ThreadPolicy value.

The following section describes usage of the default ORB_CTRL_MODEL thread
policy with TAO’s threading models.

15.3.6 TAO’s ORB Threading Models
The ORB-controlled threading model (ORB_CTRL_MODEL) allows application
developers to make the most of an ORB’s concurrent processing capabilities
and performance optimization strategies by enabling the application developer
to take advantage of TAO’s server-side concurrency models. TAO’s
concurrency models are relevant only to a POA configured with the default
ORB_CTRL_MODEL thread policy.

In this section, we discuss TAO’s various concurrency models. Concurrency
in TAO is controlled by various factors, including how the ORB is configured
at run time, how many threads are in the process, and the specific behavior of
each thread.

o c i w e b . c o m 385

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

TAO provides three concurrency models affecting how a server thread
receives and processes requests:

• reactive

• thread-per-connection

• thread-pool

Note In addition to these, TAO’s support of Real-Time CORBA provides the ability
to associate a thread pool with a POA; see 8.3.7 for more information on
using RT CORBA’s thread-pool policy.

The remainder of this section discusses each of these concurrency models in
detail. For each concurrency model, we present the motivation for its use,
configuration options to enable it, and consequences of its use. We have
provided a working example for each concurrency model.

15.3.6.1 Reactive Concurrency Model
By default, TAO servers process incoming client connections and requests
reactively. Typically, a single thread (often the main thread) is dedicated to
processing client requests by calling CORBA::ORB::run(). Other threads
may also exist in the process, but are dedicated to performing other tasks.

In the reactive concurrency model, the ORB uses an ACE Reactor to receive
and dispatch client requests. The default reactor type used in TAO is the
thread-pool reactor, but the ORB can be configured at run time to use a
different reactor type (see 15.3.11 and 18.7.6). Assuming that the ORB’s
run() operation is called from only one thread, that single thread will be used
for receiving and dispatching all requests.

Note If a client thread makes an outbound request, that thread may be used to
process inbound requests while waiting for its reply. When this occurs, the
thread is said to be in a “nested upcall.” See 15.4.4 and 20.2.3 for more
details.

Note More information on the ACE Reactor Framework and ACE Reactor
implementations can be found in Chapters 3 and 4 of C++ Network

386 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

Programming: Volume 2 (C++NPv2) and Chapter 7 of The ACE
Programmer’s Guide (APG).

Figure 15-5 illustrates a server using the reactive concurrency model with a
single thread. All incoming requests are received and processed on the same
thread. Subsequent requests, either from the same client or a different client,
are blocked waiting for the thread to complete processing the previous
request.

Motivation
The reactive concurrency model is useful in the following situations:

• The application is a single-threaded server in which request processing
times remain relatively fixed.

• Since this model is simple to configure and program, it is often used
during initial development and testing of interface implementations.

Configuration
The reactive concurrency model is selected by default in TAO; no specific
action is necessary to configure it. However, it can be specified explicitly by
supplying the following configuration option to the default server strategy
factory:

static Server_Strategy_Factory "-ORBConcurrency reactive"

Figure 15-5 Reactive concurrency model with single thread

o c i w e b . c o m 387

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

See 19.3.5 for more information on using this option.

Consequences
The consequences of using the single-threaded reactive concurrency model
are as follows:

• Requests are processed in the order received.

• Subsequent requests may be blocked until the thread completes
processing the previous request. This can lead to unbounded latencies.

• Since requests are not processed concurrently, developers may be able to
simplify synchronization control in their implementation code. However,
synchronization issues should not be completely ignored in case
multithreading is used elsewhere in the application or added later.

• Certain locks in the ORB and reactor may be disabled to improve
throughput.

• Scalability is limited; as the number of simultaneous client requests
increases, so does the per-request latency.

Example
The following example shows a typical single-threaded server using the
reactive concurrency model. Configuration of the reactive concurrency model
has been specified explicitly even though it is the default model. In this
example, we have also configured the single-threaded reactor type
(-ORBReactorType select_st), the single-threaded wait strategy
(-ORBWaitStrategy st), and disabled some locks to attempt to maximize
overall throughput. See 15.3.11 for more information on the single-threaded
reactor. See 15.4.4.2 for more information on the single-threaded,
wait-on-reactor wait strategy.

The server source code for this example is the Messenger server from Chapter
3. We show only the file MessengerServer.cpp, which contains the code
for the server’s main() function. Only one thread exists in the server and that
thread is dedicated to processing client connections and requests by calling
CORBA::ORB::run(). The source code for this example is in the
$TAO_ROOT/DevGuideExamples/Multithreading/Reactive directory.

#include "Messenger_i.h"
#include <iostream>
#include <fstream>

388 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

int main(int argc, char* argv[])
{
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Get a reference to the RootPOA.
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj.in());

 // Activate the POAManager.
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();

 // Create a servant.
 PortableServer::Servant_var<Messenger_i> messenger_servant = new Messenger_i;

 // Register the servant with the RootPOA, obtain its object
 // reference, stringify it, and write it to a file.
 PortableServer::ObjectId_var oid =
 poa->activate_object(messenger_servant.in());
 CORBA::Object_var messenger_obj = poa->id_to_reference(oid.in());
 CORBA::String_var str = orb->object_to_string(messenger_obj.in());
 std::ofstream iorFile("Messenger.ior");
 iorFile << str << std::endl;
 iorFile.close();
 std::cout << "IOR written to file Messenger.ior" << std::endl;

 // Accept requests from clients.
 orb->run();
 orb->destroy();
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "CORBA exception: " << ex << std::endl;
 return 1;
 }

 return 0;
}

The service configurator file, shown below, contains directives to configure
the reactive concurrency model, use the single-threaded select reactor type,
disable certain locks, and use the single-threaded wait-on-reactor wait
strategy. These options are selected to improve overall throughput. Each
directive should appear on a single line.

server.conf file for single-threaded reactive server.

o c i w e b . c o m 389

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

static Server_Strategy_Factory "-ORBConcurrency reactive -ORBPOALock null"
dynamic Advanced_Resource_Factory Service_Object *
TAO_Strategies:_make_TAO_Advanced_Resource_Factory () "-ORBReactorType select_st
-ORBInputCDRAllocator null"
static Client_Strategy_Factory "-ORBProfileLock null -ORBWaitStrategy st"

In the above example, we use the dynamic directive to configure the
Advanced Resource Factory so it can be loaded and configured from the
TAO_Strategies library dynamically. Alternatively, we can statically link
the application with the TAO_Strategies library, insert the line:

#include <tao/Strategies/advanced_resource.h>

prior to main(), and use the static directive to configure the Advanced
Resource Factory:

static Advanced_Resource_Factory "-ORBReactorType select_st
-ORBInputCDRAllocator null"

See 18.5 for more information on using and configuring TAO’s Advanced
Resource Factory.

15.3.6.2 Thread-per-Connection Concurrency Model
The simplest multithreaded server configuration in TAO is the
thread-per-connection concurrency model. In this model, the ORB
automatically spawns a new thread for each new client connection. Each
spawned thread is dedicated to processing requests that arrive on a given
connection. The thread reads and processes those requests serially. When the
connection is closed, the thread associated with that connection exits and all
resources allocated by the ORB associated with that thread are released. At
least one thread (other than those that are dedicated to processing requests)
must remain available to the ORB to handle new connections; usually, this is
accomplished by calling CORBA::ORB::run() in the main thread.

390 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

Figure 15-6 shows a multithreaded server using the thread-per-connection
concurrency model.

Motivation
The thread-per-connection concurrency model is useful in the following
situations:

• Multiple client connections are active simultaneously.

• Request processing is computationally intense.

• Requests arriving over separate connections are largely decoupled from
one another.

Configuration
The thread-per-connection concurrency model is specified by supplying the
following configuration option to the default server strategy factory:

static Server_Strategy_Factory "-ORBConcurrency thread-per-connection"

See 19.3.5 for more information on using this option.

Consequences
The consequences of using the thread-per-connection concurrency model are
as follows:

• The total number of threads created and managed by the ORB is one plus
the number of simultaneous client connections.

Figure 15-6 Thread-per-connection concurrency model

o c i w e b . c o m 391

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

• Requests arriving on different connections are processed concurrently.

• Requests arriving on a given connection are processed serially, always by
the same thread.

• Requests from one client are not blocked by requests from another client.

• Subsequent requests from one client connection may be blocked until the
thread dedicated to that connection completes processing the previous
request.

• Since requests arriving on different connections may be processed
concurrently, developers may have to protect critical regions of code with
locks. However, depending upon the application, it may be possible to
reduce locking overhead. For example, if processing of requests on
different connections is completely decoupled, with no shared code or
shared state, locking may not be necessary.

• Threads that are spawned by the ORB for each new connection do not use
a reactor for receiving and dispatching inbound requests; they simply
block waiting to read. These threads may need to awaken periodically to
check whether the ORB has been shut down. The default server strategy
factory’s -ORBThreadPerConnectionTimeout option can be used to
configure the thread wake-up interval. See 19.3.10 for more information
on this option.

• All threads spawned by the ORB process requests at the same priority.
Applications that need to process different requests at different priorities
should use the features provided by the RT CORBA thread-pool model.
See 8.3.7 for more information.

• Scalability is limited; as the number of simultaneous incoming
connections increases, so does the number of threads in the server.

Note A single client may open multiple simultaneous connections to a server ORB,
depending upon the number of client threads that invoke requests and the
configuration of the ORB’s transport multiplexing strategy
(-ORBTransportMuxStrategy). Thus, using the thread-per-connection
concurrency model, it is possible for multiple server threads to be created for
processing requests from a single client. See 15.4.2 and 20.3.6 for more
information on the -ORBTransportMuxStrategy option.

392 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

Example
In this section, we describe an example of a typical multithreaded server using
the thread-per-connection concurrency model. No application code changes
are required for creating and managing threads; all thread management is
performed by the ORB. However, the application’s servant implementations
may need to provide locking around critical regions of code.

The server source code for the example is the Messenger server from Chapter
3. The main thread is dedicated to processing client connections by calling
CORBA::ORB::run(). The ORB automatically spawns a new thread for each
new connection. Since no changes are required to the server’s main()
function, we do not show the file MessengerServer.cpp.

The source code for this example is in the
$TAO_ROOT/DevGuideExamples/Multithreading/ThreadPerConnec
tion directory.

The server’s service configurator file, shown below, contains directives to
configure the ORB to use the thread-per-connection concurrency model. It
also shows how the thread-per-connection time-out interval (in milliseconds)
can be optionally configured at run time. In this example, we wake up the
server’s threads on a one-second interval so they can check if the ORB has
been shut down. Each directive should appear on a single line.

server.conf file for thread-per-connection server.
static Server_Strategy_Factory "-ORBConcurrency thread-per-connection
-ORBThreadPerConnectionTimeout 1000"

15.3.6.3 Thread-pool Concurrency Model
In the thread-pool concurrency model, a pool of threads is made available to
the ORB for handling incoming client connections and processing inbound
requests. The developer takes responsibility for creating the threads and
calling CORBA::ORB::run() or CORBA::ORB::perform_work() on the
same ORB instance from each thread. Connections are established and
requests are dispatched onto threads in the pool by the thread-pool reactor,
which is described in 15.3.11.3. The thread-pool reactor allows multiple
threads to handle events concurrently. If a thread is available to handle an
event, then the event is dispatched right away; otherwise, it is held until a
thread becomes ready.

o c i w e b . c o m 393

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

The thread-pool reactor implements the Leader/Followers architectural
pattern described in Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects (POSA2), by Douglas Schmidt, Michael
Stal, Hans Rohnert, and Frank Buschmann. The leader-followers model
allows multiple threads to share a single reactor. One thread becomes the
“leader” and runs the reactor’s event loop. The leader thread receives and
processes the next event, such as an incoming client connection or inbound
request. Other threads in the pool are “followers.” As soon as the leader thread
receives an event, one of the follower threads becomes the new leader. When a
thread finishes processing an event, it rejoins the leader-followers group and
waits to become the leader thread again.

Since TAO uses the thread-pool reactor by default, any TAO server can be
easily configured to use a thread pool by simply spawning a number of threads
and calling CORBA::ORB::run() on the same ORB instance in each thread.

Figure 15-7 shows a server using the thread-pool concurrency model. In this
server, four threads have been spawned by the application and made available
to the ORB for request processing.

Motivation
The thread-pool concurrency model is useful in the following situations:

• Multiple client connections can be active simultaneously.

• Multiple threads can be dedicated to processing requests.

Figure 15-7 Thread-pool concurrency model with four threads

394 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

• The number of active client connections can be large, thereby making the
thread-per-connection model undesirable due to the large number of
threads that would be spawned by the ORB.

• Multiple concurrent requests may be received on a single connection (e.g.,
from a multithreaded client that is multiplexing requests on a single
connection) and need to be processed concurrently.

• Request processing is computationally intense.

Configuration
Since TAO uses the thread-pool reactor and the reactive concurrency model
by default, no special configuration options are required.

Consequences
The consequences of using the thread-pool concurrency model are as follows:

• The total number of threads used for processing requests is bounded and
can be controlled by the server developer.

• The server developer must take responsibility for creating threads and
running the ORB’s event loop in each thread.

• Requests are processed concurrently, regardless of the connection on
which they arrive.

• Requests from one client will not be blocked by requests from another
client.

• Subsequent requests from one client connection will not necessarily be
blocked waiting for processing of a previous request on that connection to
complete.

• Since requests may be processed concurrently, developers may have to
protect critical regions of code with locks.

• Since there is no way to predict which thread in the pool will be used to
process a given request, all threads in the pool should be run at the same
priority. Applications that need to process different requests at different
priorities should use the features provided by the RT CORBA thread-pool
model. See 8.3.7 for more information.

• Scalability is improved, especially for servers with large numbers of
clients, not all of which are sending requests simultaneously.

o c i w e b . c o m 395

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

Example
The following example shows a typical multithreaded server using the
thread-pool concurrency model. Since the application is responsible for
creating threads, application code changes are required to use the thread-pool
model. In addition, the application’s servant implementations may need to
provide locking around critical regions of code.

The server source code for this example is based on the Messenger server
from Chapter 3. The main thread creates multiple threads and dedicates each
to processing requests by calling CORBA::ORB::run(). The ORB dispatches
requests onto these threads using the ACE thread-pool reactor. The server’s
main() function is implemented in the file MessengerServer.cpp. The
source code for this example is in the
$TAO_ROOT/DevGuideExamples/Multithreading/ThreadPool
directory.

#include "Messenger_i.h"
#include <iostream>
#include <fstream>

// 1. Define a "task" class for implenting the thread-pool threads.
#include <ace/Task.h>

class ORB_Task : public ACE_Task_Base
{
public:
 ORB_Task (CORBA::ORB_ptr orb)
 : orb_(CORBA::ORB::_duplicate(orb)) { }
 virtual ~ORB_Task () { }
 virtual int svc ()
 {
 this->orb_->run();
 return 0;
 }
private:
 CORBA::ORB_var orb_;
};

// 2. Establish the number of threads.
static const int nthreads = 4;

int main(int argc, char* argv[])
{
 try {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

396 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

 // Get a reference to the RootPOA.
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj.in());

 // Activate the POAManager.
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();

 // Create a servant.
 PortableServer::Servant_var<Messenger_i> messenger_servant =
 new Messenger_i();

 // Register the servant with the RootPOA, obtain its object
 // reference, stringify it, and write it to a file.
 PortableServer::ObjectId_var oid =
 poa->activate_object(messenger_servant.in());
 CORBA::Object_var messenger_obj = poa->id_to_reference(oid.in());
 CORBA::String_var str = orb->object_to_string(messenger_obj.in());
 std::ofstream iorFile("Messenger.ior");
 iorFile << str << std::endl;
 iorFile.close();
 std::cout << "IOR written to file Messenger.ior" << std::endl;

 // 3. Create and activate threads for the thread pool.
 ORB_Task task (orb.in());
 int retval = task.activate (THR_NEW_LWP | THR_JOINABLE, nthreads);
 if (retval != 0) {
 std::cerr << "Failed to activate " << nthreads << " threads." << std::endl;
 return 1;
 }

 // 4. Wait for threads to finish.
 task.wait();

 // Clean up.
 orb->destroy();
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "CORBA exception: " << ex << std::endl;
 return 1;
 }

 return 0;
}

The code sections numbered 1-4 in the above example have been added to
provide a thread pool for request processing by the ORB. Each step is further
described here:

o c i w e b . c o m 397

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

1. Define a “task” class for implementing the thread-pool threads.

Threads for the thread pool can be created using the platform’s normal
threading APIs (e.g., pthread_create() on platforms that support
POSIX threads). However, ACE provides an object-oriented abstraction
for threads known as task. In this section of the code, we define a new task
type, called ORB_Task, that is dedicated to running the ORB’s event loop.
We can initialize an ORB_Task with an object reference to the ORB, then
activate several threads. Each thread enters the task’s svc() method, in
which we simply call run() on the ORB to make that thread available to
the ORB for handling connections and requests. If the ORB is shut down,
then all the threads exit the ORB’s event loop, causing each svc()
method to return and each thread to exit.

2. Establish the number of threads.

We define a constant to represent the number of threads we want in the
thread pool. With a few simple code changes, this value could be provided
as a command-line parameter to allow the number of threads in the thread
pool to be dynamically configured at run time.

3. Create and activate threads for the thread pool.

In this section of the code, we create an instance of our ORB_Task class,
then create a number of threads using the task’s activate() method.
Each new thread invokes the task’s svc() method. The thread creation
flags are a bitwise OR of the values THR_NEW_LWP and THR_JOINABLE.
The THR_NEW_LWP flag means a new light-weight process (LWP) is
created for each new thread to increase the concurrency level of the thread
pool. THR_JOINABLE means we can later join these threads and wait for
each one to exit using the task’s wait() method.

4. Wait for threads to finish.

Since all ORB request processing is taking place in the threads activated
via the ORB_Task, the main thread continues. To keep it from exiting (and
possibly causing the process to exit), we wait for all the threads in the pool
to exit. After the last thread in the thread pool has exited, we can proceed
to destroy the ORB and clean up resources.

398 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

Note More information on the ACE Task Framework can be found in Chapter 6 of
C++ Network Programming: Volume 2 (C++NPv2) and Chapter 15 of The
ACE Programmer’s Guide (APG).

15.3.7 Dynamic Thread Pool Strategy
The Dynamic thread pool strategy provides flexibility in managing a thread
pool for an ORB or for individual or groups of POAs. Dynamic thread pools
may be configured by an API at run time or may be externally configured
using the service configurator framework. The dynamic thread pools
described in this section are similar to those defined by the RT-CORBA thread
pool specification, except that there is no way to set priority. If you are
familiar with RT-CORBA’s specification, TAO’s dynamic thread pool
strategy defines a single lane when applied to an ORB.

15.3.7.1 Dynamic Thread Pool Settings
Dynamic thread pool configuration provides control over attributes such as an
initial number of threads, minimum and maximum numbers of threads, the
amount of time a thread must be idle before it is removed from the pool, and
how much stack should be allocated to each running thread.

It is possible to define multiple thread pools within a single application to
accommodate multiple ORBs or multiple POAs. Once defined thread pools
are then attached to the ORB or POA(s) that use them. The values described
here are used to configure any dynamic thread pools. This section focuses on
the thread pool itself, applying the thread pool to an ORB or a POA is
discussed in later sections.

 Minimum Pool Threads - the default is -1 indicating no minimum. The
minimum thread count controls the expiration of idle threads. If the minimum
thread count is left at -1, threads in the pool will never expire, and eventually
the pool will grow to reach its maximum number of threads. Set the minimum
number of threads to a positive number less than the maximum number of
threads to have idle threads time out and release resources down to this
minimum number.

Maximum Pool Threads - the default is -1 meaning it is effectively
unlimited. Setting the maximum is to limit the number of concurrent requests
that can be handled. Reaching this limit has different side effects depending
on whether the thread pool is applied to an ORB or a POA. On a POA, a

o c i w e b . c o m 399

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

request received that cannot be dispatched is queued based on the constraints
imposed by the Request Queue Depth setting described below. On an ORB, a
dynamic thread pool at the maximum thread count behaves the same as a fixed
thread pool, recursively handling incoming events as needed.

Initial Pool Threads - the default is 5 if the minimum count is not set. The
default will not exceed a maximum if one is set. This setting controls the
number of threads allocated when the pool is applied to an ORB or a POA.
The initial thread count should be between the minimum and maximum thread
counts. These initial threads are subject to the same lifespan constraints as any
dynamically allocated thread, expiring on idle time out if necessary.

Thread Stack Size - the default is ACE_DEFAULT_THREAD_STACKSIZE
bytes. On most systems this macro is the default stack size per thread set in the
kernel of the operating system. This is equivalent to setting this value to 0.
Any override of this default should be the number of bytes desired per thread
on the stack.

Thread Idle Time (timeout) - the default is 60 (seconds). This value
determines how long a thread should be allowed to be idle before it exits and
is removed from the pool. Any use of the thread within the timeout period
resets the timeout when it returns to a non-busy state and is available for
another request. An important exception to this behavior is when the
Minimum Pool Threads (see above) is set to -1. In this case the Thread Idle
Time is ignored altogether and any thread initialized in the pool at startup or
added to the pool after startup will live until the process is shut down.

Request Queue Depth - the default is 0 (requests) meaning that the queue is
unbounded. This value only affects thread pools applied to POAs. A POA
thread pool uses a queue to hold incoming requests when there are no threads
available at that time to handle the request. An unbounded queue will continue
to cache requests until it runs out of memory. Setting this value to a non-zero
request count will cause the queue to reject new requests, instead raising a
CORBA::TRANSIENT exception with a minor code of DISCARDING to the
client.

15.3.7.2 Initializing a Dynamic Thread Pool via API
For an application specified thread pool, you must first include the Dynamic
Thread Pool library in your project settings. This is easily done using MPC by
adding “dynamic_tp” to your project’s dependency list. If you are not using

400 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

MPC to manage your project build files, the library you need to link to is
TAO_Dynamic_TP, with the appropriate platform-specific modifiers.
Additional libraries are required to support applying the thread pool to POAs.

The configuration values described above are encapsulated in a structure,
which is used to initialize strategy objects. The TAO_DTP_Definition
structure is defined along with the constructor defaults.
struct TAO_DTP_Definition
{
 int min_threads_;
 int init_threads_;
 int max_threads_;
 size_t stack_size_;
 ACE_Time_Value timeout_;
 int queue_depth_;

 // Create explicit constructor
 TAO_DTP_Definition() :
 min_threads_(-1),
 init_threads_(5),
 max_threads_(-1),
 stack_size_(ACE_DEFAULT_THREAD_STACKSIZE),
 timeout_(60,0),
 queue_depth_(0)
{}

As this structure is only used to hold sets of values, you are free to create one
on the stack, and reuse it as needed, neither the ORB nor POA thread pool
strategy objects retain ownership of a supplied definition structure. Usage of
an initialized TAO_DTP_Definition is shown below.

15.3.7.3 Initializing a Dynamic Thread Pool via Configuration
Dynamic thread pool definitions may be configured outside of the application,
giving a measure of control to users of the application. As we will show later,
externally supplied definitions may be used by application code, or by
externally defined ORB or POA thread pool strategy. As with any service
objects, the dynamic thread pool objects may be statically or dynamically
linked. Dynamic linking requires no prior application configuration, so it is
shown here. Using the service object to supply a thread pool definition takes
one additional parameter not required through the API. That is a name, since
multiple thread pool definitions may be supplied.

o c i w e b . c o m 401

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

In order for the service configurator to be able to manage thread pool
definition objects, a service object wrapper known as DTP_Config is used.
This service object is part of the TAO Dynamic TP library and has parameters
that match the TAO_DTP_Definition members. A mapping of parameters to
definition structure members is shown in Table 15-1 below. Here are a couple
of example configurations.
dynamic DTP_Config Service_Object * TAO_Dynamic_TP:_make_TAO_DTP_Config()
"-DTPName POA1 -DTPMin 3 -DTPInit 5 -DTPMax 7 -DTPQueue 100"

static DTP_Config "-DTPName ORBTP -DTPMin 1 -DTPTimeout 10 -DTPStack 256"

:The first example shows a dynamically loaded DTP_Config object named
“POA1” which starts out with 5 threads and floats between 3 and 7. When the
limit of 7 threads is reached, up to 100 pending requests will be queued before
requests start getting rejected.

The second example shows a statically linked DTP_Config object named
“ORBTP” with a minimum of 1 thread that is allowed to grow unbounded, but
idle threads are reaped after 10 seconds. The threads are given 256 KB stacks
too.
Table 15-1 DTP_Config parameters to TAO_DTP_Definition members

Note that there is no special meaning for names supplied to DTP_Config
objects. As shown below, the name is used to identify a particular
configuration set is applied to a POA or an ORB.

15.3.8 Applying Dynamic Thread Pools to an ORB
Now that you know how to configure a dynamic thread pool, now you will see
how to apply it to an ORB. Recall that an application may have multiple
ORBs, each may have a thread pool, ORB thread pools cannot be shared. The
dynamic thread pool configuration enhances the Thread Pool concurrency

DTP_Config parameters TAO_DTP_Definition member

DTPName Name of the configuration set, not
defined in Definition structure.

DTPMin min_threads_

DTPInit init_threads_

DTPMax max_threads_

DTPTimeout timeout_

DTPStack stack_size_

DTPQueue queue_depth_

402 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

model described in section 15.3.6.3 above. The steps involved are to first
define a DTP_Config object in a service configuration file, then reference it
by supplying -ORBDynamicThreadPoolName <DTP_Name> to the ORB via
ORB_init(). The name you supply matches the name of the desired
configuration object. Although thread pool instances are not shared,
definitions can be. As long as multiple ORBs have access to the same service
configuration gestalt (see sections 17.3 and 17.13.29) the same DTP_Config
can be used by each to define its own dynamic thread pool.

An important side effect of using dynamic thread pools is that the thread
pool is activated during ORB_init() and does not require a call to
ORB::run(). An application may call ORB::run() which would contribute the
main thread to the thread pool, however based on the thread pool definition,
this additional thread may time out and exit the run loop which would return it
to main, possibly terminating the process. To avoid that fate, you must obtain
a reference to the thread pool object and wait on that. If that is the only source
of threads in the application, you can also achieve the same result waiting on
the global ACE_Thread_Manager object. The following example shows how
to wait on the dynamic thread pool rather than waiting on the ORB.

#include "tao/ORB_Core_TSS_Resources.h"
#include "tao/ORB_Core.h"
#include "tao/Dynamic_TP/DTP_Thread_Pool.h"
//...

TAO_ORB_Core_TSS_Resources &tss = *orb->orb_core ()->get_tss_resources ();
TAO_DTP_Thread_Pool *pool = static_cast <TAO_DTP_Thread_Pool *> (tss.lane_);
if (pool == 0) {
 orb->run ();
}
else {
 pool->wait();
}

First you include the header for the dynamic thread pool object. Then at the
point where you would logically call ORB::run() you get a reference to the
thread pool through the ORB core. A thorough discussion of the API used
above is beyond the scope of this text, but here is a brief description. The TAO
ORB interface has a hook to get a reference to its implementation core, which
then has a helper object for managing resources. The “lane_” resource is a
void * pointer to whatever manages thread lanes for the ORB. If this can be
cast to a dynamic thread pool reference, then you want to wait on that. If it
cannot, that indicates the dynamic thread pool was not initialized, and

o c i w e b . c o m 403

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

therefore waiting should be done on the ORB as usual. Or perhaps you can
report an error and terminate.

15.3.9 Custom Servant Dispatching
TAO’s default servant dispatching strategy simply invokes the appropriate
servant in the thread context that processed the incoming request message.
The other threading models and strategies discussed in this section determine
which thread processes a given incoming request.

TAO’s Custom Servant Dispatching (CSD) framework allows application
developers to define their own dispatching strategy and dispatch the request as
appropriate to that application. The source code for the CSD framework is
located in the $TAO_ROOT/tao/CSD_Framework directory. TAO also
includes a reference strategy implementation, the Thread Pool CSD Strategy
in the $TAO_ROOT/tao/CSD_ThreadPool directory.

Applications define their own CSD strategy by deriving a strategy class from
the TAO::CSD::Strategy_Base class, creating instances of these strategy
objects, and attaching the strategy object to the POA that they want to use that
strategy. Any subsequent requests processed by that POA are then dispatched
to the associated CSD strategy object. The CSD strategy object is then free to
pass the request to whichever thread it wants. For example, TAO’s Thread
Pool CSD Strategy queues each request for processing by a pool of worker
threads.

For more information about defining your own CSD strategy, the source code
for the Thread Pool CSD Strategy provides a complete example of what needs
to be done and may provide a starting point for other implementations.

For information about using the Thread Pool CSD Strategy, see the examples
and tests under $TAO_ROOT/examples/CSD_Strategy and
$TAO_ROOT/tests/CSD_Strategy_Tests.

15.3.10 Dynamic Thread Pooling in POAs
The Custom Servant Dispatch framework serves as the basis for implementing
dynamic thread pool capabilities for POAs in TAO. The CSD base framework
employs an interceptor point in the core that enables the association of created
POAs with strategies that are developed externally from the core TAO
libraries. These strategies can control the behavior of invocations to the

404 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

servants assigned to the POA. The Dynamic Thread Pool POA Strategy is one
such strategy that is discussed here.

15.3.10.1 Dynamic Thread Pool POA Strategy
The Dynamic Thread Pool POA Strategy controls two different resources
when associated with one or more POAs as shown in Figure 15-8. The first
resource is a request queue that is used to accept calls coming in from the
ORB being directed to an associated Servant. A second resource is a pool of
threads that have been created by the instantiation of the strategy that sit
waiting (listening) on the queue ready to service calls coming in on the queue.

Figure 15-8Dynamic Thread Pool POA Strategy

The Dynamic Thread Pool POA Strategy allows for the control of the request
queue depth allowable by the application programmer for any associated
POA. Likewise the strategy controls several attributes of the thread pool
(discussed later) the allows the programmer to tailor the dynamics of how the
application should govern execution resources. When a thread is signaled to
handle a request coming in on the queue it dispatches the request to the
appropriate servant specified in the request.

o c i w e b . c o m 405

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

Dynamic Thread Pool Configuration

Each Dynamic Thread Pool POA Strategy instance must be configured with a
set of attributes that modify its behavior when dispatching requests to one or
more servants. An instance of a TAO_DTP_POA_Strategy object contains:

• a request queue that is used to queue requests coming from the TAO ORB
and

• a thread pool containing threads that will listen for requests arriving at the
request queue.

A Dynamic Thread Pool Configuration holds attributes that control both the
request queue and the thread pool. The following rules apply to the
configuration of a strategy.

Using the Dynamic Thread Pool POA Strategy in Your Application

The general flow for implementing dynamic thread pooling for POAs in an
application is as follows:

1. Create each POA

2. Create a Dynamic Thread Pool Configuration

3. Create a Dynamic Thread Pool Strategy using this configuration

4. Associate the Dynamic Thread Pool Strategy with one or more POAs

Creating and configuring a dynamic thread pool can be performed using two
methods:

1. Manual creation in an application

2. Dynamic creation using a svc.conf entry as described in Chapter 16.

The primary purpose of each method is to create the configured strategy and
associate it with the targeted POA(s).

Method 1: Manually Creating a Dynamic Thread Pool POA Strategy

An application using the manual method must add the following include:
#include "tao/Dynamic_TP/DTP_POA_Strategy.h"

Below is an excerpt demonstrating the remainder of the method. This example
applies the features of a dynamic thread pool in lines 15 - 32 with the
remainder of the application being standard TAO CORBA implementation. A
description of pertinent elements follows.
1. int ACE_TMAIN (int argc, ACE_TCHAR *argv[])
2. {

406 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

3. try {
4. // Initialize the ORB.
5. CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
6.
7. if (parse_args (argc, argv) != 0)
8. return 1;
9.
10. //Get reference to the RootPOA.
11. CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
12. PortableServer::POA_var poa = PortableServer::POA::_narrow(obj.in());
13.
14. // Create a configuration structure and set the values
15. TAO_DTP_Definition tp_config;
16. tp_config.min_threads_ = 1; // Set low water mark to 1 thread
17. tp_config.init_threads_ = 3; // Start 3 threads to start
18. tp_config.max_threads_ = -1; // Create threads as needed (no limit)
19. tp_config.queue_depth_ = -1; // Allow infinite queue depth
20. tp_config.stack_size_ = (64 * 1024); // Set 64K thread stack size
21. tp_config.timeout_ = ACE_Time_Value(30,0); // Expire after 30 sec idle
22.
23. // Create the dynamic thread pool servant dispatching strategy object
24. TAO_DTP_POA_Strategy * dtp_strategy =
25. new TAO_DTP_POA_Strategy(&tp_config, false);
26. // Apply the strategy to a POA.
27. if (dtp_strategy.apply_to(poa.in()) == false)
28. {
29. ACE_ERROR((LM_ERROR,
30. "Failed to apply CSD strategy to root poa.\n"));
31. return -1;
32. }
33. // Activate the POAManager.
34. PortableServer::POAManager_var mgr = poa->the_POAManager();
35. mgr->activate();
36. <...remainder of application not shown...>

Line 15 introduces the TAO_DTP_Definition structure which holds the
configuration desired for the thread pool and the request queue used by the
new strategy. Although each member of the structure is set in this example, it
is important to note that this structure is implemented with a constructor to set
defaults for each member element. Therefore it is not necessary to set all
values of the structure if the defaults are suitable for the application.

The example sets the Minimum Pool Threads to 1 (line 16) with an Initial Pool
Threads set to 3 (line 17). Because the Thread Idle Time (line 21) is set to 30
seconds, two of the three initial pool threads will expire after 30 seconds of
idle unless they are used in a call. The low water mark of 1 for minimum pool
threads will ensure at least 1 thread stays active in the pool. If the 3 threads all
become active before the 30 second idle and since the Max Pool Threads is set

o c i w e b . c o m 407

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

to -1 (line 18), the example application will see new threads created as needed
with each having a 30 second idle timeout and a thread stack size of 64K as
shown in line 20.

Now that a TAO_DTP_Definition is ready for use, a new
TAO_DTP_POA_Strategy object is created (line 24-25) with a reference to
the newly created configuration (&tp_config). This strategy is now ready to
be used by one or more POAs. TAO_DTP_POA_Strategy has an
apply_to() method that performs the association of a strategy instance with
a POA as shown on line 27.

If an application creates more than one POA and the developer desires that a
single dynamic thread pool configuration is shared among multiple POAs,
then the application should call the apply_to()method to associate each
additional POA with a single TAO_DTP_POA_Strategy instance making it a
shared resource. Another instance of a TAO_DTP_POA_Strategy can be
created and associated with POA(s) separately with its apply_to() method if
the developer wants dedicated thread pool resources to be available to
individual POAs rather than sharing resources. It should be noted that the
association with the apply_to() method is somewhat lazy in that internal
association occurs when the POA is activated as shown in line 35.

For reference, the TAO_DTP_Definition structure is described in detail in
section 15.3.7.1.

Method 2: Dynamically Creating a Dynamic Thread Pool POA Strategy

The second method of applying a dynamic thread pool POA strategy can be
executed without modifying a TAO application. The key to method 2 is in
preparing a service configuration file to define a thread pool then associate it
with one or more POAs. For example:

dynamic DTP_Config Service_Object * TAO_Dynamic_TP:_make_TAO_DTP_Config()
 "-DTPName POA1 -DTPMin 1 -DTPMax 5"
dynamic DTP_POA_Loader Service_Object *TAO_Dynamic_TP:_make_TAO_DTP_POA_Loader()
 "-DTPPOAConfigMap RootPOA,MyPOA2,MyPOA3:POA1"

The first entry defines the contents of a DTP_Config object (as described in
section 15.3.7.3) with a minimum thread count of 1 and a maximum thread
count of 5. This DTP_Config object is named “POA1” allowing it to be
referred to by the second directive. That directive is defining a
DTP_POA_Loader object, which is responsible for associating a thread pool
with one or more POAs. The POA loader takes one parameter,

408 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

-DTPPOAConfigMap, which takes repeated arguments to define separate
thread pool groups. The argument for this parameter is a comma separated list
of POA names, then a colon (‘:’), then a name of a DTP_Config object. In the
example shown above, The above example would assume that three POAs
(RootPOA, MyPOA2, MyPOA3) would share the resources of a dynamic
thread pool instance configured with a configuration entry named 'POA1'.

The following extension of the above example demonstrates how to configure
an application with multiple POAs each with separate (dedicated) dynamic
thread pools.
dynamic DTP_Config Service_Object * TAO_Dynamic_TP:_make_TAO_DTP_Config()
"-DTPName POA1 -DTPMin -1 -DTPInit 5 -DTPMax -1 -DTPTimeout 60 -DTPStack 0
-DTPQueue 0"
dynamic DTP_Config Service_Object * TAO_Dynamic_TP:_make_TAO_DTP_Config()
"-DTPName POA2 -DTPMin 1 -DTPInit 5 -DTPMax -1 -DTPTimeout 30 -DTPStack 0
-DTPQueue 0"
dynamic DTP_Config Service_Object * TAO_Dynamic_TP:_make_TAO_DTP_Config()
"-DTPName POA3 -DTPMin 8 -DTPInit 15 -DTPMax 30 -DTPTimeout 60 -DTPStack 0
-DTPQueue 0"
dynamic DTP_POA_Loader Service_Object *
TAO_Dynamic_TP:_make_TAO_DTP_POA_Loader() "-DTPPOAConfigMap RootPOA:POA1
MyPOA2:POA2 MyPOA3:POA3"

Each of the POAs in the last line are mapped to separate named configurations
in the first three entries. As shown, the POA name and the POA configuration
name is separated by a colon ' : ' again, but each pair is separated by a space.

Note If you wish to see the Dynamic Thread Pool POA Strategy configuration
values being used in your application, start your application with a command
line parameter of -ORBDebugLevel 5 and your output will reflect the usage of
the configuration.

15.3.10.2 MPC Projects Configured for POA Dynamic Thread Pools

A Make Project Creator (MPC) project needs to import two configurations to
enable your build project to use the described capability. In the below, the
csd_framework and dynamic_tp configurations are included on the project
line. This will configure your build environment to include the proper
libraries.
project(*Server): taoserver, csd_framework, dynamic_tp {
 exename = MessengerServer
 after += *idl
 Source_Files {
 Messenger_i.cpp

o c i w e b . c o m 409

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

 MessengerServer.cpp
 }
 Source_Files {
 MessengerC.cpp
 MessengerS.cpp
 }
 IDL_Files {
 }
}

15.3.11 Configuring TAO’s Reactor
Under the covers, TAO uses a reactor to handle events from clients. A reactor
is a object-oriented layer over an operating system’s event handling functions.

The reactor separates the detection of events from the handling of those
events. Applications may register event handlers with the reactor whereby
they are associated with various handles or other sources of events (e.g.,
timers, signals). When an event occurs on one of these handles or other event
sources, the reactor dispatches the event to the associated event handler. The
ORB uses a reactor to accept new connections in a socket context and to
respond to incoming and outgoing data.

Note For more information on the reactor, see Chapters 3 and 4 of C++ Network
Programming: Volume 2 (C++NPv2) and Chapter 7 of The ACE
Programmer’s Guide (APG).

There are several different reactor implementation types available to the ORB.
The Advanced Resource Factory’s -ORBReactorType option allows
run-time configuration of the type of reactor that the ORB uses to handle
events. See 18.7.6 for more information on using this option. Here we discuss
how the selection of reactor type affects the ORB’s threading behavior. We
discuss only the single-threaded select reactor, multithreaded select reactor,
and thread-pool reactor implementations.

15.3.11.1 Single-threaded Select Reactor
As described in 15.3.6.115.3.6, single-threaded applications that are dedicated
to receiving and processing CORBA requests can benefit from using the
single-threaded select reactor type (-ORBReactorType select_st). Since

410 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

all request processing is performed on a single thread, these applications may
also safely disable certain locks. The single-threaded select reactor uses the
select() system call to monitor I/O handles for input and output
availability. It dispatches all inbound client connections and requests onto a
single thread. If the thread is busy, new connections and requests are blocked
in the transport layer until the thread re-enters the reactor’s event loop.

The thread re-enters the reactor’s event loop when it has completed processing
each connection or request. If the application makes an outbound (client role)
request within the context of processing an inbound (server role) request, then
it may enter the reactor’s event loop to await its reply (depending upon the
wait strategy); while waiting for its reply in this fashion, the thread may be
used by the reactor to dispatch additional inbound requests or other events.
See 15.4.4 for more information on client-side wait strategies.

Use the Advanced Resource Factory’s -ORBReactorType select_st
option to configure the single-threaded select reactor type, as shown here:

dynamic Advanced_Resource_Factory Service_Object *
TAO_Strategies:_make_TAO_Advanced_Resource_Factory () "-ORBReactorType
select_st"

The above directive should appear on one line in the application’s service
configurator file.

15.3.11.2 Multithreaded Select Reactor
Like the single-threaded select reactor, the multithreaded select reactor uses
the select() system call to monitor I/O handles for input and output
availability. However, this reactor type also employs locks to enforce
synchronization between threads. Only one thread is allowed to enter the
reactor’s event loop at a time. When an event is dispatched onto a thread, that
thread retains ownership of the reactor (i.e., holds the reactor’s token) and
another thread is not allowed to enter into the reactor’s event loop until the
owner thread finishes dispatching all active event handlers. While a thread
holds the reactor token, other threads cannot get into select(). A single
thread may recursively call the reactor’s handle_events() method without
deadlocking.

In summary, the select_mt reactor type, while safe to use in multithreaded
servers, performs poorly compared to the thread-pool reactor due to its coarse
level of synchronization. Use of the select_mt reactor will likely result in

o c i w e b . c o m 411

1 5 . 3 M u l t i t h r e a d i n g i n t h e S e r v e r

more jittery performance compared to the thread-pool reactor. Multithreaded
applications should use the thread-pool reactor, which is discussed below.

15.3.11.3 Thread-Pool Reactor
The default reactor type in TAO is the thread-pool (tp) reactor. The
underlying implementation of the thread-pool reactor uses the
ACE_TP_Reactor type, a specialization of the ACE_Select_Reactor that is
designed to support thread-pool-based event dispatching. Since the select
reactor receives events via the select() system call, only one thread can be
blocked in the reactor’s handle_events() method at a time. The
thread-pool reactor overcomes this limitation by taking advantage of the fact
that events reported by select() are held (e.g., in transport-level input
buffers) if not acted upon immediately. The thread-pool reactor keeps track of
which event handler was most recently activated, releases the reactor’s
internal lock (thereby allowing another thread to enter the event loop), then
dispatches the event to the event handler outside the context of the lock.

To simplify synchronization within event handlers, the thread-pool reactor
ensures that a given event handler cannot be called by multiple threads
simultaneously. It does this by automatically suspending an activated event
handler before making the upcall onto its event-handling code (e.g., the
handle_input() method), then resuming the event handler after the upcall
completes.

Note The ACE_TP_Reactor implements the Leader/Followers architectural
pattern described in Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects (POSA2). More information on the
ACE_TP_Reactor can also be found in Chapter 4 of C++ Network
Programming: Volume 2 (C++NPv2).

Synchronization among event processing threads in the thread-pool reactor is
far more efficient than in the multithreaded select (select_mt) reactor. Any
TAO server that uses the thread-pool concurrency model, as described in
15.3.615.3.6.3, should use the thread-pool reactor. Since the thread-pool
reactor is the default reactor type, no explicit configuration options are
necessary. However, the thread-pool reactor type can be specified explicitly
via the Advanced Resource Factory’s -ORBReactorType tp option, as
shown here:

412 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

dynamic Advanced_Resource_Factory Service_Object *
TAO_Strategies:_make_TAO_Advanced_Resource_Factory () "-ORBReactorType tp"

The above directive should appear on one line in the application’s service
configurator file.

15.3.12 Flushing Replies to the Client
When a server thread sends a reply to a client, the reply message is marshaled
for writing to the transport. The ORB uses a resource factory to obtain a
strategy for flushing these messages. In some cases, messages prepared for
writing may be queued and written to the transport at a later time. For more
information on flushing strategies, please see the discussion in 15.4.3.

15.4 Multithreading in the Client

The client-side ORB has several configuration options that affect the client’s
threading behavior. In this section, we describe the effects of various
configuration options under various conditions and provide guidelines on
making appropriate configuration choices to meet your application’s needs.

As described in 15.2, a thread may behave as a client (invokes requests, waits
for replies) or a server (processes requests, sends replies). Under certain
conditions, a thread may switch between the client and server roles. The
discussion of concurrency in this section pertains to a thread in the role of a
client.

In the remainder of this section, we describe options for controlling the
following ORB strategies:

• Establishing a connection to the server

When a client thread invokes a request on a remote CORBA object, the
client-side ORB must have a transport-level connection to the target
object’s ORB over which to send the request message. TAO’s connect
strategy determines how the client thread waits for the connection to be
completed.

• Multiplexing requests on a connection

o c i w e b . c o m 413

1 5 . 4 M u l t i t h r e a d i n g i n t h e C l i e n t

When a client thread invokes a request on a remote CORBA object, the
ORB may be able to reuse an existing connection or it may have to
establish a new connection. It is possible configure TAO’s transport
multiplexing strategy to multiplex several simultaneous requests on a
single connection.

• Flushing requests to the server

When a client thread sends a request or a server thread sends a reply, the
request or reply message is first marshaled for writing to the transport.
Messages prepared for writing may be queued and written to the transport
at a later time as determined by TAO’s flushing strategy.

• Waiting for a reply from the server

When a client thread invokes a synchronous request on a remote CORBA
object, it must wait for the reply. The way in which the client thread waits
for its reply and the activities the thread may perform in the meantime is
determined by TAO’s wait strategy.

• Optimizing performance of collocated requests

When a client thread invokes an operation on a collocated CORBA object
(i.e., an object that is implemented within the same address space as the
client), the invocation may be optimized to bypass several layers of
marshaling, networking, demultiplexing, demarshaling, and dispatching
logic by configuring TAO’s collocation optimization.

15.4.1 Establishing a Connection to the Server
When a client thread invokes a request on a remote CORBA object, the
client-side ORB must have a transport-level connection to the target object’s
ORB over which to send the request message. The ORB may be able to reuse
an existing connection, or it may have to establish a new connection.
Establishing a new connection can be time-consuming. TAO’s default client
strategy factory provides a connect strategy that determines how the client
thread waits for the connection to be completed.

The default client strategy factory provides three possible connect strategies:

• leader-follower (lf)

In the leader-follower connect strategy, the connecting thread joins the
leader-follower group of threads to be awakened when the connection has
been completed.

414 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

While waiting for the connection to complete, the thread may become the
leader and may be used to process inbound requests or other events. Thus,
with the leader-follower connect strategy, it is possible for a client thread
to temporarily switch to the server role.

TAO uses the leader-follower connect strategy by default.

• reactive

The reactive connect strategy behaves similarly to the leader-follower
connect strategy, except that the connecting thread uses the ORB’s reactor
instead of joining the leader-follower group of threads. It provides
non-blocking connect behavior with less locking overhead than the
leader-follower connect strategy.

The thread registers an event handler with the reactor, then runs the
reactor’s event loop. The event handler is invoked by the reactor when the
connection is complete. The reactive connect strategy should only be used
in single-threaded or pure client applications.

• blocking (blocked)

In the blocking connect strategy, the connecting thread simply blocks for
the duration of the connection attempt. This option should only be used in
multithreaded environments or in environments where network
congestion is unlikely to be a factor.

The connect strategy can be configured at run time by setting the default client
strategy factory’s -ORBConnectStrategy option in the application’s service
configurator file. This option accepts one of three values: lf
(leader-follower), reactive, or blocked. The default setting for this option
is lf.

In the example below, we show the directive to select the blocked strategy.

static Client_Strategy_Factory "-ORBConnectStrategy blocked"

See 20.3.2 for more information on using the -ORBConnectStrategy
option.

Note The blocked connect strategy is required when you use the wait-on-read wait
strategy (-ORBWaitStrategy rw). See 15.4.4.1 for more information on
wait-on-read.

o c i w e b . c o m 415

1 5 . 4 M u l t i t h r e a d i n g i n t h e C l i e n t

15.4.2 Multiplexing Requests on a Connection
When a client thread invokes a request on a remote CORBA object, the
client-side ORB must have a transport-level connection to the target object’s
ORB over which to send the request message. The ORB may be able to reuse
an existing connection, or it may have to establish a new connection.

If a reply is expected, the request is said to be pending on the connection.
Under some conditions, only one request may be pending on a connection at a
time. For example, if the client is using the wait-on-read wait strategy as
described in 15.4.4.1, there cannot be more than one pending request on a
single connection. In other cases, it is possible to multiplex requests on a
single connection. Multiplexing requests on a single connection can optimize
utilization of connection-related resources between a client and a server.

The default client strategy factory provides two possible transport
multiplexing strategies:

• exclusive

An exclusive transport uses a connection to service a single request and
receive a reply before making it available for another request. A
multithreaded client using the exclusive transport strategy will open a new
connection for each concurrent request.

• multiplexed (muxed)

The multiplexed strategy allows multiple concurrent requests to share a
single connection, using asynchronous callbacks to handle the distribution
of the replies.

TAO uses the multiplexed transport multiplexing strategy by default.

The transport multiplexing strategy can be configured at run time by setting
the default client strategy factory’s -ORBTransportMuxStrategy option in
the application’s service configurator file. This option accepts one of two
values: muxed (requests can be multiplexed on a connection) or exclusive
(each request requires exclusive access to a connection). The default setting
for this option is muxed.

In the example below, we show the directive to select the exclusive transport
multiplexing strategy.

static Client_Strategy_Factory "-ORBTransportMuxStrategy exclusive"

416 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

See 20.2.2 for more information on using the -ORBTransportMuxStrategy
option.

Note The exclusive transport multiplexing strategy is required when you use the
wait-on-read wait strategy (-ORBWaitStrategy rw). See 15.4.4.1 for more
information on wait-on-read.

15.4.3 Flushing Requests to the Server
When a client thread sends a request or a server thread sends a reply, the
request or reply message is first marshaled for writing to the transport. The
ORB then uses a resource factory to obtain a strategy for flushing these
messages. In some cases, messages prepared for writing may be queued and
written to the transport at a later time, according to the flushing strategy. The
default resource factory provides three possible message flushing strategies:

• leader-follower (leader_follower)

In the leader-follower flushing strategy, the thread sending the message
will first attempt a non-blocking write operation to the transport. If the
write operation succeeds, the thread will continue. If the non-blocking
write operation could not be completed, the message is queued and the
thread joins the leader-follower group of threads to be awakened when it
can flush its message to the transport.

While waiting to flush queued messages, the thread may become the
leader and may be used to process inbound requests or other events. Thus,
with the leader-follower flushing strategy, it is possible for a client thread
to temporarily switch to the server role, or for a server thread flushing a
reply message to be used to process additional requests.

TAO uses the leader-follower flushing strategy by default.

• reactive

The reactive flushing strategy behaves similarly to the leader-follower
flushing strategy, except that a sending thread uses the ORB’s reactor
instead of joining the leader-follower group of threads. It provides
non-blocking flushing with less locking overhead than the leader-follower
flushing strategy.

First, a non-blocking write operation to the transport is attempted. If it is
not successful, then the thread queues the message, registers an event

o c i w e b . c o m 417

1 5 . 4 M u l t i t h r e a d i n g i n t h e C l i e n t

handler with the reactor, and runs the reactor’s event loop. When writing
to the transport is possible, the thread flushes its queued message.

The reactive flushing strategy should only be used in single-threaded or
pure client applications.

• blocking

In the blocking flushing strategy, a thread sending a message simply
blocks until it has successfully written its message to the transport. While
blocked waiting to write, the thread will not be available to the ORB for
connection handling or request processing. The blocking flushing strategy
should only be used in pure client applications or in environments where
network congestion is unlikely to be a factor.

The flushing strategy can be configured at run time by setting the default
resource factory’s -ORBFlushingStrategy option in the application’s
service configurator file. This option accepts one of three values:
leader_follower, reactive, or blocking. The default setting for this
option is leader_follower.

In the example below, we show the directive to select the blocking strategy.

static Resource_Factory "-ORBFlushingStrategy blocking"

See 18.6.7 for more information on using the -ORBFlushingStrategy
option.

Note The blocking flushing strategy is required when you use the wait-on-read
wait strategy (-ORBWaitStrategy rw). See 15.4.4.1 for more information
on wait-on-read.

15.4.4 Waiting for a Reply from the Server
When a client thread invokes a synchronous request on a remote CORBA
object, it must wait for a reply. The way in which the client thread waits for its
reply and what it might do in the meantime is determined by the application’s
wait strategy.

By default, TAO attempts to use all available threads efficiently. This includes
client threads that have sent a request to a server and are waiting for a reply.
While waiting, a client thread may be “borrowed” by the ORB to handle

418 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

incoming requests, performing a nested upcall. If an application acts in both
the client and server roles, then nested upcalls are possible.

This “borrowing” of a client thread waiting for a reply has side effects that
may be surprising. First, it is possible for even a single-threaded server to
process more than one request at the same time. Second, any thread known by
the ORB may play the role of a client thread or a server thread.

This is TAO’s default behavior for a number of reasons. First, it avoids many
potential deadlock situations. For example, suppose a single-threaded client
provides a callback object to a server. After the client sends a request to the
server, the server sends a callback request back to the client. If the client's only
thread is waiting for the reply and cannot handle incoming requests, then a
deadlock occurs. TAO’s default behavior, on the other hand, allows the client
ORB to process the callback request and send a reply to the server, freeing the
server ORB to send its reply back to the client.

Second, this behavior gives the application complete control over thread
creation and destruction. Some ORB implementations spawn a new thread to
handle each incoming request. TAO does not do this.

A nested upcall happens in the context of an ORB. In a process with more than
one ORB, a client thread that makes a request through an ORB is not asked to
handle a nested upcalls for an object in another ORB.

This behavior is configurable. TAO provides several wait strategies affecting
what a client thread might do while waiting for a reply. They are as follows:

• wait-on-read

• wait-on-reactor

• wait-on-leader-follower

• wait-on-leader-follower-no-upcall (experimental)

TAO uses the wait-on-leader-follower wait strategy by default.

15.4.4.1 Wait-on-Read Wait Strategy

In the wait-on-read wait strategy (also known as “receive-wait”), when a
client thread invokes a synchronous request, it simply blocks waiting to read
the reply message from the underlying transport. When the reply message
arrives, the thread becomes unblocked and processing continues.

o c i w e b . c o m 419

1 5 . 4 M u l t i t h r e a d i n g i n t h e C l i e n t

Figure 15-9 shows a client using the wait-on-read wait strategy

While a client thread is blocked waiting for its reply, it is not available to the
ORB for handling incoming connections or requests. In some situations, this
behavior can lead to deadlocks.

For example, in a hybrid application (that plays both server and client roles), if
all threads are acting in the client role and are currently blocked waiting for
replies, the application is unable to respond to incoming requests from other
clients. If a client thread invokes a request on a server that is also using the

wait-on-read wait strategy, and the server thread that is handling that request
switches to the client role and calls back to our application, threads in both

Figure 15-9 Client using the wait-on-read wait strategy

420 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

processes are now blocked waiting for their replies and neither can make
progress. This situation is shown in Figure 15-10.

In the situation shown in Figure 15-10, the deadlock results because there are
insufficient threads available to the ORB (in the process shown as
“Client-Server-1”) for processing inbound requests that arrive while client
threads are blocked waiting for replies. Applications can avoid this problem
by making sure there is always at least one thread available to the ORB via
CORBA::ORB::run() or CORBA::ORB::perform_work(). This can be
accomplished using the thread-per-connection or thread-pool (with a
sufficient number of threads in the pool) server concurrency models described
in previous sections.

Motivation
The wait-on-read wait strategy is useful in the following situations:

• The application is a pure client application.

• All outbound request invocations are oneway requests with no replies.

• The application must ensure that client threads that are waiting on replies
to outbound synchronous requests cannot be used by the ORB for
processing inbound requests (i.e., nested upcalls cannot be allowed).

• Requests cannot be multiplexed across a single connection (i.e., the
transport multiplexing strategy is configured as exclusive).

Figure 15-10 Deadlock created by using wait-on-read wait strategy

o c i w e b . c o m 421

1 5 . 4 M u l t i t h r e a d i n g i n t h e C l i e n t

• Request messages must be completely written to the transport (i.e., the
flushing strategy is configured as blocking).

Configuration
The wait-on-read wait strategy is specified by supplying the following
configuration options to the default client strategy factory:

static Client_Strategy_Factory "-ORBWaitStrategy rw -ORBTransportMuxStrategy
exclusive -ORBConnectStrategy blocked"
static Resource_Factory "-ORBFlushingStrategy blocking"

Each of the above directives should appear on one line in the application’s
service configurator file.

See 20.3.8, 20.3.6, 20.3.2, and 18.6.7 for more information on using these
options.

Note The exclusive transport multiplexing strategy, the blocked connect
strategy, and the blocking message flushing strategy are required when
using the wait-on-read (rw) wait strategy.

Consequences
The consequences of using the wait-on-read wait strategy are as follows:

• Client threads that are waiting for replies cannot be “stolen” by the ORB
and used to process incoming requests; nor can they be used to handle
other reactor events, such as timers.

• An application that uses the wait-on-read wait strategy may not use
Asynchronous Method Invocation (AMI). Since the connection handler is
not registered with the ORB’s reactor, the ORB will not be able to
dispatch the reply when it arrives.

• An application that uses the wait-on-read wait strategy may have a
slightly smaller footprint than it would if it used the other wait strategies
because there is no need for the ORB to create a reply dispatcher to handle
the reply message. On the other hand, since requests cannot be
multiplexed across connections, the application could experience an
increase in footprint since multiple connections may be needed when
sending concurrent requests to the same target server.

422 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

15.4.4.2 Wait-on-Reactor Wait Strategy
In the wait-on-reactor wait strategy (also known as “reactive”), a client thread
waits for its reply by registering its connection handler as an event handler
with the ORB’s reactor, then running the reactor’s event loop
(ACE_Reactor::handle_events()) until the reply message arrives. When
the reply is received, the connection handler is invoked by the reactor, the
reply is read and demarshaled, and execution continues after the point of
invocation.

Motivation
The wait-on-reactor wait strategy is useful in the following situations:

• The application is a pure client application.

• The application is single-threaded and acts as both a client and a server.

• Nested upcalls are possible.

Configuration
The wait-on-reactor wait strategy is specified by supplying the following
configuration option to the default client strategy factory:

static Client_Strategy_Factory "-ORBWaitStrategy st"

See 20.3.8 for more information on using this option.

Consequences
The consequences of using the wait-on-reactor wait strategy are as follows:

• A single-threaded pure client application can still handle other reactor
events (e.g., timers) while waiting for replies.

• In single-threaded applications, the wait-on-reactor wait strategy still
allows the application to handle inbound requests while it is waiting for
replies, but the locking overhead is less than with the default
wait-on-leader-follower wait strategy.

15.4.4.3 Wait-on-Leader-Follower Wait Strategy
In the wait-on-leader-follower wait strategy (also known as “multithreaded
reactive”), a client thread waits for its reply using the ORB’s leader-follower
model, based on the Leader/Followers architectural pattern described in

o c i w e b . c o m 423

1 5 . 4 M u l t i t h r e a d i n g i n t h e C l i e n t

Pattern-Oriented Software Architecture: Patterns for Concurrent and
Networked Objects (POSA2), by Douglas Schmidt, Michael Stal, Hans
Rohnert, and Frank Buschmann.

The leader-follower model allows multiple threads to share a single reactor.
One thread becomes the “leader” and runs the reactor’s event loop. The leader
thread receives and processes the next event; other threads are “followers.” As
soon as the leader thread receives an event, one of the follower threads
becomes the new leader.

In the wait-on-leader-follower wait strategy, it is possible for a client thread
waiting for a reply to be used by the ORB to handle incoming requests or other
events. Thus, nested upcalls are possible in this configuration. When a client
thread begins waiting for its reply, it is likely to become a follower in the
leader-followers group of threads. It is awakened when one of the following
occurs:

• Its reply is received.

• It is selected to become the leader and run the ORB’s reactor’s event loop.

If the reply is received before the waiting thread becomes the leader, the
thread remains in the client role and does not have to temporarily switch to the
server role. However, if the application is experiencing heavy load or an
insufficient number of other threads are dedicated to the ORB (by calling
CORBA::ORB::run() or CORBA::ORB::perform_work()), the probability
that the waiting thread will temporarily switch to the server role is increased.

When the reply to the outbound request arrives, the thread waiting on the reply
eventually breaks out of the leader-followers group and returns to its client
role.

Motivation
The wait-on-leader-follower wait strategy is useful in the following situations:

• The application is either single-threaded or multithreaded and acts as both
a client and a server.

• Nested upcalls are possible.

424 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

Configuration
The wait-on-leader-follower wait strategy is the default wait strategy used in
TAO. It can be specified explicitly by supplying the following configuration
option to the default client strategy factory:

static Client_Strategy_Factory "-ORBWaitStrategy mt"

See 20.3.8 for more information on using this option.

The wait-on-leader-follower wait strategy should be used with the thread-pool
reactor type. Since that is the default reactor type in TAO, no additional
configuration options are necessary to select it. See 15.3.11 for more
information on the thread-pool reactor. See 18.7.6 for more information on
options to configure the ORB’s reactor type.

Consequences

• In the wait-on-leader-follower wait strategy, it is possible for a client
thread to be “stolen” by the ORB to handle inbound requests while
waiting for a reply.

• A client thread should not hold a lock when invoking a request. If the
thread is used to handle an inbound request while waiting for its reply, and
the processing of that request results in an attempt to acquire the same
lock, a deadlock could occur.

• Recursive nested upcalls may lead to unbounded stack growth, which will
eventually crash the application.

For example, consider two processes, A and B, both using the
wait-on-leader-follower wait strategy. Suppose A invokes a synchronous
operation on B, which results in B invoking a synchronous operation on
A, resulting in a nested upcall. If that nested upcall results in another
invocation on B, which results in another invocation on A, and so on, one
or both processes will eventually exhaust all available stack space.

15.4.4.4 Wait-on-Leader-Follower-No-Upcall Wait Strategy
The wait-on-leader-follower-no-upcall wait strategy is an experimental
strategy that combines features of the wait-on-read and
wait-on-leader-follower wait strategies. A client thread waits for its reply
using the ORB’s leader-follower model, but no nested upcalls are permitted

o c i w e b . c o m 425

1 5 . 4 M u l t i t h r e a d i n g i n t h e C l i e n t

on the client thread while it waits for its reply. The waiting thread may handle
non-upcall reactor events such as time-outs and connection-related events.
Other threads operate normally.

Note The wait-on-leader-follower-no-upcall wait strategy is an experimental wait
strategy. It has not been exercised in a wide variety of use cases. Please use
caution and due-diligence in testing your application’s behavior with this
option if you decide to use it.

The wait-on-leader-follower-no-upcall wait strategy was motivated by the
need to recognize connections opened in the client role and closed by the
server. Using wait-on-read, the closure is not recognized until another
invocation is made through that connection. A closed wait-on-read connection
sits in a CLOSE_WAIT state, consuming a file descriptor.

With this strategy, a client thread waiting for a reply enters the
leader-followers group of threads just as it does in the
wait-on-leader-followers wait strategy. When the client thread becomes the
leader, the reactor may ask it to handle a nested upcall. The client thread,
however, defers the nested upcall back to the reactor for processing by another
thread. The client thread does handle other reactor events such as connection
establishment and time-out events.

In the wait-on-leader-follower-no-upcall wait strategy, it is not possible for a
client thread waiting for a reply to be used by the ORB to handle incoming
requests. In other words, nested upcalls are not possible. However, the client
has more flexibility in its selection of connect strategy, transport multiplexing
strategy, and flushing strategy.

Motivation
The wait-on-leader-follower-no-upcall wait strategy is useful in the following
situations:

• The application is a hybrid client/server application with predominately
server-side activity.

• The application manages connections that are opened by the client and
closed by the server.

426 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

Note Other use cases have not been thoroughly tested.

Configuration
The wait-on-leader-follower-no-upcall wait strategy can be specified by
supplying the following configuration option to the default client strategy
factory:

static Client_Strategy_Factory "-ORBWaitStrategy mt_noupcall"

See 20.3.8 for more information on using this option.

The wait-on-leader-follower-no-upcall wait strategy should only be used with
the thread-pool reactor type. Since that is the default reactor type in TAO, no
additional configuration options are necessary to select it. Note that no
warnings are given if one tries to use this option with an incompatible reactor
type. See 15.3.11 for more information on the thread-pool reactor. See 18.7.6
for more information on options to configure the ORB’s reactor type.

Consequences

• A client thread that is waiting for a reply cannot be “stolen” by the ORB
and used to process incoming requests; however, it can be used to handle
other reactor events, such as time-outs and connection-related events.

• A deadlock is possible. Because a client thread cannot be “stolen” by the
ORB to handle inbound requests while waiting for a reply, a
thread-pool-based server may “run out of threads” if all of its threads are
waiting for replies.

• The client thread is still called by the reactor to handle requests, but it
defers the requests back to the reactor. Therefore, a client that waits a long
time for a reply with lots of other inbound activity might result in
significantly increased CPU usage.

• In situations where a high percentage of threads are waiting for replies and
thus cannot handle inbound requests, it has been observed that the reactor
may fail to re-dispatch a request deferred to it by the waiting client thread.

• The wait-on-leader-follower-no-upcall wait strategy has not been
thoroughly tested with Asynchronous Method Invocation (AMI). The
client thread may not necessarily handle an AMI callback, but instead may
defer it to other threads.

o c i w e b . c o m 427

1 5 . 4 M u l t i t h r e a d i n g i n t h e C l i e n t

• Unlike the wait-on-read strategy, connection establishment does not have
to be blocking (i.e. the connect strategy does not have to be configured as
blocked).

• Unlike the wait-on-read strategy, requests can be multiplexed across a
single connection (i.e., the transport multiplexing strategy does not have
to be configured as exclusive).

• Unlike the wait-on-read strategy, request messages do not have to be
completely written to the transport (i.e., the flushing strategy does not
have to be configured as blocking).

15.4.5 Optimizing Performance of Collocated Objects
When a client thread invokes an operation on a collocated CORBA object
(i.e., an object that is implemented within the same address space as the
client), the invocation may be optimized to bypass several layers of
marshaling, networking, demultiplexing, demarshaling, and dispatching logic
(see 17.13.4).

Since collocated invocations do not follow the usual ORB request dispatching
path, the server logic (servant implementation code) is executed on the same
thread as the client invocation; that is, the client thread is “stolen” by the
server. For example, even if an application is using the thread-pool
concurrency model described in 15.3.615.3.6.3, a request invoked on a
collocated object will not be subject to dispatching via the ORB’s thread pool.

Usually, the collocation optimization is desirable. Optimization of collocated
invocations can result in dramatically increased performance and decreased
latency compared to normal or ORB-mediated invocations. However, in the
case of a hybrid server/client application, if the collocation optimization is
allowed, a client thread making an invocation on a collocated object cannot be
made available to the ORB for handling incoming client connections or
requests, regardless of the effective wait strategy or other strategies that
normally affect client thread behavior. If other threads in the process are not
available to the ORB, remote client connection attempts or requests could be
blocked until a thread becomes available.

Also, in the case of a real-time CORBA application, the client thread may not
be running at the priority at which the request should be processed, possibly
leading to priority inversions.

428 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

Note However, if the application is using RT CORBA, TAO uses a special real-time
collocation resolver to determine whether the target object is collocated with
the invoking thread. The real-time collocation resolver considers not only the
address space and ORB of the target object, but also the POA, POA thread
pool policy, thread pool id, thread pool lane, and effective priority model
policy in making this determination. The result is that invocations on
collocated objects in RT CORBA applications attempt to avoid priority
inversions by not violating constraints imposed by priority and threading
models. See Chapter 8 for more information on RT CORBA and 17.13.11 for
information about an option to disable TAO’s real-time collocation resolution
mechanism.

TAO provides an ORB initialization option to control the scope within which
collocation optimizations are allowed. The -ORBCollocation option can
have one of the following values:

• global

Any object whose implementation resides in the same address space as the
client is considered collocated. TAO uses global collocation by default.

• per-orb

An object is considered collocated only if its implementation resides in
the same address space as the client and the servant is accessed through
the same ORB as that which the client is using to make the invocation.
(This setting results in different behavior from global only in
applications that use more than one ORB instance.)

• no

The collocation optimization is disabled; invocations on objects
implemented within the same address space as the client follow the same
request dispatching path as invocations from remote clients.

See 17.13.4 for more information on using the -ORBCollocation option.

TAO also provides an ORB initialization option to specify the collocation
strategy to use. Once the ORB has determined that the target of a request is
collocated with the invoking client, the collocation strategy determines how
the collocated invocation will be carried out. The
-ORBCollocationStrategy can have one of the following values:

• thru_poa

o c i w e b . c o m 429

1 5 . 5 S u m m a r y

Collocated invocations go through the POA and therefore respects the
POA’s current state and request demultiplexing and processing policies.
TAO uses the thru_poa collocation strategy by default.

• direct

Collocated invocations are carried out directly on the target servant,
bypassing the POA completely. The servant must be in memory.

See 17.13.5 for more information on using the -ORBCollocationStrategy
option.

The -ORBAMICollocation option can be used to disable collocation for only
AMI-based invocations. See 17.13.2 for more information on using the
-ORBAMICollocation option.

15.5 Summary

Multithreading is important to many distributed applications, including
applications that use CORBA. This chapter has discussed several aspects of
multithreading with CORBA and TAO, including application programming
interfaces, policies, configuration options, and design choices. Multithreading
issues have been discussed from both server and client viewpoints.

430 o c i w e b . c o m

M u l t i t h r e a d i n g w i t h T A O

o c i w e b . c o m 431

Part 3

Run-time Configuration of TAO

432 o c i w e b . c o m

o c i w e b . c o m 433

CHAPTER 16

Configuring TAO Clients and Servers

16.1 Introduction

Though it is possible to use TAO out-of-the-box as a general purpose ORB,
many applications will have special needs that are not met by TAO’s default
configuration. For example, in some applications or operating environments,
you may need to control the concurrency and locking strategies used when
processing requests. In other cases, you may want to control how TAO
behaves when a client invoking a request is collocated with the target object of
the request. In addition, your operating environment may impose restrictions
on your application’s use of resources such as memory, communication
protocols, buffers, and endpoints.

TAO’s flexible and open architecture allows a high degree of run-time
configuration for meeting the needs of a wide variety of applications and
operating environments. TAO employs various design patterns to achieve this
degree of flexibility.

434 o c i w e b . c o m

C o n f i g u r i n g T A O C l i e n t s a n d S e r v e r s

16.1.1 Road Map
In this chapter, we introduce the concepts and techniques involved in
configuring TAO at run time.

• In 16.2, we introduce the fundamental patterns, components, and
techniques used for run-time configuration of TAO clients and servers.

• In 16.3, we introduce the ACE Service Configurator that TAO uses to
dynamically configure its own components.

• In 16.4, we present command line options that control how TAO uses the
service configurator.

• In 16.5, we describe details of using the ACE Service Configurator
framework.

• In 16.6, we describe the ACE XML Service Configurator.

• In 16.7, we discuss service objects, including how to create your own
dynamically-loaded services.

• In 16.8, we discuss the ACE Service Manager, which allows remote
administration of the service configurator.

To fully understand and take advantage of the ACE Service Configurator, read
Chapter 5 of C++ Network Programming, Volume 2: Systematic Reuse with
ACE and Frameworks (C++NPv2) and Chapter 19 of The ACE Programmer’s
Guide (APG). See also the Component Configurator design pattern (75) in
Pattern-Oriented Software Architecture: Patterns for Concurrent and
Networked Objects (POSA2).

16.2 Patterns and Components for Configuring
TAO Clients and Servers

In this section, we describe the primary design patterns and components TAO
uses for run-time configuration.

16.2.1 Factories
TAO relies on object factories to construct the required strategy and resource
objects. An object factory is similar to a traditional factory in the following
ways:

o c i w e b . c o m 435

1 6 . 2 P a t t e r n s a n d C o m p o n e n t s f o r C o n f i g u r i n g T A O C l i e n t s a n d S e r v e r s

• A traditional factory constructs and delivers products in response to the
orders it receives, whereas an object factory constructs and delivers
objects in response to requests.

• A traditional factory specializes in the products it constructs (e.g., an
automobile factory may construct many varieties of cars and trucks, but
will not construct bricks or children’s toys), whereas an object factory
specializes in constructing the types of objects defined by its interface.

• A traditional factory uses supplied materials to construct products,
whereas an object factory uses supplied parameters to construct objects.

16.2.2 Strategies
A strategy defines a means of obtaining a goal. In a server, for instance, one
goal is to match incoming requests with the servants responsible for handling
those requests; this process is called demultiplexing, or demux for short. TAO
defines a number of request demultiplexing strategies for accomplishing this
goal, each with its own idiosyncrasies and side effects. A server strategy
factory is an object factory used in TAO that can produce a request
demultiplexing strategy. Using dynamic configuration, it is possible to change
at run time the way TAO demultiplexes requests to servants with no impact on
application code.

16.2.3 Resources
A resource is a tool or source of supply, such as a buffer for containing the
product of converting data from one format to another or a reactor used to
detect the presence of new requests from the input source. TAO uses a
resource factory to produce resources used by the ORB at run time.

16.2.4 TAO’s Default Strategy and Resource Factories
TAO organizes its strategies and resources into three groups, each group being
served by one of the following default object factories:

• The Resource Factory controls creation of configurable resources used by
the ORB core. Most of the resources required by the ORB core are fixed,
but you have some flexibility in the choice of a reactor, the selection of
communication protocols, and the behavior of CDR allocators.

• The Server Strategy Factory produces configurable elements utilized by
the object adapter, such as request demultiplexing strategies.

436 o c i w e b . c o m

C o n f i g u r i n g T A O C l i e n t s a n d S e r v e r s

• The Client Strategy Factory produces configurable elements that optimize
object stub operations on the client side, such as concurrency within the
client application, or multiple requests sharing a communication channel.

16.2.5 Specializing TAO’s Factories
Factories define interfaces for obtaining objects, and implementations supply
the object instances. The default implementations supplied with TAO permit
run time tuning via options set in the ACE Service Configurator. Sophisticated
users, or those with special concerns about issues such as consistency or
footprint, can tune at compile- or link-time by implementing specialized
factories. The interfaces to the various configuration factories, and the options
controlling the default implementations of these factories, are provided in
subsequent chapters.

16.3 The ACE Service Configurator

The ACE Service Configurator is a framework that supports the creation of
dynamically-configured applications. Applications may be comprised of
different components, depending on commands—known as directives—
provided to the framework. Directives processed by the service configurator
direct it to load or unload service objects, start and stop the execution of these
objects, and configure the state of statically-linked objects. By default, the
service configurator reads directives from a file called svc.conf that it finds
in the current directory. It is possible to declare alternative configuration files
on the application’s command line, and even to supply directives directly to
the service configurator. The service configurator provides additional services
to the application, such as daemonizing a process or enabling the output of
debug information from the ACE and TAO classes. Table 16-3 shows the
ORB configuration options used to override the default behavior of the service
configurator in TAO applications.

The pattern implemented by the ACE Service Configurator is described in
detail in Chapter 5 of C++ Network Programming, Volume 2 (C++NPv2) and
Chapter 19 of The ACE Programmer’s Guide.

o c i w e b . c o m 437

1 6 . 3 T h e A C E S e r v i c e C o n f i g u r a t o r

16.3.1 Using the static Directive
The service configurator provides a means for altering the configuration of an
application at run time. Without shutting down the application, new service
objects may be added dynamically from a library, and existing service objects
may be removed. The directives most important for configuring TAO are
those that supply initialization options to the statically-linked default factories.
The static directive supplies initialization to service objects that are
statically linked. The following line shows the form of a static directive:

static service_name "options"

For example, the following directive could be used to supply options to
TAO’s statically-linked Resource_Factory initialization function at run
time.

static Resource_Factory "options"

The components of the static directive are shown in Table 16-1.

All service objects are registered with the service configurator by name. This
name is used to locate the object either to supply it with initialization
parameters or (with other directives) to control its state.

TAO’s default factories register themselves with the service configurator by
name as well. The default resource factory name is Resource_Factory, the
default server strategy factory name is Server_Strategy_Factory, and the
default client strategy factory name is Client_Strategy_Factory. You
supply initialization options to these factories using the following directives:

Table 16-1 Static Directive Components

Component Description

static The service configurator directive. It must appear as shown.

service_name
The name by which the service object is registered with the
service configurator. The name is Resource_Factory in the
example above.

options

The list of options supplied to the service object’s initialization
function. The options must be quoted if more than one
whitespace-separated option is to be supplied to the service
object.

438 o c i w e b . c o m

C o n f i g u r i n g T A O C l i e n t s a n d S e r v e r s

static Resource_Factory "-ORBoption value ..."
static Client_Strategy_Factory "-ORBoption value ..."
static Server_Strategy_Factory "-ORBoption value ..."

Note When you use the default configuration factories, you only need to supply
directives to the service configurator if you want to apply option values other
than the defaults. The default configuration factories properly initialize
without the use of directives.

16.3.2 Using the dynamic Directive
When developing an application, using the dynamic configuration capabilities
of the service configurator, you use the dynamic directive to trigger the
loading and initialization of service objects from libraries. The following line
shows the form of the dynamic directive:

dynamic service_name base_object_type library:factory_function() "options"

For example, to replace the default resource factory with one of your own
defined in libmylib.so (on Unix) or mylib.dll (on Win32), the directive
is:

dynamic Resource_Factory Service_Object * mylib:_make_resources() "param ..."

The components of the dynamic directive are shown in Table 16-2.

Table 16-2 Dynamic Directive Components

Component Description

dynamic The service configurator directive. It must appear as shown.

service_name
The name used to register the newly-created service object with
the service configurator. In the example above, the name is
Resource_Factory.

base_object_type
The basic type returned by the factory function. For general
service objects, use Service_Object*.

o c i w e b . c o m 439

1 6 . 4 S e r v i c e C o n f i g u r a t o r C o n t r o l O p t i o n s

TAO does not require the use of any dynamically-loaded service objects.
However, it is possible that you may use them because of application
requirements, or merely personal or corporate preference. For example, the
advanced resource factory, which allows configuration of advanced options, is
often loaded dynamically. (See 18.5 for information on using the advanced
resource factory.) You may also want to use alternative communications
protocols. These alternative protocols may be supplied by creating new
pluggable protocol factories, then loading them as dynamic service objects.
The use of alternative protocols is explored in greater detail in Chapter 14.

16.4 Service Configurator Control Options

Table 16-3 lists options that influence the behavior of the service configurator
used in TAO. These options duplicate many of the common options available
to applications built using the Service Configurator pattern. If a client or
server application is based on this pattern, these options are redundant.

library

The name of the library containing the code for the service
object. The form of the library name is the same as the name
supplied to the compiler/linker via the -l option. Similarly, the
library must reside in a directory accessible to the application
(e.g, in LD_LIBRARY_PATH on Unix and in PATH on Windows).
In the example above, the library name is mylib and the actual
library would be libmylib.so on Solaris or mylib.dll on
Windows.

factory_function()

The name of the function called by the service configurator to
create a new instance of the service object. It must conform to a
particular interface, described in 16.7.3. Supplied macros
simplify the creation of the factory function. In the example
above, the function name is _make_resources().

options

The list of options supplied to the newly-created service
object’s initialization function. The options must be quoted if
more than one whitespace- separated option is to be supplied to
the service object.

Table 16-2 Dynamic Directive Components

Component Description

Table 16-3 Service Configurator ORB Initialization Options

Option Section Description

-ORBDaemon 17.13.7 Instruct the process to run as a daemon.

440 o c i w e b . c o m

C o n f i g u r i n g T A O C l i e n t s a n d S e r v e r s

16.5 The ACE Service Configurator Framework

This section presents details of the ACE Service Configurator framework. It is
not necessary to explicitly use this framework when developing TAO-based
applications. However, the framework is useful when developing modular
applications that can benefit from dynamic configuration.

The ACE Service Configurator framework allows decisions about system
configuration to be deferred until the deployment phase of a project, rather
than during the design phase. Deployment personnel configure service objects
into processes and assemble a running system. Processes may contain many of
these service objects, or the service objects may be spread across several
processing elements; the choice is made at deployment time. Service objects
may be active (running in their own thread) or reactive (registering with a
reactor to handle events), and a process may contain any combination thereof.

To successfully deploy a system based on the service configurator framework,
the following two fundamental goals must be achieved:

• Service objects must fit into the framework (see 16.7).

• Service objects must be loaded into the system (see 16.5.1).

16.5.1 Loading Service Objects
The service configurator loads services for you by initializing an
ACE_Service_Config object. Arguments are passed to the service
configurator using an array of strings, similar to the way command line
arguments are passed to the main function of an application. A very common

-ORBSvcConf config_file_name 17.13.63 Specify an alternate service
configurator file name.

-ORBSvcConfDirective directive 17.13.64 Pass a single directive directly to the
service configurator.

-ORBServiceConfigLoggerKey
logger_key 17.13.58 Specify where to write ORB logging

output.

-ORBSkipServiceConfigOpen 17.13.60 Skips loading of a service configurator
file for this ORB.

Table 16-3 Service Configurator ORB Initialization Options

Option Section Description

o c i w e b . c o m 441

1 6 . 5 T h e A C E S e r v i c e C o n f i g u r a t o r F r a m e w o r k

use case for the service configurator is to simply pass the argc and argv
parameters of main() to the service configurator’s open() function. The
example below shows a generic main program that loads services, then runs
them:

#include <ace/Service_Config.h>

int main(int argc, char** argv)
{
 // open() reads svc.conf, creates services, initializes
 ACE_Service_Config configurator;
 configurator.open(argc,argv);

 // run event loop to handle client requests
 ACE_Reactor::instance()->run_event_loop();

 // a multithreaded program can use
 // ACE_Thread_Manager::instance()->wait();
}

In the above example, the service configurator is opened, using the program’s
command line arguments as initialization parameters. The service configurator
locates a file containing directives, then loads and initializes service objects as
indicated by these directives. In 16.4, we describe the ORB initialization
options that provide some control over the service configurator. Table 16-4
shows the arguments processed by the service configurator in its open()
function.

Table 16-4 Service Configurator Command Line Arguments

Argument Description

-f file
Supply a file containing directives other than the default svc.conf.
Multiple -f arguments may be supplied to chain configuration files.

-s signal
Supply an alternative signal for causing the service configurator to
reprocess the directives file. By default, SIGHUP is used.

-d Turn on debugging in ACE and TAO objects.

-n Ignore static directives.

-y Process static directives. The default behavior. It overrides -n.

-b Turn the containing process into a daemon.

-S directive
Supply a directive to the service configurator directly. The -S
argument may be repeated to supply multiple directives to the
service configurator.

442 o c i w e b . c o m

C o n f i g u r i n g T A O C l i e n t s a n d S e r v e r s

Synopsis In addition to the open() function, the service configurator provides some
additional functions as part of a control interface. Though not complete, the
class definition below shows the useful functions available to application
developers. Other functions in the public interface to ACE_Service_Config
are for use by other elements of the framework:

class ACE_Export ACE_Service_Config
{
public:

static int open (int argc,
 ACE_TCHAR *argv[],
 const ACE_TCHAR *logger_key = ACE_DEFAULT_LOGGER_KEY,
 int ignore_static_svcs = 1,
 int ignore_default_svc_conf_file = 0,
 int ignore_debug_flag = 0);
static int open (const ACE_TCHAR program_name[],
 const ACE_TCHAR *logger_key = ACE_DEFAULT_LOGGER_KEY,
 int ignore_static_svcs = 1,
 int ignore_default_svc_conf_file = 0,
 int ignore_debug_flag = 0);
static int close (void);
static void reconfigure (void);
static int process_directive (const ACE_TCHAR directive[]);

}

16.5.2 Opening and Closing the Service Configurator
There are two forms of the open() function. The first accepts a list of
command line arguments. The second accepts only a program name. For both
forms, the remaining parameters are optional. Table 16-5 shows the arguments
used by these two functions.

-k logger_key Specify where to write ORB logging output.

Table 16-4 Service Configurator Command Line Arguments

Argument Description

Table 16-5 ACE_Service_Config::open() Arguments

Argument Type Description

argc int
Number of arguments in the argv
list. Usually the same value
supplied as argc to main().

o c i w e b . c o m 443

1 6 . 5 T h e A C E S e r v i c e C o n f i g u r a t o r F r a m e w o r k

Calling ACE_Service_Config::close() shuts down all services and
deletes all memory allocated by the service configurator.

16.5.3 Commanding the Service Configurator
The remaining ACE_Service_Config functions are used by an application
to command the service configurator. These functions provide internal access
to the service configurator similar to the external interface available through
the use of signals and service configuration files. Another way to command

argv ACE_TCHAR*[]

List of command line arguments.
Usually the same value supplied as
argv to main(). argv[0] is
usually the program name.

program_name const ACE_TCHAR[]

Alternate first argument: used when
the command line is not to be
interpreted by the service
configurator.

logger_key const ACE_TCHAR*

Rendezvous point for connection to
the ACE Logger daemon. Default
depends on platform type
(platforms that support stream pipes
use /tmp/server_daemon. Others
use localhost:20012).

ignore_static_svcs int

Indicates that the service
configurator should not process any
static services. Default is 1 (do not
process static services).

ignore_default_svc_conf_file int

Indicates the service configurator
should not read the default service
configuration file, svc.conf, even
if no other file is specified using the
-f command line option. Default is
0 (attempt to read from svc.conf
unless overridden).

ignore_debug_flag int

Indicates that the service
configurator should ignore any
debug settings. If non-zero, the
application is responsible for setting
ACE_Log_Msg::priority_mask
appropriately. Default is 0 (do not
ignore debug settings).

Table 16-5 ACE_Service_Config::open() Arguments

Argument Type Description

444 o c i w e b . c o m

C o n f i g u r i n g T A O C l i e n t s a n d S e r v e r s

the service configurator is to use the service manager (see 16.8). The service
manager uses these functions among others to allow remote configuration of
the service configurator.

The following function instructs the service configurator to reprocess all
directives both in service configuration files and on the command line:

static void reconfigure (void);

Calling ACE_Service_Config::reconfigure() is the same as signalling
the process by using whatever signal the service configurator is set to monitor
(e.g., SIGHUP).

You may provide a single directive to the service configurator using:

static int process_directive (const ACE_TCHAR directive[]);

16.5.4 Additional Directives
In addition to the static and dynamic directives introduced in 16.3, the
service configurator also processes the directives remove, suspend, and
resume.

The remove Directive
Part of the dynamic nature of the service configurator is the ability to remove a
currently-loaded service object. The remove directive causes the service
configurator to call the object’s finalizer, then remove the instance of the
object from the repository. Typically, this would not be done during process
start-up, but might be part of a service configuration file. For example, you
might modify the service configuration file by adding a remove directive, the
send a SIGHUP signal to the process to force the service configurator to re-read
the file and process the directives therein. Another possibility is to use the
service manager to process the directive remotely (see 16.8).

The form of the remove directive is:

remove service_name

For example, to remove a service previously loaded, using the name
my_service, the directive is:

remove my_service

o c i w e b . c o m 445

1 6 . 6 X M L S e r v i c e C o n f i g u r a t o r

The suspend Directive
A running service may be halted for a period of time, without removing the
service from the process, by suspending the service. A suspended service may
be resumed later. The suspend directive causes the service configurator to
call the suspend() function on the associated service object if the service
object is not already suspended.

The form of the suspend directive is:

suspend service_name

For example, to suspend a running service named my_service, the directive
is:

suspend my_service

The resume Directive
A suspended service may be resumed by placing the resume directive in the
service configuration file, then triggering the reprocessing of the configuration
file via a signal. The ability to suspend and resume services is useful for
remote administration of the service configurator. You can also pass the
resume directive remotely using the service manager (see 16.8).

The form of the resume directive is:

resume service_name

For example, to resume a suspended service named my_service, the
directive is:

resume my_service

16.6 XML Service Configurator

By default, ACE uses the classic service configurator (described in 16.5).
However, an XML front end to the service configurator is also provided. It can
be enabled by defining the ACE_HAS_XML_SVC_CONF macro in

446 o c i w e b . c o m

C o n f i g u r i n g T A O C l i e n t s a n d S e r v e r s

$ACE_ROOT/ace/config.h. When this macro is enabled, the ACE library
will be built with support for the XML service configurator and will not
support the classic service configurator format. A script,
$ACE_ROOT/bin/svcconf-convert.pl, is provided that will convert the
classic service configurator files into XML-based service configurator files.

16.6.1 Service Configurator DTD
The file $ACE_ROOT/ACEXML/apps/svcconf/svcconf.dtd contains the
Service Configurator DTD. It is shown here for convenience:

<!-- $Id: svcconf.dtd,v 1.1.1.1 2005/01/03 19:35:39 chad Exp $ -->
<!-- Document Type Definition for XML ACE Service Config files -->

<!-- An ACE_Svc_Conf document contains zero or more entries -->
<!-- The entries are processed in the order they appear -->
<!-- in the ACE_Svc_Conf file. -->
<!ELEMENT ACE_Svc_Conf (dynamic|static|suspend|resume|remove|stream|streamdef)*>

<!-- Streams are separate into two elements. One defines how -->
<!-- the stream should be constructed and the other defines -->
<!-- what to do with it. The identity of a stream is defined -->
<!-- in the first dynamic/static element. -->
<!ELEMENT streamdef ((dynamic|static),module)>
<!-- @@ Do we ever need to suspend/resume/remove modules when -->
<!-- constructing a stream? Should we leave only dynamic -->
<!-- and static here? -->
<!ELEMENT module (dynamic|static|suspend|resume|remove)+>

<!-- A 'stream' element controls the stream object -->
<!-- @@ Likewise, we are reusing the 'module' element here. -->
<!-- Do we ever need to insert new modules into a stream? -->
<!-- Nanbor: I guess we can do that. -->
<!ELEMENT stream (module)>
<!ATTLIST stream id IDREF #REQUIRED>

<!-- A 'dynamic' entry. -->
<!-- @@ The kind of attributes the corresponding initializer -->
<!-- should take seems to be determined by the 'type' -->
<!-- attribute. Should we further partition the dynamic -->
<!-- element definition into several elements? E.g. into -->
<!-- dyn_service_object/dyn_module/dyn_stream? -->
<!-- Nanbor: Will that be too confusing? -->
<!ELEMENT dynamic (initializer)>
<!ATTLIST dynamic id ID #REQUIRED
 status (active|inactive) "active"
 type (module|service_object|stream) #REQUIRED>

o c i w e b . c o m 447

1 6 . 6 X M L S e r v i c e C o n f i g u r a t o r

<!-- Initializing function for dynamic entry. -->
<!ELEMENT initializer EMPTY>
<!ATTLIST initializer init CDATA #REQUIRED
 path CDATA #IMPLIED
 params CDATA #IMPLIED>

<!-- A 'static' entry takes an ID attribute and an optional -->
<!-- parameter lists. -->
<!ELEMENT static EMPTY>
<!ATTLIST static id ID #REQUIRED
 params CDATA #IMPLIED>

<!-- A 'suspend' entry takes an ID attribute. -->
<!ELEMENT suspend EMPTY>
<!ATTLIST suspend id IDREF #REQUIRED>

<!-- A 'resume' entry takes an ID attribute. -->
<!ELEMENT resume EMPTY>
<!ATTLIST resume id IDREF #REQUIRED>

<!-- A 'remove' entry takes an ID attribute. -->
<!ELEMENT remove EMPTY>
<!ATTLIST remove id IDREF #REQUIRED>

16.6.2 XML Service Configurator Syntax
In this section, we discuss the dynamic, static, remove, suspend, and
resume entries of the XML configurator syntax.

16.6.2.1 Dynamic
The dynamic example discussed in 16.3.2 is as follows:

dynamic Resource_Factory Service_Object * mylib:_make_resources() "param ..."

The equivalent in XML format is shown below:

<dynamic id="Resource_Factory" type="Service _Object">
 <initializer path="mylib" init="_make_resources()" params="param ..."/>
</dynamic>

16.6.2.2 Static
The static example discussed in 16.3.1 is as follows:

static Resource_Factory "-ORBoption value ..."

448 o c i w e b . c o m

C o n f i g u r i n g T A O C l i e n t s a n d S e r v e r s

The equivalent in XML format is shown below:

<static id="Resource_Factory" params="-ORBoption value ..."/>

16.6.2.3 Remove
The remove example discussed in 16.5.4 is as follows:

remove my_service

The equivalent in XML format is shown below:

<remove id="my_service"/>

16.6.2.4 Suspend
The suspend example discussed in 16.5.4 is as follows:

suspend my_service

The equivalent in XML format is shown below:

<suspend id="my_service"/>

16.6.2.5 Resume
The resume example discussed in 16.5.4 is as follows:

resume my_service

The equivalent in XML format is shown below:

<resume id="my_service"/>

16.7 Service Objects

The class ACE_Service_Object is the base class for all objects that can be
loaded by the service configurator. Class ACE_Service_Object inherits

o c i w e b . c o m 449

1 6 . 7 S e r v i c e O b j e c t s

from both ACE_Shared_Object and ACE_Event_Handler, as shown in
Figure 16-1. These base classes provide the behavior required to catalog the
service object in a repository, and to provide basic interaction with a reactor.

16.7.1 Interface Definition
All of the virtual functions of a service object’s interface have default no-op
implementations. The class definition below shows the interface to the service
object, including some of the inherited elements:

Synopsis class ACE_Export ACE_Service_Object :
 public ACE_Event_Handler, public ACE_Shared_Object
{
 public:
 ACE_Service_Object (ACE_Reactor * = 0);
 virtual ~ACE_Service_Object (void);
 virtual int suspend (void);
 virtual int resume (void);

 // From ACE_Shared_Object
 virtual int init (int argc, ACE_TCHAR *argv[]);
 virtual int fini (void);
 virtual int info (ACE_TCHAR **info_string, size_t length = 0) const;

 // From ACE_Event_Handler
 virtual int handle_input (ACE_HANDLE fd = ACE_INVALID_HANDLE);

Figure 16-1 ACE Service Object Inheritance

ACE_Shared_Object

init()
fini()
info()

ACE_Event_Handler

handle_input()
handle_output()
handle_timeout()

ACE_Service_Object

suspend()
resume()

450 o c i w e b . c o m

C o n f i g u r i n g T A O C l i e n t s a n d S e r v e r s

 virtual int handle_output (ACE_HANDLE fd = ACE_INVALID_HANDLE);
 virtual int handle_exception (ACE_HANDLE fd = ACE_INVALID_HANDLE);
 virtual int handle_timeout (const ACE_Time_Value ¤t_time,
 const void *act = 0);
 virtual int handle_close (ACE_HANDLE handle, ACE_Reactor_Mask close_mask);
};

The functions shown above are examined in the following subsections.

16.7.2 Service Initialization and Finalization
Dynamic loading and discarding of service objects occurs throughout a
program’s lifetime. Externally, this is facilitated by using the dynamic and
remove directives. A dynamically-loaded object is initialized through a call to
its init() function. When dynamically loading an object, the service
configurator first locates and opens the shared library that contains the
object’s factory function. Then the service configurator invokes the function,
creating a new instance of the object. Finally, the service configurator calls the
new object’s init() function, supplying the initialization parameters from
the service configuration directive. The initialization signature is:

virtual int init (int argc, ACE_TCHAR *argv[]);

As shown above, init() takes arguments supplied with the dynamic
directive in an array as parameters, similar to the program’s main() function.
Statically-loaded objects are also initialized through a call to init(), using
arguments supplied with a static directive. If initialization is successful,
init() returns zero. The function returns -1 if initialization could not
complete.

The service configurator calls the finalizer, not the destructor, when
processing a remove directive. The destructor is called for dynamic objects
only if they are resident in the process when the process is terminated. The
finalizer signature is:

virtual int fini (void);

Although fini() returns a result code, the service configurator framework
does not currently check the value.

o c i w e b . c o m 451

1 6 . 7 S e r v i c e O b j e c t s

16.7.3 Service Creation
The service configurator creates new objects by invoking factory functions. A
conforming factory function may have any name, but it must conform to the
following interface:

typedef void (*ACE_Service_Object_Exterminator)(void *);
ACE_Service_Object * factory (ACE_Service_Object_Exterminator *gobbler);

The factory must return a pointer to a (typically new) instance of the service
object type in question, and must also initialize the gobbler pointer to point
to a function that conforms to the ACE_Service_Object_Exterminator
function interface. This exterminator function is called when it is appropriate
to delete the object.

ACE_Static_Svc_Descriptor
For statically-linked service objects, it is the application’s responsibility to
create an instance of the object and to register the object with the service
configurator. To do this, a factory function, as shown above, must still be
used, and an object of type ACE_Static_Svc_Descriptor must be created
and provided to the service configurator.

The ACE_Static_Svc_Descriptor class shown below is a wrapper around
all the information needed by the service configurator to use static service
objects:

class ACE_Static_Svc_Descriptor
{
 public:
 const ACE_TCHAR *name_;

 int type_;
 ACE_SERVICE_ALLOCATOR alloc_;
 u_int flags_;
 int active_;
 void dump (void) const;
 int operator== (ACE_Static_Svc_Descriptor &) const;
 int operator!= (ACE_Static_Svc_Descriptor &) const;

};

Since ACE_Static_Svc_Descriptor attributes are publicly accessible, no
constructor is needed, other than the default. These attributes are described
below:

452 o c i w e b . c o m

C o n f i g u r i n g T A O C l i e n t s a n d S e r v e r s

• name_ is a string representing the unique identifier used to register the
service with the service configurator. Note that the type is declared as a
const ACE_TCHAR *, rather than a const char *. The macro
ACE_TCHAR enables building on platforms requiring wide character
strings.

• type_ is a value indicating the type of wrapper used by the service
configurator. For service objects, use the macro ACE_SVC_OBJ_T to
initialize the type.

• alloc_ is a pointer to the factory function used to create an instance of the
service object. This function must return a pointer to the appropriate type
of object, usually a pointer to an ACE_Service_Object. As with other
“boilerplate” functions used in conjunction with the service configurator,
there is a macro defined that becomes a service object factory function.
The name of the factory function is represented by the macro
ACE_SVC_NAME(service_object_class_name).

• flags_ is used to communicate destruction semantics for the service object
and its container. There are two values used to set flags_, DELETE_OBJ
and DELETE_THIS, defined in the class ACE_Service_Type.

DELETE_THIS instructs the service configurator to remove the container
of the service object when the service is shut down. DELETE_OBJ instructs
the service configurator to delete the service object as well by invoking
the exterminator supplied by the factory function, after calling fini().
Typically, the container should always be deleted by specifying
DELETE_THIS, and if a service object is created in the factory function, it
should be deleted as well by specifying DELETE_OBJ. These values may
be combined via bitwise OR for assignment to flags_, as in:

ACE_Service_Type::DELETE_THIS | ACE_Service_Type::DELETE_OBJ

• active_ is set to a non-zero value to indicate that the service should be run
in a separate thread by having its activate() function called or being
registered with the reactor.

Helper Macros
ACE defines macros in $ACE_ROOT/ace/Global_Macros.h to simplify the
creation of factory and exterminator functions, as well as static object
descriptors.

o c i w e b . c o m 453

1 6 . 7 S e r v i c e O b j e c t s

Use the following macros in your service object’s class header file to declare
the static functions and classes used to create and manage service objects:

• ACE_STATIC_SVC_DECLARE_EXPORT(EXPORT_NAME,SVC_CLASS)
must be included when your service is to be statically linked with your
application. This macro declares a class with a constructor that will ensure
an instance of your service is created. If necessary (e.g., in Windows
DLLs), the name of the class is exported for visibility outside the library
in which it is defined. The EXPORT_NAME parameter is the prefix for the
export directive (“_Export” will automatically be appended to this
prefix). The export macro has no effect on platforms where it is not
needed. The SVC_CLASS parameter is the name of your service object
class.

Note A header file defining the export macro can be automatically generated using
the Perl script $ACE_ROOT/bin/generate_export_file.pl. The script
provides instructions for using it.

• ACE_STATIC_SVC_DECLARE(SVC_CLASS) is similar to
ACE_STATIC_SVC_DECLARE_EXPORT, except that it does not include the
macro to export the symbol. You can use this macro on platforms that do
not need to export symbols from DLLs. The SVC_CLASS parameter is the
name of your service object class.

• ACE_FACTORY_DECLARE(EXPORT_NAME,SVC_CLASS) declares the
uniquely-named factory function that the service configurator uses to
create an instance of your service class. The parameters are the same as
for ACE_STATIC_SVC_DECLARE_EXPORT.

The following macros are used in the source files to complete the definition of
functions and classes that are declared by the above macros:

• ACE_STATIC_SVC_DEFINE(SVC_CLASS,NAME,TYPE,FN,FLAGS,ACTIVE)
is used to statically initialize an ACE_Static_Svc_Descriptor. The
SVC_CLASS parameter is the name of your service object class. The
remaining parameters are described as the fields of the
ACE_Static_Svc_Descriptor structure.

• ACE_FACTORY_DEFINE(EXPORT_NAME,SVC_CLASS) defines the body
of the factory function declared with ACE_FACTORY_DECLARE. This
factory function creates an instance of your service object and returns a

454 o c i w e b . c o m

C o n f i g u r i n g T A O C l i e n t s a n d S e r v e r s

pointer to it as a pointer to an ACE_Service_Object.
ACE_FACTORY_DEFINE also defines a function to clean up your service
object. The parameters to this macro are the same as for
ACE_FACTORY_DECLARE.

• ACE_SVC_NAME(SVC_CLASS) expands to the name of the service object
factory function. This macro is useful when supplying to the service
configurator a pointer to the factory function.

• ACE_STATIC_SVC_REQUIRE(SVC_CLASS) automatically registers your
service with the service configurator by adding to the service
configurator’s service repository the service descriptor created with the
ACE_STATIC_SVC_DEFINE macro. This macro also creates a static
instance of your service class to ensure that the service is registered before
main().

16.7.3.1 Dynamic Service Example
The following example shows a service object that can be loaded dynamically.
The code compiles to a shared library that is then loaded when the service
configurator processes the dynamic directive for this shared object:

//declare the service
class My_Service: public ACE_Service_Object
{
 public:
 int init (int argc, ACE_TCHAR *argv[]);
 int fini (void);
};

//declare the service factory
ACE_FACTORY_DECLARE (My_Lib, My_Service);

// define the service
int My_Service::init (int argc, ACE_TCHAR *argv[]) {
 // parse the args and get things initialized
 return 0;
}

int My_Service::fini (void) {
 // service is shut down
 return 0;
}
// define the factory
ACE_FACTORY_DEFINE (My_Lib, My_Service)

o c i w e b . c o m 455

1 6 . 7 S e r v i c e O b j e c t s

16.7.3.2 Static Service Example
The following example shows the modifications (in boldface) from the
previous example required to statically instantiate an object and register it
with the service configurator when the service is to be statically linked to the
application.

//declare the service
class My_Service: public ACE_Service_Object
{
 public:
 int init (int argc, ACE_TCHAR *argv[]);
 int fini (void);
};

//declare the static service descriptor
ACE_STATIC_SVC_DECLARE_EXPORT (My_Lib, My_Service);

//declare the service factory
ACE_FACTORY_DECLARE (My_Lib, My_Service);

// define the service
int My_Service::init (int argc, ACE_TCHAR *argv[]) {
 // parse the args and get things initialized
 return 0;
}

int My_Service::fini (void) {
 // service is shut down
 return 0;
}

// define the static service descriptor
ACE_STATIC_SVC_DEFINE (
 My_Service, // our service class
 "My_Static_Service", // the name used to register the service
 ACE_SVC_OBJ_T, // use the service object container
 &ACE_SVC_NAME(My_Service), // a reference to the factory function
 ACE_Service_Type::DELETE_THIS| // delete the container when done
 ACE_Service_Type::DELETE_OBJ, // delete the service object when done
 0); // this object is not active

// define the factory
ACE_FACTORY_DEFINE (My_Lib, My_Service);

// register the service descriptor with the service configurator
ACE_STATIC_SVC_REQUIRE(My_Service);

456 o c i w e b . c o m

C o n f i g u r i n g T A O C l i e n t s a n d S e r v e r s

16.7.4 Service Information
Services are expected to provide information about themselves by overloading
the info() function. The signature of the info() function is:

virtual int info (ACE_TCHAR **info_string, size_t length = 0) const;

The arguments are a pointer to a string buffer and the buffer’s length. If the
provided info_string is a null pointer, the info() function creates a string
buffer. Otherwise, info() copies the information to that buffer using the
provided length as a limit. The result should be the length of the contents in
the buffer, or -1 if there is an error.

16.7.5 Service State
Services may be suspended for a time, then later resumed. To support this
behavior, the service object must overload the following two functions:

virtual int suspend (void);
virtual int resume (void);

The service configurator calls suspend() when it processes a suspend
directive. The service object is expected to enter into a state in which it does
not respond to inputs. For reactor-based services, this usually means
unregistering from the reactor. For active services, the service suspends its
associated thread. A suspended service does not have to finalize itself, as it
will stay resident in the process.

You reactivate a suspended service with resume(), called by the service
configurator when it processes a resume directive. A suspended service
should continue to operate normally after being resumed.

16.7.6 Obtaining Services
When building a dynamically-configured application, it is useful to be able to
locate services by name in a manner similar to using the Naming Service. The
service configurator framework provides this capability by using the
following template for looking up service objects of a particular type by name:

Synopsis template <class TYPE>
class ACE_Dynamic_Service : public ACE_Dynamic_Service_Base
{
public:
 static TYPE* instance (const ACE_TCHAR *name);

o c i w e b . c o m 457

1 6 . 8 A C E S e r v i c e M a n a g e r

};

The function instance() will return a pointer to a service object of the
appropriate type registered with the service configurator, using the specified
name. If no object with that name is found, then instance() will return a
null pointer.

Care must be taken that the service object associated with the name is really of
the specified type. Due to the lack of run-time type safety in some C++
environments, incorrect casting can occur.

The following example uses ACE_Dynamic_Service to obtain a pointer to a
My_Service object:

My_Service* svc_ptr;
svc_ptr = ACE_Dynamic_Service<My_Service>::instance("my_service");

16.8 ACE Service Manager

The service manager is a service object that is statically linked with ACE. It
registers itself with the service configurator using the name
ACE_Service_Manager. The service manager allows users to control the
service configurator via a telnet connection. Using the service manager, it is
possible to send remotely any directive accepted by the service configurator.
Other capabilities include signaling the service configurator to reprocess its
service configurator file, and getting a list of available service objects. The
service manager is configured by the service configurator. Table 16-6 shows
the options that may be supplied to the service manager.

The following example shows how to supply these options to the service
manager using the static directive:

Table 16-6 ACE Service Manager Command Line Arguments

Option Definition

-d Set the service manager to debug mode.

-p portno Specify the port number for listening. Default is 10000.

-s signal
Specify an alternative signal to trigger a reconfiguration.
Default is SIGHUP.

458 o c i w e b . c o m

C o n f i g u r i n g T A O C l i e n t s a n d S e r v e r s

static ACE_Service_Manager "-d -p 3911"

When initialized, the service manager will listen on the specified TCP port for
incoming connections. When a connection is made, a single command is
accepted from the client, the result (if any) is returned, and the connection is
closed. Table 16-7 shows the commands the service manager will accept and
its action in response (commands are case sensitive).

The following example shows how to send commands/directives to the service
manager in a process running on a host named malory listening on port 3911:

$ echo help | telnet malory 3911
$ echo reconfigure | telnet malory 3911
$ echo "suspend my_service" | telnet malory 3911

16.9 Summary

The ACE Service Configurator framework provides a mechanism for
designing systems composed of collections of services and to defer decisions
about service configuration until system deployment. Further, services may be
dynamically configured, meaning they may be loaded or unloaded at any time
during the life of the host process.

Table 16-7 ACE Service Manager Commands

Command Action

directive
Takes any single service configurator directive (dynamic,
suspend, resume, etc.) and processes it using
ACE_Service_Config::process_directive().

help
Iterate through the list of service objects registered with the
service configurator and call the info() function for each.
Returns the collection of object names and information strings.

reconfigure
Causes the service configurator to reprocess the directives in the
service configuration file.

o c i w e b . c o m 459

CHAPTER 17

ORB Initialization Options

17.1 Introduction

Many of the common behaviors of the ORB can be controlled at run time by
passing options to the ORB initialization function, CORBA::ORB_init().
ORB initialization options are commonly passed into the program from the
command line, using the argc and argv parameters made popular by C and
UNIX. However, you can also create and pass these ORB initialization
options programmatically.

You can use ORB initialization options to control the following ORB
behaviors:

• Service configurator behavior.

• Quantity of debugging information output.

• Optimizations applied during request transfer and processing.

• Connection management and protocol selection behavior.

• Use of the Implementation Repository.

All of the ORB initialization command line options are of the form:

460 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

-ORBoption [arguments...]

Some examples are:

-ORBDebug
-ORBRcvSock 1024
-ORBListenEndpoints iiop://localhost:9999

You can pass several options on a single command line, for example:

./server -ORBDebug -ORBCollocation global -ORBCollocationStrategy thru_poa

In addition, you can supply some options more than once on the same
command line. Most ORB initialization options apply to both clients and
servers.

The initialization function parses these options in a case-insensitive manner
(e.g., -ORBCollocationStrategy and -ORBcollocationstrategy are
equivalent), removes them from the argv list, then decrements argc. Since
the command line may also contain options that are specific to your
application, you may find it easier to defer your own application-specific
command line processing until after calling CORBA::ORB_init().

This chapter explains all of the ORB initialization options and describes the
appropriate context for their use.

Note The ORBId, ORBInitRef, ORBDefaultInitRef, ORBListenEndpoints,
ORBNoProprietaryActivation, and ORBServerId options described in
this chapter are part of the standard CORBA specifications. All other options
are TAO-specific.

17.2 Interface Definition

The interface for CORBA::ORB_init() is defined by the OMG CORBA
specification as follows:

// C++
namespace CORBA {
 static ORB_ptr ORB_init(
 int& argc, char** argv, const char* orb_identifier = "");

o c i w e b . c o m 461

1 7 . 2 I n t e r f a c e D e f i n i t i o n

};

The first two arguments to CORBA::ORB_init() are the familiar argc and
argv parameters popularized by C and UNIX for passing command line
arguments to main(). You may frequently pass command line arguments
directly from main() to CORBA::ORB_init() via argc and argv. The third
argument is an ORB identifier that defaults to an empty string. The first time a
particular ORB identifier is used within a process as an argument to
CORBA::ORB_init(), an ORB with that name will be created. Subsequent
calls within the same process, using this same identifier, will return a
reference to the previously-created ORB. You can create more than one ORB
instance in a process by calling CORBA::ORB_init() multiple times, using a
different orb_identifier value each time.

An alternate method for passing orb_identifier to CORBA::ORB_init()
is to pass it in the argv list as the argument for the -ORBId option (i.e.,
-ORBId orb_identifier). If both methods are used, a directly-passed
non-empty value will take precedence over the value of the -ORBId option. In
either case, if orb_identifier refers to a previously-created ORB, all other
arguments passed via the argv list will be ignored because the ORB has
already been initialized.

As stated previously, CORBA::ORB_init() parses arguments from the argv
list and “consumes” any arguments it recognizes that begin with -ORB. This
means the value of argc and the contents of argv may be modified by
CORBA::ORB_init(). If you want to preserve command line arguments, you
should make a copy of the argv array before calling CORBA::ORB_init().
An alternative to using the command line arguments is to construct your own
argument list programmatically (e.g., to pass a unique set of arguments to each
ORB instance in your application).

Note The TAO implementation of CORBA::ORB_init() assumes that argv[0]
contains the program name and begins parsing at argv[1]. So, if you
construct your own argument list, be sure to provide a “dummy” argument for
argv[0].

Here is an example showing how to create your own argument list for
CORBA::ORB_init() programmatically:

462 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

// Set up argv[] array of -ORB options
char* argv[] = {
 "dummy", // argv[0] is skipped
 "-ORBId", "MyORB", // Provide a unique ORB id
 "-ORBDebug", // Enable debug messages
 "-ORBDebugLevel", "6", // Set debug level
 "-ORBListenEndpoints",
 "iiop://myhost:9999", // Specify ORB’s listening endpoint
 0 // argv[] should end with a null value
};

// Set value of argc based on actual contents of argv[]
int argc = (sizeof(argv)/sizeof(char*)) - 1;

//Pass the arguments to CORBA::ORB_init()
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

The first time you call CORBA::ORB_init() with a given ORB identifier, a
new instance of the class TAO_ORB_Core is created. TAO_ORB_Core is the
TAO implementation class for the CORBA::ORB interface. You will find its
class definition in $TAO_ROOT/tao/ORB_Core.h. Each TAO_ORB_Core
instance encapsulates several resources and components used by the ORB
core, such as an acceptor, a root POA, a resource factory, a server strategy
factory, and a client strategy factory. The resource factory is discussed in
Chapter 18, the server strategy factory in Chapter 19, and the client strategy
factory in Chapter 20.

Since each call to CORBA::ORB_init(), using a unique ORB identifier,
creates a new TAO_ORB_Core instance, implementing an ORB-per-thread
concurrency model is as simple as calling CORBA::ORB_init() once from
each thread, making sure to supply a unique ORB identifier for each call. For
example, the thread identifier could be used to generate a unique ORB
identifier. In $TAO_ROOT/performance-tests/Cubit/TAO/MT_Cubit,
you will find sample code for creating an application with an ORB-per-thread
concurrency model.

Since each ORB core instance encapsulates an acceptor, each ORB you create
will be listening on one or more endpoints. These endpoints may be specified
using the -ORBEndpoint or -ORBListenEndpoints option or with the
TAO_ORBENDPOINT environment variable. Otherwise, the ORB creates an
endpoint for each protocol known to the resource factory. The default
configuration of the resource factory causes the ORB to create only an IIOP
endpoint. For more details on endpoints, see the discussion of the

o c i w e b . c o m 463

1 7 . 3 C o n t r o l l i n g S e r v i c e C o n f i g u r a t o r B e h a v i o r

-ORBListenEndpoints option in 17.13.43. For more details on the
supported protocols, see the discussions of TAO’s pluggable protocols in
Chapter 14 and the resource factory in Chapter 18.

You can clean up all the resources allocated to the ORB core during
initialization by calling CORBA::ORB::destroy(). For example:

 // Intialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // ...use the ORB...

 // Release resources.
 orb->destroy();

17.3 Controlling Service Configurator Behavior

TAO uses the ACE Service Configurator framework to support dynamic
creation and configuration of its components. See 16.3 for more information
on how the service configurator is used in TAO.

Table 17-1 lists the options that influence the behavior of the ORB’s service
configurator. They duplicate many of the common options available to
applications built using the service configurator framework. Client and server
applications based on the service configurator framework may either use these
options during ORB initialization or use the corresponding one-letter options
supplied to ACE_Service_Config:open(). Each option is described in
more detail in the referenced section.

Table 17-1 Service Configurator Control Options

Option Section Description

-ORBDaemon 17.13.7 Instruct the process to run as a daemon.

-ORBGestalt context_name 17.13.29
Specifies the service configurator
gestalt to use for this ORB (global,
local, shared, or current).

-ORBIgnoreDefaultSvcConfFile
0|1 17.13.31

Tells the ORB to ignore the file
svc.conf if one happens to be present in
the current directory.

-ORBServiceConfigLoggerKey
logger_key 17.13.58 Specify where to write ORB logging

output.

464 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

17.4 Controlling Debugging Information

Often, during application development and testing, you will want to have
fine-grained control over the amount and type of debugging information you
receive from the application. You may not always have a debugger available,
such as gdb or dbx, to debug a running application. For example, a debugger
may not be available in an embedded environment.

TAO can provide debugging information at several levels of granularity.
Table 17-2 lists options that influence the amount and type of debugging
information generated by an application. Each option is described in more
detail in the referenced section.

-ORBSvcConf config_file_name 17.13.63 Specify an alternate service
configurator file name.

-ORBSvcConfDirective directive 17.13.64 Pass a single directive directly to the
service configurator.

-ORBSkipServiceConfigOpen 17.13.60 Skips loading of a service configurator
file for this ORB.

Table 17-1 Service Configurator Control Options

Option Section Description

Table 17-2 Debugging Control Options

Option Section Description

-ORBDebug 17.13.8 Instruct the process to print debug messages
from the ACE Service Configurator component.

-ORBDebugLevel level 17.13.9 Set the maximum tolerance for debugging
messages reported from TAO.

-ORBLogFile file 17.13.44 Redirect all ACE_DEBUG and ACE_ERROR output
to a file.

-ORBObjRefStyle style 17.13.52 Specify the format used to print Interoperable
Object References (IORs).

-ORBVerboseLogging n 17.13.71
Controls the amount of status data printed on
each line of the debug log. Higher numbers
generate more output.

o c i w e b . c o m 465

1 7 . 5 O p t i m i z i n g R e q u e s t P r o c e s s i n g

17.5 Optimizing Request Processing

Often it is possible to achieve better performance and reduce latency by
optimizing certain stages of request processing in the ORB. Table 17-3 lists
options to control various optimizations during request processing. Each
option is described in more detail in the referenced section.

Table 17-3 Request Processing Optimization Options

Option Section Description

-ORBAMICollocation enabled 17.13.2
Controls the use collocation
optimizations for AMI
invocations.

-ORBCDRTradeoff maxsize 17.13.3
Control the trade-off strategy
between copy and no-copy
marshaling of octet sequences.

-ORBCollocation type 17.13.4 Specify the use and type of
collocated object optimization.

-ORBCollocationStrategy strategy 17.13.5 Specify the collocated object
strategy.

-ORBNegotiateCodesets enabled 17.13.48 Specify whether codeset
negotiation should be used at all.

-ORBNodelay enabled 17.13.49 Sets the TCP_NODELAY option that
disables the Nagle algorithm.

-ORBRcvSock receive_buffer_size 17.13.56 Specify the size, in bytes, of the
socket receive buffer.

-ORBSingleReadOptimization enabled 17.13.59
Specify whether or not the ORB
will use a single read operation
when reading request messages.

-ORBSndSock send_buffer_size 17.13.61 Specify the size, in bytes, of the
socket send buffer.

-ORBStdProfileComponents enabled 17.13.62
Specify whether or not the ORB
generates the optional standard
profile components in IORs.

-ORBDisableRTCollocation boolean 17.13.11

Controls whether collocation
optimization decisions in RT
CORBA applications use the
real-time collocation resolver

466 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

17.6 Connection Management and Protocol Selection

ORBs send and receive requests and replies using various messaging and
transport protocols. Each protocol has its own concept of an endpoint. Table
17-4 lists options to manage connections and to control protocol selection
within your application. Each option is described in more detail in the
referenced section.

Table 17-4 Connection Management and Protocol Selection Options

Option Section Description

-ORBAcceptErrorDelay seconds 17.13.1 Defines a delay to use after an accept
fails before attempting a new accept.

-ORBDottedDecimalAddresses enable 17.13.13

For IP addresses under IIOP, use
dotted decimal notation rather than
host name. Other protocols use a
suitable character representation of a
numeric address.

-ORBEndpoint endpoint(s) 17.13.15 Deprecated in favor of
-ORBListenEndpoints.

-ORBEnforcePreferredInterfaces
enforce 17.13.16

Specifies whether specification for
-ORBPreferredInterfaces option
needs to be enforced.

-ORBIIOPClientPortBase base 17.13.32 Set the base of a range of ports a client
is limited to using.

-ORBIIOPClientPortSpan span 17.13.33 Set the span of a range of ports a client
is limited to using.

-ORBLaneEndpoint laneid
endpoint(s) 17.13.40 Deprecated in favor of

-ORBLaneListenEndpoints.

-ORBLaneListenEndpoints laneid
endpoint(s) 17.13.41 Provide a collection of endpoints for a

specific RTCORBA thread pool lane.

-ORBListenEndpoints endpoint(s) 17.13.43 Specify that the ORB is to listen for
requests on the specified endpoint(s).

-ORBNoServerSideNameLookups
enabled 17.13.51 Allows disabling of server side host

name look-ups.

-ORBParallelConnectDelay msecs 17.13.53
Sets the connect delay when the
-ORBUseParallelConnects
option is specified.

-ORBUseParallelConnects
enabled 17.13.69

Specify whether or not interfaces in a
profile are connected to serially or in
parallel.

o c i w e b . c o m 467

1 7 . 7 S o c k e t C o n f i g u r a t i o n O p t i o n s

17.7 Socket Configuration Options

The options in this section control various options and attributes of sockets
and other communication resources used by the ORB. Table 17-5 lists the
options related to configuring these resources. Each option is described in
more detail in the referenced section.

17.8 Service Location Options

The options in this section assist in locating specific services or with the
general resolve_initial_references() mechanism. Table 17-6 lists the

-ORBPreferredInterfaces list 17.13.55 Affects how network interfaces are
selected on multi-homed hosts.

-ORBUseSharedProfile enabled 17.13.70
Specify whether or not the ORB should
combine multiple endpoints into a
single profile.

Table 17-4 Connection Management and Protocol Selection Options

Option Section Description

Table 17-5 Socket-Related Options

Option Section Description

-ORBDontRoute enabled 17.13.12 Set the SO_DONTROUTE option on
the TCP sockets used.

-ORBIPHopLimit enabled 17.13.37
Specifies the TTL (IPv4) or hop limit
(IPv6) for datagrams sent over a
socket.

-ORBIPMulticastLoop enabled 17.13.38 Specifies the multicast loop option
when using MIOP.

-ORBKeepAlive enabled 17.13.39 Set the SO_KEEPALIVE option on
the TCP sockets used.

-ORBLingerTimeout timeout 17.13.42 Set the linger timeout on a TCP
socket before closing it.

468 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

options related to service location. Each option is described in more detail in
the referenced section.

17.9 IPv6-Related Options

TAO provides a number of options related to its support of IPv6. Table 17-7
lists the ORB initialization options related to IPv6. These options are only
available when TAO is built with IPv6 support enabled, through either the
MPC ipv6 feature or ACE_HAS_IPV6. Each option is described in more detail
in the referenced section.

Table 17-6 Service Location Options

Option Section Description

-ORBDefaultInitRef URL_prefix 17.13.10
Specifies default URL prefix to
apply when resolving initial object
references.

-ORBImplRepoServicePort port 17.13.35
Specify the port on which the
Implementation Repository Service
listens for multicast requests.

-ORBInitRef ObjectID=IOR 17.13.36 Specify an object reference for an
initial service.

-ORBMulticastDiscoveryEndpoint
endpoint 17.13.46

Specify the endpoint on which the
Naming Service listens for multicast
requests.

-ORBNameServicePort port 17.13.47
Specify the port on which the
Naming Service listens for multicast
requests.

-ORBTradingServicePort port 17.13.65
Specify the port on which the
Trading Service listens for multicast
requests.

Table 17-7 IPv6-Related Options

Option Section Description

-ORBConnectIPV6Only enabled 17.13.6 Specifies whether to only use and
support IPv6 connections.

-ORBPreferIPV6Interfaces enabled 17.13.54
When connecting to a server, specify
whether to prefer IPv6 endpoints
over IPv4 endpoints.

-ORBUseIPV6LinkLocal enabled 17.13.67 Specify whether IPv6 link local
addresses should be used.

o c i w e b . c o m 469

1 7 . 1 0 M u l t i p l e I n v o c a t i o n R e t r y O p t i o n s

17.10 Multiple Invocation Retry Options

In cases such as connection timing issues or a load balancing server is
temporarily not able to handle requests, it may be desirable to have the ORB
transparently retry an invocation a maximum number of times until a
successful invocation is made. To support this, a set of options can be used to
cycle over the base and location forwarded profiles until an invocation is
successful. When cycling over profiles and the first base profile is to be used,
a user-defined delay is made before retrying.

Note For backward compatibility, the -ORBForward* options described in 17.11
are retained. However, if any option in this section is used, then any
-ORBForward* option given in 17.11 is ignored.

These options can be used in the following situations:

• Initial connection - If the connection to a server would result in a
CORBA::TRANSIENT exception being thrown, cycle over profiles no
more than the value of the -ORBForwardOnTransientLimit option
before throwing the exception.

• Waiting for a reply from the server - When using the IIOP protocol, on
many platforms if zero bytes is read as the server's reply, this could
indicate that the server may have had a disorderly shutdown or the
connection to the server was abruptly terminated. In this case cycling
through the profiles to retry the request will not exceeding the value of
-ORBForwardOnReplyClosedLimit. If for example the
Implementation Repository and Activator are used to start the server then
this cycling could be used to give the server enough time to re-launch.
When this option is used the -ORBForwardOnTransientLimit
option should also be used to avoid exceptions being thrown when trying
to reestablish a connection.

Note Note that because it is not known if the request was sent, this could result in
the request being processed more than one by the server. Therefore this option
should be used with care. This is why, although a CORBA::COMM_FAILURE
exception is normally thrown in this case, this option is kept distinct from
-ORBForwardOnCommFailureLimit discussed below.

470 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

• Server sends an exception as a reply - A reply is received and it is checked
if it is an exception. If the exception is of type COMM_FAILURE with
completion status of COMPLETED_NO, then the profiles will be cycled no
more than the value of option -ORBForwardOnCommFailureLimit
until a successful reply is received. Similar retries can be applied to
TRANSIENT exceptions (-ORBForwardOnTransientLimit),
OBJECT_NOT_EXIST exceptions
(-ORBForwardOnObjectNotExistLimit), and INV_OBJREF
exceptions (-ORBForwardOnInvObjrefLimit).

These options can also be used in the list of Client_Strategy_Factory options
in the service configurator file described in 16.3.1. Using the service
configurator file can help insure these options are uniformly applied across
multiple clients by having them use the same configurator file.

The retry options are given in the table below.
Table 17-8 Multiple Invocation Retry Options

Option Section Description

-ORBForwardDelay int msecs 17.13.17

Defines the time to delay while
cycling through profiles when
the first base profile is to be
tried.

-ORBForwardOnCommFailureLimit limit 17.13.23

Use this option to cycle through
profiles when a server replies to
a request with a
COMM_FAILURE exception.
The number of retries will not
exceed limit.

-ORBForwardOnInvObjrefLimit limit 17.13.24

Cycle through profiles when a
server replies to a request with a
INV_OBJREF exception. The
number of retries will not
exceed limit.

-ORBForwardOnObjectNotExistLimit
limit 17.13.25

Cycle through profiles when a
server replies to a request with a
OBJECT_NOT_EXIST
exception. The number of
retries will not exceed limit.

-ORBForwardOnReplyClosedLimit limit 17.13.26

Cycle through profiles when it
has been detected that a
connection is closed when
reading a server reply.

o c i w e b . c o m 471

1 7 . 1 1 I m p l e m e n t a t i o n R e p o s i t o r y O p t i o n s

17.11 Implementation Repository Options

Table 17-9 lists client options that are either directly or indirectly related to
using a server with the Implementation Repository. Each option is described
in more detail in the referenced section.

Note The Multiple Invocation retry options discussed in 17.10 can also impact the
behavior of clients and servers when using the Implementation Repository..

-ORBForwardOnTransientLimit limit 17.13.27

Cycle through profiles when
establishing a connection with a
server or when a server replies
to a request with a TRANSIENT
exception.

Option Section Description

Table 17-9 Implementation Repository Options

Option Section Description

-ORBForwardInvocationOnObjectNotExist
enabled 17.13.18

Controls the handling of the
OBJECT_NOT_EXIST
exception after location
forwards.

-ORBForwardOnceOnObjectNotExist
enabled 17.13.19

Limits the retries of forwarding
attempts after an
OBJECT_NOT_EXIST
exception

-ORBForwardOnceOnCommFailure enabled 17.13.20
Limits the retries of forwarding
attempts after a
COMM_FAILURE exception

-ORBForwardOnceOnTransient enabled 17.13.21
Limits the retries of forwarding
attempts after a Transient
exception

-ORBForwardOnceOnInvObjref enabled 17.13.22
Limits the retries of forwarding
attempts after an INV_OBJREF
exception

472 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

17.12 Miscellaneous Options

Table 17-10 lists certain miscellaneous ORB initialization options.
Each option is described in more detail in the referenced section.

-ORBIMREndpointsInIOR enabled 17.13.32

Controls whether IMR or the
server’s endpoints should be
used in the persistent POA
IORs.

-ORBServerId server_id 17.13.57 A CORBA 3 option to uniquely
identify a server to an IMR.

-ORBUseIMR enabled 17.13.66 Enables the use of the IMR for
persistent POAs.

Table 17-9 Implementation Repository Options

Option Section Description

Table 17-10 Miscellaneous Options

Option Section Description

-ORBFTSendFullGroupTC
enabled 17.13.28

Controls what is passed as the
IOP::FT_GROUP_VERSION service
context to IOGRs.

-ORBId orb_name 17.13.30 Sets the name of an ORB to orb_name.

-ORBNoProprietaryActivation 17.13.50

A CORBA 3 option to specify that a
server should avoid the use of any
proprietary activation framework (e.g.,
registration with an Implementation
Repository) upon start up.

-ORBMaxMessageSize bytes 17.13.45
Controls GIOP fragmentation for
messages that TAO sends by specifying
a maximum message size.

-ORBUseLocalMemoryPool
enabled 17.13.68

Specifies whether TAO should use a
local memory pool or the platform’s
default memory allocator for allocating
its internal memory needs.

o c i w e b . c o m 473

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

17.13 Option Descriptions

The remainder of this chapter describes the individual ORB initialization
options that may be passed, either programmatically or from the command
line, to the ORB initialization function, CORBA::ORB_init().

17.13.1 ORBAcceptErrorDelay seconds

Description When a transient error, such as running out of file handles, causes the ORB to
fail to accept new connections, this option controls how long the ORB waits
before attempting to accept new connections.

This option affects IIOP, SSLIOP, SCIOP, SHMIOP, and UIOP.

Usage Some rare applications may want to set this option to optimize their behavior
when running out of file descriptors. Most applications should use the default.

Example The following example shows how to use the -ORBAcceptErrorDelay
command line option to specify an accept delay of 30 seconds:

myserver -ORBAcceptErrorDelay 30

Values for seconds

5 (default) Be default, the ORB will wait five seconds after a transient
failure before attempting to accept new connections.

> 0
Delay in seconds before attempting to accept new
connections in the event that a transient error occurs.

0
A value of zero means that another attempt should not be
made and no new connections will be accepted after a
transient error.

474 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

17.13.2 ORBAMICollocation enabled

Description By default, AMI invocations to collocated objects result in the servant being
called on the client’s thread. Because this essentially forces the AMI call to be
synchronous, many applications find this undesirable. This option allows the
user to directly control the use of collocation optimizations for AMI when
they are otherwise enabled through -ORBCollocation.

Usage Use this option to disable AMI collocation optimizations, when a client
requires all AMI calls to be truly asynchronous, but doesn’t want to disable all
collocation optimizations.

See Also 15.4.5, 17.13.4, 17.13.5

Example The following example shows how to use the -ORBAMICollocation
command line option to disable collocation for AMI invocations:

myserver -ORBAMICollocation 0

17.13.3 ORBCDRTradeoff maxsize

Description Excessive data copying is a significant source of memory management
overhead during request processing. Resizing internal marshaling buffers
multiple times when encoding large operation parameters leads to excessive
data copying.

TAO minimizes unnecessary data copying by keeping a linked list of
Common Data Representation (CDR) buffers. Operation arguments are
marshaled into buffers allocated from thread-specific storage (TSS). The

Values for enabled

1 (default) Enables collocation optimization for AMI invocations. The
servant is called on the calling thread.

0
Disables collocation optimization for AMI invocations. The
invocation is performed as a remote call and the servant is
called on one of the ORB’s processing threads.

Values for maxsize

256 (default) The actual default is defined in $ACE_ROOT/ace/OS.h as
ACE_DEFAULT_CDR_MEMCPY_TRADEOFF.

>= 0
The maximum octet sequence size that can utilize the
current message block.

o c i w e b . c o m 475

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

buffers are linked together to minimize data copying. Gather-write I/O system
calls, such as ::writev(), can then write these buffers atomically without
requiring multiple OS calls, unnecessary data allocation, or copying.

However, if an octet sequence is small and the last buffer in the linked list
contains enough unused space for this sequence, copying into that buffer is
more efficient than allocating additional buffers and appending them to the
linked list.

If the length of the octet sequence is smaller than maxsize and there is room
in the current message block for it, it will be copied there. This option is useful
when applications can predict the octet sequence length and can therefore
marshal without copying. By carefully choosing the value of maxsize, you
can increase marshaling speed, avoid extra pointers and message blocks, and
reduce the overall message size.

Usage Both server and client applications may use this option. The value of maxsize
should be chosen to achieve a balance between message block overhead and
the copying of octet sequences.

See Also Applying Optimization Principle Patterns to Real-time ORBs, 3.2, available
via <http://www.theaceorb.com/references/>.

Example The following example shows how to use the -ORBCDRTradeoff command
line option to specify a CDR data copy trade-off value of 1024:

myserver -ORBCDRTradeoff 1024

17.13.4 ORBCollocation is_allowed

Description When a client invokes an operation on a CORBA object whose servant is in
the same address space (i.e., the same process), the client and servant are said
to be collocated. TAO optimizes collocated client/servant configurations by
generating collocation stubs for the client. These stubs bypass several layers

Values for is_allowed

global (default)
Objects within the same address space, even if from different
ORBs, are considered collocated.

yes Deprecated - means the same thing as global.

per-orb Only objects from the same ORB are considered collocated.

no Assume collocation is not possible and avoid testing for it.

476 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

of marshaling, networking, demultiplexing, demarshaling, and dispatching
logic, resulting in dramatically increased performance and decreased latency.
This option controls in which situations TAO will use the collocation stubs.

Usage Normally, allowing for collocation is desirable. When the collocation
optimization is turned off, every request, even on collocated objects, involves
calling through the ORB and into the kernel, at least to the level of a loopback
connection. However, if you are certain an application cannot use collocation,
you can explicitly disallow the collocation optimization to avoid the slight
overhead of determining whether a client and servant are collocated. You may
also direct the IDL Compiler to not generate the collocation stubs and thus
achieve a smaller memory footprint (see 4.13 for details).

Both server and client applications may use this option.

Note Collocation may not be desirable for some real-time applications since
collocated function invocations are run in the client’s thread-of-control and
this can cause priority inversions under some circumstances.

See Also 17.13.5, 17.13.11

Example The following example shows how to use the -ORBCollocation command
line option to disallow the collocation optimization.
myserver -ORBCollocation no

In addition, for an example that utilizes this option, see
$TAO_ROOT/performance-tests/Cubit/TAO/IDL_Cubit/collocation_test.cpp.

17.13.5 ORBCollocationStrategy strategy

Description As described in 17.13.4, using the collocation optimization allows requests to
be dispatched more directly to collocated servants, bypassing several layers of
marshaling, networking, demultiplexing, demarshaling, and dispatching logic.

Values for strategy

thru_poa (default)
TAO uses a collocated object implementation that respects
the POA’s current state and policies.

direct
Invocations on collocated objects become direct calls to the
servant without checking the POA’s status.

o c i w e b . c o m 477

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

This option controls which of two collocation stubs is used by clients when the
collocation optimization is applied.

The default is thru_poa, which will deliver the request through the POA with
which the servant is registered. The direct strategy will directly deliver the
request from the stub to the servant, bypassing the POA. This is a
TAO-specific extension and will behave differently in certain situations as
described below.

Usage If the thru_poa strategy is used, a safe collocated stub is used to handle
operation invocations on a collocated object. Though not as fast as a direct
virtual function call, these safe collocated stubs are still very efficient,
especially compared to normal operation invocations on collocated objects
that must go through demarshaling and the loopback interface. Invoking an
operation via the safe collocated stub ensures that:

• The servant’s ORB has not been shut down.

• The thread-safety of all ORB and POA operations is maintained.

• The POA that manages the servant still exists.

• The POA Manager of this POA is queried to make sure upcalls are
allowed to be performed on the POA’s servants.

• The servant for the collocated object is still active.

• The POACurrent’s context is set up for this upcall.

• The POA’s threading policy is respected.

Using the direct strategy optimizes for the common case and ensures that
performance is the same as for a direct virtual function call. Invoking an
operation via the direct collocated stub causes the following non-standard
behaviors:

• The POACurrent is not set up.

• Interceptors are bypassed.

• POA Manager state is ignored.

• Servant Managers are not consulted.

• Etherealized servants can cause problems.

• Location forwarding is not supported.

• The POA’s Thread_Policy is circumvented.

478 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

Note Using the direct collocation strategy is not CORBA-compliant. It may also
be less reliable than the thru_poa strategy for the reasons cited above.
However, direct invocations on collocated objects may be desirable in some
real-time applications with very stringent latency requirements.

See Also 17.13.4, 17.13.11

Example The following example shows how to use the -ORBCollocationStrategy
command line option to allow direct operation invocations on collocated
objects, thereby bypassing the POA altogether:

myserver -ORBCollocationStrategy direct

In addition, for an example that utilizes this option, see

$TAO_ROOT/performance-tests/Cubit/TAO/IDL_Cubit/collocation_test.cpp.

17.13.6 ORBConnectIPV6Only enabled

Description This option is only available when TAO is built with IPv6 support enabled,
through either the MPC ipv6 feature or ACE_HAS_IPV6.

Enabling this option on the server side, tells TAO to only allow IPv6
interfaces as endpoints, only include IPv6 interfaces in IOR profiles, and
either prevent or block IPv6 to IPv4 connections. Enabling this option on the
client side causes IPv4 interfaces in IORs to be ignored and only IPv6
interfaces to be used.

This option affects IIOP, DIOP, and MIOP.

Usage Specify this option when your application must only use IPv6. Most
applications would benefit from inter-operation with IPv4 by leaving it
disabled.

See Also 17.13.54, 17.13.67

Values for enabled

0 (default) Does not force exclusive use of IPv6.

1 Forces TAO to exclusively use IPv6.

o c i w e b . c o m 479

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

Example The following example shows how to use the -ORBConnectIPV6Only
command line option to restrict TAO to only using IPv6 interfaces:

myserver -ORBConnectIPV6Only 1

17.13.7 ORBDaemon
Description Use -ORBDaemon to instruct the process to run as a daemon. In a UNIX

environment, this means several things:

• The TTYs (terminals) associated with the process, including stdin,
stdout, and stderr, are closed.

• The process will ignore SIGHUP signals, so signals generated from the
terminal on which the process was launched will not affect it.

• The working directory of the daemon process is set to the root directory,
so the file system from which it was launched can be safely unmounted
while it is running

• The umask settings of the daemon process are cleared, so the permission
bits in the inherited file mode creation mask do not affect the permission
bits of new files created by the process.

Using -ORBDaemon on the command line is equivalent to passing the -b
option to the open() function of the ACE_Service_Config class.

Usage Both server and client applications may use this option, but it is most
applicable to long-running servers that need to run in the background,
disconnected from any terminals. Since it is a command line option, you can
still interact with these applications during development and testing, then use
the option upon deployment. It uses mechanisms already available through the
supplied service configurator, saving you the work of implementing this
behavior yourself.

This option is effective only in environments where ACE::fork() is
implemented. This excludes, for example, Win32 and VxWorks.

Example The following example shows how to use the -ORBDaemon command line
option to daemonize a server process:

myserver -ORBDaemon

480 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

17.13.8 ORBDebug
Description The -ORBDebug option enables the printing of ACE and TAO debug

messages generated by the ACE Service Configurator framework. You can
use this option on the command line to enable the printing of additional debug
information during development and testing, then disable the printing of such
information (by not including the option on the command line) during
deployment. Using -ORBDebug on the command line is equivalent to passing
the -d option to the open() function of the ACE_Service_Config class.

Usage Both server and client applications may use this option. It affects the printing
of debugging information from the TAO ORB core, connection handling, and
protocol handling code.

See Also 16.4, 17.13.9

Example The following example shows how to use the -ORBDebug command line
option to enable the output of debugging information from a server process.

myserver -ORBDebug

17.13.9 ORBDebugLevel level

Description Sets the maximum tolerance for debugging messages reported from TAO. The
default is to not print optional debugging messages.

Usage Use this option for fine-grained control over the amount of debugging
information printed from applications. The environment variable
TAO_ORB_DEBUG supersedes this option. Both server and client applications
may use this option.

Nearly all messages controlled by the debug level have a threshold of 0. Thus,
choose a debug level of 1 to see most debugging messages.

GIOP commands (sent and received) will dump information about messages if
the debug level is greater than 4, and will include the message contents if the
level is set greater than 9.

Values for level

0 (default) No optional debugging messages are printed.

> 0 Debugging messages with a threshold less than level will be printed.

o c i w e b . c o m 481

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

GIOP synchronous invocations will report exceptions raised during invocation
if the debug level is greater than 5.

See Also 16.4, 17.13.8

Example The following example shows how to use the -ORBDebugLevel command
line option to control the level of debugging information printed from a server.

myserver -ORBDebugLevel 6

17.13.10 ORBDefaultInitRef URL_prefix
Description The -ORBDefaultInitRef option supplies the ORB with a default URL

prefix to be used in resolving object IDs that have not been mapped to a URL
by the -ORBInitRef option.

When an application calls resolve_initial_references("ObjectID"),
the ORB processes the call as follows:

If ObjectID is found in the -ORBInitRef mapping table, the associated
URL is immediately resolved into an object reference.

If ObjectID is not found in the -ORBInitRef mapping table, then:

• If the ORB was supplied with a default URL prefix through the
-ORBDefaultInitRef option,

- A URL is constructed by appending a protocol-specific object key
delimiter (e.g., ‘/’) to URL_prefix, then appending ObjectID to
the resulting string (e.g. URL_prefix/ObjectID).

- The ObjectURL is then resolved into an object reference.

• If the ORB was not supplied with a default URL prefix, a built-in
mechanism (such as IP multicast query) may be used to locate the
ObjectID object.

Note TAO does not support the OMG-recommended http and ftp formats.

Usage Both server and client applications may use this option. Although it is not an
error to repeat this option, each successive use of it will overwrite the previous
one, so there is no advantage to be gained from repeating it.

482 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

When many initial services share a common URL prefix, it can be convenient
to provide a -ORBDefaultInitRef as an alternative to a separate
-ORBInitRef for each service.

The -ORBDefaultInitRef option should be used with caution, because it
overrides the built-in resolution mechanism for every initial service, except
those specified by -ORBInitRef. For example, suppose that an application
uses both the Naming Service and the Trading Service, and that these services
do not share the same address. If the Trading Service is specified through the
-ORBInitRef option, then resolve_initial_references() will use the
built-in mechanism to resolve the Naming Service.

However, if the Trading Service address is specified through
-ORBDefaultInitRef, and the Naming Service is not specified by
-ORBInitRef, then resolve_initial_references() will use the
Trading Service address to construct an ObjectURL for both the Naming
Service and the Trading Service. Any attempt by the application to connect to
the Naming Service will fail.

The format for URL_prefix is:

<URL_prefix> = <corbaloc> | <protocol>
<corbaloc> = "corbaloc:" [<protocol_id>] ":" <address_list>
<protocol> = [<protocol_id_loc> "://"] <address_list>
<protocol_id> = "iiop" | "uiop" | "shmiop" | <ppiop>
<protocol_id_loc> = <iiop> | <uiop> | <shmiop> | "mcast" | <ppiop>
<iiop> = "iiop" | "iioploc"
<uiop> = "uiop" | "uioploc"
<shmiop> = "shmiop" | "shmioploc"
<ppiop> = pluggable protocol identifier added to TAO
<address_list> = [<address> ","]* <address>
<address> = <iiop_addr> | <uiop_addr> | <shmiop_addr> | <mcast_addr> |
<ppiop_addr>

<iiop_address> = [<version> <host> [":" <port>]]
<uiop_addr> = [<version> <path> ["/" <filename>]]
<shmiop_addr> = [[<version>] [<host> ":"] [<port>]]
<mcast_addr> = [<mcast_group>] ":" [<mcast_port>] ":" [<nic_addr>] ":" [<tll>]

<ppiop_addr> = defined by the pluggable protocol
<host> = DNS-style_Host_Name | ip_address | "[" ipv6_address "]"
<port> = number
<version> = <major> "." <minor> "@" | empty_string
<major> = <minor> = number
<path> = ["/" <directory_name>]*
<filename> = <directory_name> = string

o c i w e b . c o m 483

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

Use of the new corbaloc syntax is preferred. The use of all other URLs, such
as iioploc, is deprecated.

For corbaloc, the default protocol is “iiop”, and the default port is 2809.
corbaloc also supports the “rir” (resolve initial reference) protocol, but this
is not applicable to -ORBDefaultInitRef or -ORBInitRef because we are
defining the initial references. See 22.4.1 for more details on corbaloc.

IPv6 style addresses are supported only in IIOP version 1.2, therefore you
must explicitly specify version 1.2 when supplying an IPv6 address. For
example corbaloc::1.2@[::1]:12345/service to define a service
running on the localhost at port 12345. IPv6 style addresses are only available
when TAO is built with IPv6 support enabled, through either the MPC ipv6
feature or ACE_HAS_IPV6.

Multicast allows clients to discover the address of a service. The service
listens on the multicast address for requests from clients and the service
responds with the service’s address. The default initial reference is
mcast://:::.

For <mcast_addr>, the default multicast group is 224.9.9.2. This multicast
group must be a class D address in the range 224.0.0.0 to 239.255.255.255.
The default multicast port is 100131. The default NIC is eth0. The default
TTL value is 1. TTL is the Time To Live—the number of hops outgoing
packets will travel. A value of 1 means outgoing packets will only travel as far
as the local subnet.

Note If -ORBInitRef is used to define a particular ObjectID, that definition will
take precedence over -ORBDefaultInitRef.

See Also 17.13.43, 17.13.36
For more information on using TAO’s pluggable protocols, see Chapter 14.

Examples Using multicast for service discovery
The following examples show how to use the mcast: protocol to find a
service.

1. If a <object_key> is appended, as allowed in -ORBInitRef, the default is
different for the different well-defined services. 10013 is the default if an
<object_key> is not provided or “NameService” is the <object_key>. See
$TAO_ROOT/tao/default_ports.h for the other defaults.

484 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

Start the Naming Service listening to multicast requests by specifying the
-m 1 option:

tao_cosnaming -m 1

Start an application server without specifying an initial reference for the
Naming Service, thereby relying on the default multicast discovery behavior:

myserver

The invocation of

orb->resolve_initial_references("NameService");

from within myserver causes the ORB to retrieve the object reference using
multicast.

If you want to specify a different multicast group instead of the default, you
can use the following syntax:

tao_cosnaming -ORBMulticastDiscoveryEndpoint 234.5.6.7:8910 -m 1
myserver -ORBDefaultInitRef mcast://234.5.6.7:8910

Using both -ORBInitRef and -OBDefaultInitRef
The following example shows how to use both -ORBDefaultInitRef and
-ORBInitRef to specify the locations of the Naming Service, Trading
Service, and ImplRepo Service.

Start a Naming Service on tango:

tao_cosnaming -ORBListenEndpoints iiop://tango:6666

Start another Naming Service on salsa:

tao_cosnaming -ORBListenEndpoints iiop://salsa:7777

Start the Trading Service on polka:

tao_costrading -ORBListenEndpoints iiop://polka:8888

Start the ImplRepo Service on waltz:

o c i w e b . c o m 485

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

tao_imr_locator -ORBListenEndpoints iiop://waltz:2809

Start an application server:

myserver -ORBInitRef TradingService=corbaloc::polka:8888 \
 -ORBDefaultInitRef corbaloc::tango:6666,salsa:7777,waltz

The invocation of

orb->resolve_initial_references("TradingService");

from within myserver causes the ORB to attempt string_to_object()
with the following URL:

corbaloc:iiop:polka:8888/TradingService

When myserver attempts to connect to the Trading Service, the ORB will
attempt to connect on polka:8888.

The invocation of

orb->resolve_initial_references("NameService");

from within myserver causes the ORB to attempt string_to_object()
with the following URLs:

corbaloc:iiop:tango:6666/NameService
corbaloc:iiop:salsa:7777/NameService
corbaloc:iiop:waltz:2809/NameService

or equivalently:

corbaloc::tango:6666,:salsa:7777,:waltz:2809/NameService

When myserver attempts to connect to the Naming Service, the ORB will
attempt to connect first on tango:6666, then on salsa:7777. If both of
these attempts fail, it will make an attempt to connect on waltz:2809, but
this attempt will fail because the Naming Service is not running on waltz.

The invocation of

orb->resolve_initial_references("ImplRepoService");

486 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

from within myserver causes the ORB to attempt string_to_object()
with the following URLs:

corbaloc::tango:6666,:salsa:7777,:waltz:2809/ImplRepoService

When myserver attempts to connect to the Implementation Repository, the
ORB will attempt to connect first on tango:6666, then on salsa:7777, but
these attempts will fail because the ImplRepo Service is not running on either
tango or salsa. The ORB will then attempt to connect on waltz:2809,
where the ImplRepo Service was started.

Multiple services share the same address
The following example shows how to specify a default URL prefix for a
Naming Service and Trading Service that share the same address.

Assume that a custom driver called Finder has been written for a Naming
Service and Trading Service that share the same ORB. (For an example of a
custom Naming Service driver, see 22.6.2.)

Start both the Naming Service and the Trading Service on tango:9999

Finder -ORBListenEndpoints iiop://tango:9999

The application server may be started using either the -ORBInitRef option

myserver -ORBInitRef NameService=corbaloc::tango:9999/NameService -ORBInitRef
TradingService=corbaloc::tango:9999/TradingService

or the -ORBDefaultInitRef option (much less typing involved)

myserver -ORBDefaultInitRef corbaloc::tango:9999

In either case, the invocation of

orb->resolve_initial_references("NameService");

from within myserver causes the ORB to use the following URL:

corbaloc:iiop:tango:9999/NameService

The invocation of

o c i w e b . c o m 487

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

orb->resolve_initial_references("TradingService");

causes the ORB to use the following URL:

corbaloc:iiop:tango:9999/TradingService

Thus, when myserver attempts to connect to either the Naming Service or the
Trading Service, the ORB will attempt to connect on tango:9999.

Some Valid Examples
-ORBDefaultInitRef corbaloc::tango//uses IIOP and port 2809
-ORBDefaultInitRef corbaloc:iiop:tango:9999
-ORBDefaultInitRef corbaloc::tango,:salsa:8888,iiop:tango:9999

Some Invalid Examples
-ORBDefaultInitRef host:port // not corbaloc
-ORBDefaultInitRef corbaloc:iiop::port // no host

17.13.11 ORBDisableRTCollocation boolean

Description This option controls how collocation optimization decisions are made in RT
CORBA applications. As described in 17.13.4, TAO normally optimizes
collocated invocations (where the client and the target object are in the same
address space). The effect of the ORB’s default collocation optimization is
such that the client thread is used to carry out the request. As described in
15.4.5, this effect may be undesirable in real-time applications. Therefore,
TAO’s implementation of RT CORBA employs a special “real-time
collocation resolver” (RT_Collocation_Resolver) to determine whether
an invocation should be subject to collocation optimization. The
RT_Collocation_Resolver considers the following factors when making
collocation decisions:

• The ORB and POA of the target object.

• The thread pool policy of the target’s POA.

Values for boolean

0 (default)
The default value leaves real-time collocation resolution
decisions to the real-time collocation resolver used by the
RT CORBA ORB

1
Do not use the real-time collocation resolver; instead, rely
on the ORB’s default collocation resolution method

488 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

• The thread pool id and thread pool lanes of the target’s POA.

• The priority model of the target’s POA.

• The invoking thread.

These factors are considered in making collocation decisions to ensure the
request is carried out at the appropriate priority.

However, not all applications need such a precise definition of collocation.
For these applications, the -ORBDisableRTCollocation option can be used
to bypass the real-time collocation resolver and use the ORB’s default
collocation resolution method, as described in 17.13.4 and 17.13.5. A value of
1 (true) disables real-time collocation resolution decisions and falls back on
the default collocation decisions implemented in the default ORB. This
behavior may result in better performance, but the invocation may not be
subject to the appropriate RT CORBA thread and priority constraints.

The default value of this option is 0.

Usage Both server and client applications may use this option. It only affects client
invocations on objects within the same address space.

See Also 17.13.4, 17.13.5, Chapter 8

Example The following example shows how to use the -ORBDisableRTCollocation
option to specify that the default ORB’s collocation resolution method should
be used instead of the real-time collocation resolver.

myserver -ORBDisableRTCollocation 1

17.13.12 ORBDontRoute enabled

Description This option controls whether the SO_DONTROUTE socket option is set on the
TCP sockets used. By default it is not set.

This option only affects IIOP.

Values for enabled

0 (default) Do not set the SO_DONTROUTE socket option on the TCP
sockets used by IIOP.

1
Set the SO_DONTROUTE socket option on the TCP sockets
used by IIOP.

o c i w e b . c o m 489

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

Usage Setting this option bypasses the routing table and selects a local interface
based on the destination address.

See Also W. Richard Stevens, UNIX Network Programming, Volume 1, page 199.

Example The following example shows how to use the -ORBDontRoute command line
option to set the SO_DONTROUTE option on any sockets used:

myserver -ORBDontRoute 1

17.13.13 ORBDottedDecimalAddresses enabled

Description An IOR exported by an ORB contains information about the communication
endpoint of the server. When TCP/IP is used for communication between
ORBs, the server endpoint is identified by a host-and-port tuple of the form
host:port. The host name is typically specified as a domain name (e.g.,
tango.acme.com) rather than an IP address (e.g., 128.252.165.61). This
allows Domain Name Servers (DNS) and routers to make intelligent choices
about what network routes clients will use in communicating with the server.
It also allows network managers to facilitate rudimentary load balancing by
reconfiguring a DNS to return different IP addresses for a particular domain
name. However, there are occasions when the routers and DNS’s of a network
do not know about a particular domain name. In this case, the only way for the
client to connect to the server is to use the IP address, bypassing the
domain-name-to-IP-address conversion.

TAO will encode any endpoints specified through the -ORBEndpoint or
-ORBListenEndpoints options or the TAO_ORBENDPOINT environment
variable exactly as they are given. The -ORBDottedDecimalAddresses
option will override this behavior.

When using an IP address, there is a slight decrease in latency during the
initial connection between client and server ORBs since no DNS look-up is
performed.

Usage Both server and client applications may use this option. Provide a value of 1 to
instruct the ORB to encode IP addresses, instead of domain names, in IORs.

Values for enabled

0 (Non-MS Windows default) Use host/domain names in IORs.

1 (MS Windows default) Use IP addresses in IORs.

490 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

Note Since dotted decimal address specifications apply only to IP networks, and not
all ORB protocols are implemented on IP, this option is currently treated as a
suggestion for each loaded protocol to use a character representation for the
numeric address (if enabled=1), otherwise to use a logical name.

See Also 17.13.51

Examples The following examples show how to use the -ORBDottedDecimalAddresses
option to specify that object references generated by the ORB should have IP
addresses instead of host/domain names encoded within them:

myserver -ORBDottedDecimalAddresses 1
myserver -ORBDottedDecimalAddresses 1 -ORBListenEndpoints iiop://host.domain.com

17.13.14 ORBDynamicThreadPoolName name
Description This option works in conjunction with the dynamic thread pool library and the

DTP_Config service object. In order to supply a dynamic thread pool to an
ORB, the application must use this option to supply the name of the dynamic
thread pool definition to use.

See Also 15.3.8

17.13.15 ORBEndpoint endpoint(s)

Note The TAO-specific -ORBEndpoint option has been deprecated in favor of the
OMG-standard -ORBListenEndpoints option. See 17.13.43. These options
have identical forms and you can simply replace the option name.

Description Starting with the CORBA 3.0 specification there is a standard ORB
initialization option for specifying the endpoints on which the ORB will listen
for requests. The format of the endpoints argument is left up to the ORB
implementation. In TAO, the -ORBListenEndpoints and -ORBEndpoint
options accept the same endpoint specifiers and have exactly the same effect.
In existing applications, you can simply replace “-ORBEndpoint” with
“-ORBListenEndpoints”.

o c i w e b . c o m 491

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

See Also 17.13.43

17.13.16 ORBEnforcePreferredInterfaces enforce

Description This option specifies whether the -ORBPreferredInterfaces option is
enforced. This option can help in cases where the preferred local network may
not have a route to the target host/interface. The ORB can choose a default
local interface to send the message, or it can raise an exception to the
application that preferred interfaces are not usable. This option determines the
ORB’s behavior in this case. If the value of the
-ORBEnforcePreferredInterfaces option is set to 1, unusable preferred
interfaces will make the ORB raise an exception to the application. The
default value for this option is 0.

Note Not all transport protocols are based on TCP/IP. Thus, the arguments
provided to such options may be interpreted in a protocol-specific way.

Usage This option is only significant for ORBs in a client role and when the
-ORBPreferredInterfaces option is also used.

See Also 17.13.55

Example The following example shows how to use the
-ORBEnforcePreferredInterfaces command line option:

myclient -ORBPreferredInterfaces "*.sometargethost.com:malory.ociweb.com"
-ORBEnforcePreferredInterfaces 1

Values for enforce

1
Enforce use of preferred interfaces only, thereby causing the
ORB to raise an exception if preferred interfaces cannot be
used to connect to a target host/interface.

0 (default) Do not enforce use of preferred interfaces only.

492 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

17.13.17 ORBForwardDelay msec

Description When object references are managed by the implementation repository there
can be a slight delay in the initialization of the service depending on how
much work is involved starting up, loading resources, etc. A TAO client that
forwards based on an exception, as described by the ORBForwardOn... options
listed below, can have its performance fine tuned with this value.

Usage The default value of 100msec may be increased by suppling a higher delay
value. This would typically be useful only when the client wants to use servers
that take a particularly long time to start.

Example The following example shows how to use the -ORBForwardDelay command
line option to change the ORB’s default behavior:

myclient -ORBForwardDelay 200

17.13.18 ORBForwardInvocationOnObjectNotExist
enabled

Description This option controls whether OBJECT_NOT_EXIST exceptions are reported to
the client application or whether the client ORB attempts to retry the
invocation with a different profile.

Usage This option can be useful in certain situations where location forwards are
occurring and servers are being restarted. For example, if the Implementation
Repository is being used it will forward invocations to the appropriate servers.
Unfortunately, if the server fails and restarts on a different endpoint,
subsequent invocations can result in an OBJECT_NOT_EXIST exception.

Values for msec

100 (default) default delay is 100 msec

0 or more wait this number of milliseconds

Values for enabled

0 (default)
The OBJECT_NOT_EXIST exception is always reported to
the client process. This is the behavior defined by the
CORBA specification.

1
The OBJECT_NOT_EXIST exception causes the client
process to try the next profile in the IOR.

o c i w e b . c o m 493

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

Enabling this option causes the ORB to handle this exception and retry it via
the Implementation Repository and locate the new server instance.

Example The following example shows how to use the
-ORBForwardInvocationOnObjectNotExist command line option to
change the ORB’s default behavior:

myclient -ORBForwardInvocationOnObjectNotExist 1

17.13.19 ORBForwardOnceOnObjectNotExist enabled

Description The forward once on exception options all help refine behavior when working
with invocations that are libel to induce request forwarding. These can be any
sort of indirect reference, including those defined using interoperable naming
service style endpoints, such as corbaloc strings, objects that are managed
by the implementation repository and others.

Historically, a TAO client could get stuck in a loop if the target of the forward
throws an exception, as the default behavior on an exception during a forward
is to try the invocation again. When the exceptional condition is itself
short-lived, such as start up of an IMR-ified server that does not use proper
notification semantics, this forwarding retry behavior can shield the client
application from unnecessary exception handling.

Unfortunately this can behavior can hang a client if the exception is
legitimate. For this reason, the -ORBForwardOnceOnObjectNotExist option
is provided to limit the stub to a single retry attempt after a given exception. If
the exception persists, it is passed back to the client code to be handled by the
application.

Usage Use -ORBForwardOnceOnObjectNotExist when the client application is
likely to use forwarding invocations and the target may possibly raise an
OBJECT_NOT_EXIST exception.

Values for enabled

0 (default) Forwarding of requests is not retained, an exception will
always cause a retry, potentially leading to a loop.

1
A previous forward attempt is remembered, preventing the
possibility of a forward retry loop.

494 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

Example The following example shows how to use the
-ORBForwardOnceOnObjectNotExist option to change the ORB’s default
behavior:

myclient -ORBForwardOnceOnObjectNotExist 1

17.13.20 ORBForwardOnceOnCommFailure enabled

Description The forward once on exception options all help refine behavior when working
with invocations that are libel to induce request forwarding. These can be any
sort of indirect reference, including those defined using interoperable naming
service style endpoints, such as corbaloc strings, objects that are managed
by the implementation repository and others.

Historically, a TAO client could get stuck in a loop if the target of the forward
throws an exception, as the default behavior on an exception during a forward
is to try the invocation again. When the exceptional condition is itself
short-lived, such as start up of an IMR-ified server that does not use proper
notification semantics, this forwarding retry behavior can shield the client
application from unnecessary exception handling.

Unfortunately this can behavior can hang a client if the exception is
legitimate. For this reason, the -ORBForwardOnceOnCommFailure option is
provided to limit the stub to a single retry attempt after a given exception. If
the exception persists, it is passed back to the client code to be handled by the
application.

Usage Use -ORBForwardOnceOnCommFailure when the client application is likely
to use forwarding invocations and the target may possibly raise an
COMM_FAILURE exception.

Example The following example shows how to use the
-ORBForwardOnceOnCommFailure option to change the ORB’s default
behavior:

Values for enabled

0 (default) Forwarding of requests is not retained, an exception will
always cause a retry, potentially leading to a loop.

1
A previous forward attempt is remembered, preventing the
possibility of a forward retry loop.

o c i w e b . c o m 495

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

myclient -ORBForwardOnceOnCommFailure 1

17.13.21 ORBForwardOnceOnTransient enabled

Description The forward once on exception options all help refine behavior when working
with invocations that are libel to induce request forwarding. These can be any
sort of indirect reference, including those defined using interoperable naming
service style endpoints, such as corbaloc strings, objects that are managed
by the implementation repository and others.

Historically, a TAO client could get stuck in a loop if the target of the forward
throws an exception, as the default behavior on an exception during a forward
is to try the invocation again. When the exceptional condition is itself
short-lived, such as start up of an IMR-ified server that does not use proper
notification semantics, this forwarding retry behavior can shield the client
application from unnecessary exception handling.

Unfortunately this can behavior can hang a client if the exception is
legitimate. For this reason, the -ORBForwardOnceOnTransient option is
provided to limit the stub to a single retry attempt after a given exception. If
the exception persists, it is passed back to the client code to be handled by the
application.

Usage Use -ORBForwardOnceOnTransient when the client application is likely to
use forwarding invocations and the target may possibly raise an TRANSIENT
exception.

Example The following example shows how to use the
-ORBForwardOnceOnTransient option to change the ORB’s default
behavior:

myclient -ORBForwardOnceOnTransient 1

Values for enabled

0 (default) Forwarding of requests is not retained, an exception will
always cause a retry, potentially leading to a loop.

1
A previous forward attempt is remembered, preventing the
possibility of a forward retry loop.

496 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

17.13.22 ORBForwardOnceOnInvObjref enabled

Description The forward once on exception options all help refine behavior when working
with invocations that are libel to induce request forwarding. These can be any
sort of indirect reference, including those defined using interoperable naming
service style endpoints, such as corbaloc strings, objects that are managed
by the implementation repository and others.

Historically, a TAO client could get stuck in a loop if the target of the forward
throws an exception, as the default behavior on an exception during a forward
is to try the invocation again. When the exceptional condition is itself
short-lived, such as start up of an IMR-ified server that does not use proper
notification semantics, this forwarding retry behavior can shield the client
application from unnecessary exception handling.

Unfortunately this can behavior can hang a client if the exception is
legitimate. For this reason, the -ORBForwardOnceOnInvObjref option is
provided to limit the stub to a single retry attempt after a given exception. If
the exception persists, it is passed back to the client code to be handled by the
application.

Usage Use -ORBForwardOnceOnInvObjref when the client application is likely to
use forwarding invocations and the target may possibly raise an Inv_OBJREF
exception.

Example The following example shows how to use the
-ORBForwardOnceOnInvObjref option to change the ORB’s default
behavior:

myclient -ORBForwardOnceOnInvObjref 1

Values for enabled

0 (default) Forwarding of requests is not retained, an exception will
always cause a retry, potentially leading to a loop.

1
A previous forward attempt is remembered, preventing the
possibility of a forward retry loop.

o c i w e b . c o m 497

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

17.13.23 ORBForwardOnCommFailureLimit limit

Description When the client is waiting for a reply from the server, it may get a
CORBA::COMM_FAILURE exception with a completion status of
COMPLETED_NO. In this case, re-connection attempts will be made cycling
through the base and forward profiles at most limit times.

If the first base profile is encountered during the cycling, a delay will be made
if -ORBForwardDelay is used.

Note This option is also available as an option for the client strategy factory
discussed in chapter Client Strategy Factory.

Usage Use this option for example if an IMR-ified server does not use proper
notification semantics and takes a long time to initialize.

See Also 5.2, 17.13.17, 17.13.20

Example The follow example shows how to attempt at most 10 times to get a reply from
the server waiting 0.05 seconds between profile cycles:

myserver -ORBForwardOnCommFailureLimit 10 -ORBForwardDelay 50

Values for limit

0 (default)
No profile cycling will be done for COMM_FAILURE
exceptions.

> 0
Cycle through base and forward profiles at most limit
times until a reply is successfully received from the server.

498 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

17.13.24 ORBForwardOnInvObjrefLimit limit

Description When the client attempts to send a request to the server, it may get a
CORBA::INV_OBJREF exception. In this case, invocation attempts will be
made cycling through the base and forward profiles at most limit times.

If the first base profile is encountered during the cycling, a delay will be made
if -ORBForwardDelay is used.

Note This option is also available as an option for the client strategy factory
discussed in chapter Client Strategy Factory.

Usage Use this option for example if there are multiple profiles available in the IOR
to try as alternatives and you are not certain that the servers being referenced
the IORs are immediately available.

See Also 5.2, 17.13.22, 17.13.17

Example The follow example shows how to attempt at most 10 times when getting
INV_OBJREF exceptions to send a request to the server waiting 0.05 seconds
between profile cycles:

myserver -ORBForwardOnObjrefLimit 10 -ORBForwardDelay 50

Values for limit

0 (default)
No profile cycling will be done for OBJ_INVREF
exceptions.

> 0
Cycle through base and forward profiles at most limit
times until a reply is successfully received from the server.

o c i w e b . c o m 499

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

17.13.25 ORBForwardOnObjectNotExistLimit limit

Description When the client attempts to send a request to the server, it may get a
CORBA::OBJECT_NOT_EXIST exception. In this case, invocation attempts
will be made cycling through the base and forward profiles at most limit
times.

If the first base profile is encountered during the cycling, a delay will be made
if -ORBForwardDelay is used.

Note This option is also available as an option for the client strategy factory
discussed in chapter Client Strategy Factory.

Usage Use this option for example if there are multiple profiles available in the IOR
to try as alternatives and you are not certain that the servers being referenced
the IORs are immediately available.

See Also 5.2, 17.13.19, 17.13.17

Example The follow example shows how to attempt at most 10 times when getting
OBJECT_NOT_EXIST exceptions to send a request to the server waiting 0.05
seconds between profile cycles:

myserver -ORBForwardOnObjectNotExistLimit 10 -ORBForwardDelay 50

Values for limit

0 (default)
No profile cycling will be done for OBJECT_NOT_EXIST
exceptions.

> 0
Cycle through base and forward profiles at most limit
times until a reply is successfully received from the server.

500 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

17.13.26 ORBForwardOnReplyClosedLimit limit

Description When waiting for a reply from the server using the IIOP protocol, on many
platforms if the server’s reply consists of zero bytes, then this indicates that
the server performed a disorderly shutdown or the connection to the server
was abruptly terminated. In this case, invocation attempts will be made
cycling through the base and forward profiles at most limit times.

Note Care should be used with this option as this could result in the request being
processed more than once by the server. Depending on the nature of the
request, this could lead to undesirable effects.

The -ORBForwardOnReplyClosedLimit option should be used if this
option is used to avoid a TRANSIENT exception from being thrown.

If the first base profile is encountered during the cycling, a delay will be made
if -ORBForwardDelay is used.

Note This option is also available as an option for the client strategy factory
discussed in chapter Client Strategy Factory.

Usage Consider using this option for example if the IOR is an IMR-ified IOR using a
activator configured to restart the server if it crashes. If the server then crashes
in the middle of a preparing for a reply, the activator will detect this and restart
the server. Attempt will be made during this time get a complete reply from
the server.

See Also 5.2, 17.13.23, 17.13.17

Example The follow example shows how to attempt at most 10 times when getting zero
bytes from the server and waiting 0.05 seconds between profile cycles:

myserver -ORBForwardOnReplyClosedLimit 10 -ORBForwardDelay 50

Values for limit

0 (default)
No profile cycling will be done if the server returns zero
bytes as a reply.

> 0
Cycle through base and forward profiles at most limit
times until a reply is successfully received from the server.

o c i w e b . c o m 501

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

17.13.27 ORBForwardOnTransientLimit limit

Description When the client attempts to make an initial connection with the server, it may
get a CORBA::TRANSIENT exception. In this case, invocation attempts will
be made cycling through the base and forward profiles at most limit times.

If the first base profile is encountered during the cycling, a delay will be made
if -ORBForwardDelay is used.

Note This option is also available as an option for the client strategy factory
discussed in chapter Client Strategy Factory.

Usage Use this option for example if the IOR is an IMR-ified IOR using a activator
configured to start the server on demand. If the server takes a long time to
initialize or

See Also 5.2, 17.13.21, 17.13.17

Example The follow example shows how to attempt at most 10 times when getting
OBJECT_NOT_EXIST exceptions to send a request to the server waiting 0.05
seconds between profile cycles:
myserver -ORBForwardOnObjectNotExistLimit 10 -ORBForwardDelay 50

17.13.28 ORBFTSendFullGroupTC enabled

Description This option only has an effect when Fault Tolerant CORBA features such as
Interoperable Object Group References (IOGR) are being used. It affects what

Values for limit

0 (default) No profile cycling will be done for TRANSIENT exceptions.

> 0
Cycle through base and forward profiles at most limit
times until a reply is successfully received from the server.

Values for enabled

0 (default) Transmit only the group version as part of the
IOP::FT_GROUP_VERSION service context.

1
Transmit the full Fault Tolerance Group information as part
of the IOP::FT_GROUP_VERSION service context.

502 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

is contained in the IOP::FT_GROUP_VERSION service context that is
included in each request sent to an IOGR. By default, TAO only includes the
group version as specified by CORBA specification. When this option is
enabled, the full identification information from the IOGR’s tagged
component is sent in the service context.

Usage This option should developers using TAO’s fault-tolerance features to more
easily write servers that can support multiple fault-tolerant CORBA objects.

Example The following example shows how to use the -ORBFTSendFullGroupTC
command line option to send the full, TAO-specific, service context:

myserver -ORBFTSendFullGroupTC 1

17.13.29 ORBGestalt context_name

Description ORBs store configuration information supplied by service directives in a
context. There is a global context, which contains values visible to all ORBs.
By default, the first ORB initialized uses the global context for its
configuration and services defined outside of ORB_init are also placed into
the global context.

As subsequent ORBs are initialized, the application may use -ORBGestalt to
differentiate or share service configuration contexts as necessary. When no
option is given, the new ORBs will continue to use the global context.

Supplying a context name of LOCAL causes the new ORB to create a new local
context. Any service loaded into this local context will override any in the
global context.

When the context name is GLOBAL this explicitly forces the ORB to use the
global context. In this case, service directive behavior depends on settings for
the specific service object. Some service objects allow multiple processing

Values for context_name

GLOBAL
(default) Use the global service gestalt for this ORB.

LOCAL Define a local service gestalt for this ORB.

CURRENT Use the current service gestalt for this ORB.

ORB:orbid
Share the service gestalt defined by another ORB with the
orbid specified.

o c i w e b . c o m 503

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

replacing an earlier instance while others may ignore subsequent reloads,
keeping settings from the first initialization.

When the context name is ORB then the new ORB shares the local context of a
previously loaded ORB, which is identified by its ORB ID. An error occurs if
the identified ORB is not available.

Usage Use this option to configure multiple ORBs within the single process with
different configurations. The most common use case is to give each ORB its
own local context.

Example The following example shows how to use the -ORBGestalt option to create
two ORBs with each having their own context and corresponding
configuration. This is done directly via C++, as the command line is
insufficient for initializing two ORBs. ORB1 uses the configuration from
orb1.conf and ORB2 uses the configuration from orb2.conf.

char* argv1[] = {
 "dummy", // argv[0] is skipped
 "-ORBGestalt", "local", // specify a local gestalt
 "-ORBSvcConf", "orb1.conf", // load the config file for ORB1
 0 // argv[] should end with a null value
};
int argc1 = (sizeof(argv1)/sizeof(char*)) - 1;

char* argv2[] = {
 "dummy", // argv[0] is skipped
 "-ORBGestalt", "local", // specify a local gestalt
 "-ORBSvcConf", "orb2.conf", // load the config file for ORB1
 0 // argv[] should end with a null value
};
int argc2 = (sizeof(argv2)/sizeof(char*)) - 1;

CORBA::ORB_var orb1 = CORBA::ORB_init(argc1, argv1, "ORB1");
CORBA::ORB_var orb2 = CORBA::ORB_init(argc2, argv2, "ORB2");

17.13.30 ORBId name
Description This is a CORBA specified option used to provide an explicit identifier for an

ORB. As shown in the interface specification in section 17.2, using -ORBId is
interchangeable with supplying a third argument to CORBA::ORB_init(). In
applications that make use of multiple ORBs, supplying an Id is required to

504 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

initialize a new ORB instance. An ORB Id supplied on the command line will
override the third argument to CORBA::ORB_init().

Usage Use this option to provide an identifier to the ORB.

See Also 17.2

Example The following example shows how to use the -ORBId command line option to
supply an identifier.

myserver -ORBId myorb1

17.13.31 ORBIgnoreDefaultSvcConfFile enabled

Description The default service configuration is ordinarily processed if present, and no
other configuration file is specified through other means. Use this option to
force the ORB to ignore the default service configuration file.

Usage Use this option to ensure that an application’s configuration is not altered by a
svc.conf file placed in the start up directory.

See Also 17.13.63

Example The following example shows how to use
-ORBIgnoreDefaultSvcConfFile to avoid svc.conf.

myserver -ORBIgnoreDefaultSvcConfFile 1

17.13.32 ORBIIOPClientPortBase base

Description Occasionally a distributed system needs to control the range of ports used by
client applications when making connections. For example, clients deployed

Values for enabled

0 (default) Allow the svc.conf file to be processed if present.

1 Don’t process the svc.conf file, if present.

Values for base

0 (default) Client is unconstrained.

>0
Client will attempt to bind locally to the base port, or any
available port in a range defined by a port span, if set.

o c i w e b . c o m 505

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

on a host which defines blocks of ports to be shared by a number of server
applications need to ensure ports in those blocks are not inadvertently taken.

Usage Use this ORB_Init argument along with ORBIIOPClientPortSpan to
constrain the ORB to using local ports between base and base + span. If no
ports are available, a TRANSIENT exception is thrown. In cases where an
IOR contains multiple profiles, or the client is running on a multi homed host,
the client may use the same port number with different IP addresses.

Clients are unconstrained by default.

Only a single client port span is kept per ORB. Using
ORBIIOPClientPortBase repeatedly will simply reset the base value.

See Also 17.13.33

Example The following example shows how to set up a range of ports from 10000 to
10100.
./client -ORBIIOPClientPortBase 10000 -ORBIIOPClientPortSpan 100

17.13.33 ORBIIOPClientPortSpan span

Description Occasionally a distributed system needs to control the range of ports used by
client applications when making connections. For example, clients deployed
on a host which defines blocks of ports to be shared by a number of server
applications need to ensure ports in those blocks are not inadvertently taken.

Usage Use this ORB_Init argument along with ORBIIOPClientPortBase to
constrain the ORB to using local ports between base and base + span. If no
ports are available, a TRANSIENT exception is thrown. In cases where an
IOR contains multiple profiles, or the client is running on a multi homed host,
the client may use the same port number with different IP addresses.

Clients are unconstrained by default. If a base value is supplied but no span,
the client will only be allow to bind to that one port locally. If no base is
supplied, or a base value of 0 is used, any supplied span is ignored.

Values for span

0 (default) Client is limited to only the supplied base port.

>0
Client is limited to a range of ports from base to base + span.
Ignored if base is 0.

506 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

Only a single client port span is kept per ORB. Using
ORBIIOPClientPortSpan repeatedly will simply reset the span value.

Impact Caution should be taken when defining a client port span. TAO clients are
prone to open multiple connections as well as keeping those connections open
a long time.

See Also 17.13.32

Example The following example shows how to set up a range of ports from 10000 to
10100.
./client -ORBIIOPClientPortBase 10000 -ORBIIOPClientPortSpan 100

17.13.34 ORBIMREndpointsInIOR enabled

Description This option controls which endpoints get used in object references produced
by persistent POAs when the -ORBUseIMR option is enabled. By default,
when -ORBUseIMR is enabled, the server uses the Implementation
Repository’s endpoints in each persistent object’s IOR. When this option is
disabled, the server uses its own endpoints. When -ORBUseIMR is not
enabled, the server always uses its own endpoints.

Usage Use this option when you want the other effects of -ORBUseIMR without the
use of the Implementation Repository’s endpoints in the IOR.

See Also Chapter 28, 17.13.66

Example The following example shows how to use the -ORBIMREndpointsInIOR
command line option to avoid using IMR supplied endpoints:

myserver -ORBUseIMR 1 -ORBIMREndpointsInIOR 0

17.13.35 ORBImplRepoServicePort port
Description When CORBA::ORB::resolve_initial_references(“ImplRepoService”)

is called, TAO by default uses IP multicast to find the TAO Implementation
Repository (ImplRepo) Service. Often, more than one ImplRepo service is

Values for enabled

1 (default) Use the Implementation Repository’s endpoints when
-ORBUseIMR is set and the objects are in persistent POAs.

0 Don’t use the Implementation Repository’s endpoints.

o c i w e b . c o m 507

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

running on a local network during development or in a deployed application
where a large number of objects are logically partitioned in some way. In such
cases, it is undesirable for all the ImplRepo service servers to be listening for
multicast requests on the same port.

At startup, the TAO ImplRepo service is assigned a port on which to listen for
multicast requests. The -ORBImplRepoServicePort option allows the user
to specify this port. If this option is not used, the ImplRepoServicePort
environment variable (if set) is used. If this option is not used and the
environment variable is not set, then the port number is set to the value of
TAO_DEFAULT_IMPLREPO_SERVER_REQUEST_PORT, defined in
$TAO_ROOT/tao/default_ports.h as 10018.

Usage Use -ORBImplRepoServicePort when starting the TAO ImplRepo Service
to specify on which port it is to listen for multicast requests. Use it when
starting clients of the ImplRepo Service to tell them the multicast port to use
when multicasting a TAO ImplRepo service discovery request. This option is
only available on platforms that support IP multicast. Both server and client
applications may use this option.

This option has the following format:

-ORBImplRepoServicePort port

where port is the ImplRepo service’s multicast request port number. This
port number must be valid for your operating system and user permissions.

Example The following example shows how to use the -ORBImplRepoServicePort
command line option to specify the multicast request port to use.

Start ImplRepo service and tell it to listen on port 1234 for multicast requests:

$TAO_ROOT/orbsvcs/ImplRepo_Service/tao_imr_locator -ORBImplRepoServicePort 1234

Start an application and tell it to use port 1234 for sending ImplRepo service
multicast requests:
myserver -ORBImplRepoServicePort 1234

17.13.36 ORBInitRef ObjectID=ObjectURL
Description Using the -ORBInitRef option causes the ORB to create a mapping between

a specified object identifier (ObjectID) and a specified object reference

508 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

(ObjectURL). The ORB maintains a table of these mappings for use in the
processing of calls to CORBA::ORB::resolve_initial_references().

When an application calls resolve_initial_references(“Obj_ID”),
the ORB processes the call as follows:

• If Obj_ID is found in the mapping table, the associated ObjectURL is
immediately resolved into an object reference.

• If Obj_ID is not found in the mapping table, then

- If the ORB was supplied with a default URL prefix through the
-ORBDefaultInitRef option, an object URL is constructed from
this prefix, then resolved into an object reference (see 17.13.10).

- If a default URL prefix was not supplied, a built-in mechanism (such
as IP multicast query) may be used to locate the Obj_ID object.

ObjectID represents an object identifier that may be defined either by TAO
or by the application developer. TAO reserves the following ObjectID
names: NameService, TradingService, ImplRepoService.2

ObjectURL is a “stringified” object reference that satisfies one of the
following URL formats (see 17.13.43):

• IOR: format, e.g.,
IOR:000000000000001749444c3a4d44432f436f6e74726f6c6c65723a...

• protocol_id: format, e.g.,
corbaloc::tango:9999/TradingService

• file: format, e.g.,
file:///home/testing/file1.ior

Each of these formats directly specifies an address list and an object key.

Usage Both server and client applications may use this option. It can be used either to
configure the ORB at run time with new initial service ObjectIDs that were
not defined when the ORB was installed or to override default initial service
resolution mechanisms established for standard services (e.g., the Naming
Service or Trading Service) at installation. It takes precedence over the use of
the prefix passed with -ORBDefaultInitRef. This option may be repeated.

The ObjectURL formats are described below:

2. The names IORManipulation, ORBPolicyManager, POACurrent,
PolicyCurrent, RootPOA, and TypeCodeFactory are also reserved, but are
never used with -ORBInitRef.

o c i w e b . c o m 509

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

• The IOR: format is simply a “stringified” IOR that consists of the string
“IOR:” plus a sequence of hexadecimal digits that encode the address list,
object key, and possibly other information, e.g.,
-ORBInitRef NameService=IOR:000000000000001749444c3a4d44432f436f6e7...

The stringified IOR is normally exported by the object to be referenced,
then captured somehow by the client. As such, it is most often used with
the file://path/filename format described below.

• The protocol_id: format is defined as follows:
<objectURL> = (<corbaloc> | <protocol>) [<delimiter> <object_key>]
<corbaloc> = "corbaloc:" [<protocol_id>] ":" <address_list>
<protocol> = [<protocol_id_loc> "://"] <address_list>
<protocol_id> = "iiop" | "uiop" | "shmiop" | <ppiop>
<protocol_id_loc> = <iiop> | <uiop> | <shmiop> | "mcast" | <ppiop>
<iiop> = "iiop" | "iioploc"
<uiop> = "uiop" | "uioploc"
<shmiop> = "shmiop" | "shmioploc"
<ppiop> = pluggable protocol identifier added to TAO
<address_list> = [<address> ","]* <address>
<address> = <iiop_prot_addr> | <uiop_addr> | <shmiop_addr> | <mcast_addr>
| <ppiop_addr>

<iiop_prot_addr> = <iiop_id><iiop_addr>
<iiop_id> = ":" | <iiop_prot_token>":"
<iiop_prot_token> = "iiop"
<iiop_addr> = [<version> <host> [":" <port>]]
<uiop_addr> = [<version> <path> ["/" <filename>]]
<shmiop_addr> = [[<version>] [<host> ":"] [<port>]]
<mcast_addr> = [<mcast_group>] ":" [<mcast_port>] ":" [<nic_addr>] ":"
[<tll>]

<ppiop_addr> = defined by the pluggable protocol
<host> = DNS-style_Host_Name | ip_address | "[" ipv6_address "]"
<port> = number
<version> = <major> "." <minor> "@" | empty_string
<major> = <minor> = number
<path> = ["/" <directory_name>]*
<filename> = <directory_name> = string
<delimiter> = <iiop_del> | <uiop_del> | <shmiop_del> | <mcast_del> |
<ppiop_del>
<iiop_del> = <shmiop_del> = <mcast_del> = "/"
<uiop_del> = "|"
<ppiop_del> = defined by the pluggable protocol
<object_key> = ObjectID

Use of the new corbaloc syntax is preferred. The use of all other object
URLs, such as iioploc, is deprecated.

510 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

An IPv6 address syntax is only supported for IIOP version 1.2. The
default IIOP version for corbaloc specifiers is 1.0, therefore you must
explicitly specify version 1.2 when supplying an IPv6 address.

See 17.13.10 for a description of the mcast: and corbaloc: protocols.

A uiop ObjectURL must be enclosed by single quotes so that the shell
does not interpret the vertical bar (‘|’) delimiter as a command (i.e., the
“pipe” symbol).

The protocol_id: format is preferred over the IOR and file notation
because it provides a stringified object reference that is easily manipulated
in TCP/IP- and DNS-centric environments such as the Internet.

• The dll://objectname format is used to obtain a reference to an object
loaded by the service configuration framework. In order to use this syntax,
an object loader must be registered with the global object repository using
the object name supplied in the URL. To use this format:

- Create an object loader service object by specializing the
TAO_Object_Loader base class.

- Implement the TAO_Object_Loader::create_object()
method. This method is called by the TAO_DLL_Parser object
which is a helper to the ORB.

Note that while create_object() takes an ORB reference, argc, and argv
parameters, the DLL parser does not pass argc and argv. The loader must
be able to configure and initialize an object reference without these
arguments.

An example of using the DLL format is available in
TAO/tests/Object_Loader.

• The file://path/filename format is used as follows:

- Create a URL using either the IOR: or protocol_id: format.

- Store this URL in a file.

- Type -ORBInitRef ObjectID=file://path/filename

where filename is the name of the file in which the URL is stored and
path is the full path to the file. The contents of the file are interpreted by
-ORBInitRef as a single object reference.

o c i w e b . c o m 511

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

• The http://endpoint/filename format is used to load an IOR file
from an HTTP server rather than the local file system. In this case,
endpoint is any web address in the form host[:port] with port
defaulted to 80. The identifier following the endpoint is interpreted by the
server as an entity containing some IOR, be it a file or not.

Note TAO does not currently support the OMG-recommended ftp format.

See Also 17.13.10, 17.13.43
For more information on using TAO’s pluggable protocols, see Chapter 14.

Examples The following examples show various ways to use -ORBInitRef.

protocol_id: format - preferred corbaloc style
myserver -ORBInitRef NameService=corbaloc::1.1@tango:9999/NameService
client1 -ORBInitRef NameService=corbaloc:shmiop:2020/NameService

protocol_id: format - with multiple addresses

myclient -ORBInitRef \ NameService=corbaloc::tango:9999,:waltz:2809/NameService

When myclient first attempts to connect to the Naming Service, the ORB will
attempt to connect on tango:9999. If that fails, it will attempt to connect on
waltz:2809.

IOR: format
myserver -ORBInitRef NameService=IOR:000000000000001749444c3a4d44432f43...

protocol_id: format - mcast style
myserver -ORBInitRef \
 TradingService=mcast://234.1.2.3:12345:eth1:2/TradingService
myclient -ORBInitRef NameService=mcast://:12345::/NameService

protocol_id: format - deprecated iiop | shmiop | uiop style
myserver -ORBInitRef TradingService=iiop://traderhost:16001/TradingService
myclient -ORBInitRef NameService=iiop://1.2@tango:9999/NameService

protocol_id: format - deprecated iioploc | shmioploc | uioploc
style
myserver -ORBInitRef NameService=iioploc://1.1@tango:9999/NameService
client1 -ORBInitRef NameService=shmioploc://2020/NameService

512 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

Note that the uioploc URL in the next example is enclosed in quotes:
client2 -ORBInitRef ’NameService=uioploc://1.2@/tmp/foo1|NameService’

Pluggable-protocol-style iop:format example
myserver -ORBInitRef NameService=myioploc://1.2@tango:9999/NameService

file: format
client1 -ORBInitRef TestService=file:///usr/local/testing/TestService.ior

17.13.37 ORBIPHopLimit hops
Description This option allows users to specify the TTL (IPv4) or hop limit (IPv6) value

used when datagrams are sent over a socket. If this option is not specified, the
Operating System default is used. The hops value must be at least zero and
may be at most 255.

This option affects IIOP, DIOP, SCIOP, and MIOP.

Usage Use this option when you want to restrict the number of hops your CORBA
traffic can take in the network.

See Also W. Richard Stevens, UNIX Network Programming, Volume 1.

Example The following example shows how to use the -ORBIPHopLimit command
line option to specify a hop limit of 16:

myserver -ORBIPHopLimit 16

17.13.38 ORBIPMulticastLoop enabled

Description When using MIOP, the default behavior is to set the IP_MULTICAST_LOOP or
IPV6_MULTICAST_LOOP option on each multicast socket. This means that
datagram sent on that socket is looped back to that host and received by all

Values for enabled

1 (default)
Specifies that the IP_MULTICAST_LOOP (IPv4) or
IPV6_MULTICAST_LOOP option is set on multicast
sockets.

0
Specifies that the IP_MULTICAST_LOOP (IPv4) or
IPV6_MULTICAST_LOOP option is not set on multicast
sockets.

o c i w e b . c o m 513

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

processes listening on that host. To avoid this behavior, disable this option. A
side effect of disabling this option is that processes on the same host will not
receive the datagrams.

This option only affects MIOP.

Usage This option is only useful if you are using MIOP.

See Also W. Richard Stevens, UNIX Network Programming, Volume 1.

Example The following example shows how to use the -ORBIPMulticastLoop
command line option to disable the multicast loop behavior:

myserver -ORBIPMulticastLoop 0

17.13.39 ORBKeepAlive enabled

Description This option controls whether the SO_KEEPALIVE socket option is set on the
TCP sockets used. By default it is not set.

This option only affects IIOP.

Usage Setting this option causes the Operating System to send keep-alive probes to
the peer.

See Also W. Richard Stevens, UNIX Network Programming, Volume 1, pages 200-202.

Example The following example shows how to use the -ORBKeepAlive command line
option to set the SO_KEEPALIVE option on any sockets used:

myserver -ORBKeepAlive 1

17.13.40 ORBLaneEndpoint lane endpoint(s)
Description Identical to the -ORBLaneListenEndpoints option. It is presented as an

alias to maintain consistency with the TAO specific legacy option,
-ORBEndpoint and its new standard alias, -ORBListenEndpoints.

Values for enabled

0 (default) Do not set the SO_KEEPALIVE socket option on the TCP
sockets used by IIOP.

1
Set the SO_KEEPALIVE socket option on the TCP sockets
used by IIOP.

514 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

See Also 17.13.43, 17.13.41, Section 8.5.1.2 of the CORBA 3.1 specification (OMG
Document formal/08-01-04)

17.13.41 ORBLaneListenEndpoints lane endpoint(s)
Description This option is used for supplying endpoint definitions for specific RTCORBA

thread pool lanes. A thread pool is a collection of threads that allow the ORB
to process many requests simultaneously. Within a thread pool, groups of
threads may be partitioned by runtime priority. These thread partitions are
known as lanes. For instance, you might create a process that has separate high
priority and low priority thread lanes. Each of these thread lanes must have its
own endpoint to ensure that requests of a certain priority are handed by the
appropriate threads and there is no chance for priority inversion.

For this endpoint, a “lane” is identified by a string consisting of a thread pool
identifier and a lane identifier within that pool. Symbolically, this is
represented as <pool_id>:<lane_id>, where pool_id and lane_id are
both integers or a wildcard character, ’*’. Unfortunately, the RT CORBA
specification contains no information regarding identifiers for pools and lanes,
so this identification is dependent upon consistent initialization of the RT
ORB and consistent initialization of thread pools. When creating a thread pool
with lanes, each lane is defined by a structure, and many lane definitions are
combined in a sequence. For a given pool, the lane identifier is the index of the
lane’s position in the sequence. The pool identifier is defined by a counter that
is an ORB internal resource. This counter starts at 1, and is incremented for
each thread pool that is created, whether or not that pool contains thread lanes.

This presents a discontinuity; if you wish to serve persistent objects from a
server that uses thread pools with lanes, you must ensure that the thread pools
are defined consistently, along with the lane endpoint definitions. The most
reliable way to manage this is to generate the -ORBLaneListenEndpoints
arguments programatically, rather than relying on an external script or user to
enter them on the command line. An example of this technique is shown in
17.2.

The wildcard character of ’*’ matches all pool IDs or lane IDs, depending on
its placement. A lane specified as “*:*” would match all lane and pool IDs. A
lane specified as “1:*” would match all lane IDs in pool 1. A lane specified as
“*:1” would match lane 1 of all pool IDs.

o c i w e b . c o m 515

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

Each lane endpoint definition may include many endpoints, in the same
manner as the -ORBEndpoint and -ORBListenEndpoints options.

See Also 17.13.43, 17.13.40, Section 8.5.1.2 of the CORBA 3.1 specification (OMG
Document formal/08-01-04)

Example In this example, we configure a single thread pool with two lanes:

-ORBLaneListenEndpoints 1:0 iiop://:1234 \
-ORBLaneListenEndpoints 1:1 iiop://:1235

Here is another example where we are specifying that all lanes in pool 1
should use IIOP and the network interface with the hostname bart:

-ORBLaneListenEndpoints 1:* iiop://bart

17.13.42 ORBLingerTimeout timeout
Description This option causes the ORB to set the SO_LINGER option on TCP sockets,

with a specified timeout value in seconds, before closing the sockets. This
option is only useful when using IIOP. The timeout value can be in the range
of zero to the maximum signed integer value for the particular platform on
which TAO is running.

Usage When a TAO client, configured to use IIOP, encounters an error while writing
to a socket, the ORB attempts to close the socket and open a new one. TAO
does not use the SO_LINGER socket option when sockets are opened.
However, on some platforms, the ORB can have problems closing a socket
after an error, for example if the other end is not responding, some data has
already been written to the socket, and the socket buffers are not empty. If this
occurs, the socket may be left in a FIN_WAIT_1 state. Meanwhile, the ORB
may keep opening new sockets to try to continue sending. Eventually, the
client may run out of resources (e.g., file descriptors or mbufs).

If the -ORBLingerTimeout option is specified, the ORB will set the
SO_LINGER socket option with the specified timeout value before closing the
socket. By specifying a very short timeout value, the ORB can successfully
close the socket without waiting for its buffers to become empty.

Since this option uses TCP socket options, it is only useful when using IIOP.

516 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

The most common use case is to set the timeout value to zero, so sockets are
closed immediately when there is an error, thereby helping to avoid resource
exhaustion on some platforms.

Example The following example shows how to use the -ORBLingerTimeout option to
set the SO_LINGER timeout value to zero.

myclient -ORBLingerTimeout 0

17.13.43 ORBListenEndpoints endpoint(s)
Description Starting with the CORBA 3.0 specification, there is a standard ORB

initialization option for specifying the endpoints on which the ORB will listen
for requests. The format of the endpoints argument is left up to the ORB
implementation. In TAO, the -ORBListenEndpoints and -ORBEndpoint
options accept the same endpoint specifiers and have exactly the same effect.
In existing applications, you can simply replace “-ORBEndpoint” with
“-ORBListenEndpoints”.

This option tells the ORB to listen for requests on the interfaces specified by
the listed endpoint(s). Endpoints are specified using a URL. An endpoint
has the form:

protocol://V.v@addr1,...,W.w@addrN

where V.v and W.w are optional protocol versions for each address. An
example of an IIOP endpoint is:

iiop://hostname:port

Sets of endpoints may be specified using multiple -ORBListenEndpoints
options or by delimiting endpoints with a semi-colon (‘;’). For example,

-ORBListenEndpoints iiop://localhost:9999 -ORBListenEndpoints
uiop:///tmp/mylocalsock -ORBListenEndpoints shmiop://10002

is equivalent to

-ORBListenEndpoints
'iiop://localhost:9999;uiop:///tmp/mylocalsock;shmiop://10002'

o c i w e b . c o m 517

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

Note the single quotes (') in the latter option specification. Single quotes are
needed to prevent the shell from interpreting text after the semi-colon as
another command.

If an endpoint is specified without an address, such as

-ORBListenEndpoints uiop:// -ORBListenEndpoints shmiop://

then a default endpoint will be created for the specified protocol.

Valid endpoint protocols include IIOP, UIOP (on platforms that support local
IPC), SHMIOP, DIOP, and any additional protocols whose factories were
loaded via the resource factory’s -ORBProtocolFactory option. See 18.2.6
for more information on protocol factories. See Chapter 14 for information on
using TAO’s pluggable protocols.

If the -ORBListenEndpoints option is not used, then one endpoint is
created by each protocol factory that is registered with the resource factory.
Typically, this means an IIOP endpoint is provided, using the host name of the
local machine and a randomly-selected port number, as if
-ORBListenEndpoints iiop:// had been specified. The value of the port
number may be different each time the server is run.

Each endpoint that appears as an argument to the -ORBListenEndpoints
option can itself accept endpoint-specific options. Such options will only
apply to the endpoint for which they were specified.

Currently, TAO supports the portspan, ssl_port and hostname_in_ior

options. The portspan option allows you to specify a range of ports for the

ORB to use for endpoints. The ORB will pick the first port in the range that is
not already in use. The portspan option is useful when you want to start sev-

eral instances of a server on a range of ports or if you want to restrict the range
of ports that your servers can use. Use the syntax portspan=value where

value is the number of ports in the range. The ssl_port option is used with

the TAO SSLIOP pluggable protocol. See 14.10 for more information on
using SSLIOP. The hostname_in_ior option is used to explicitly specify

the host name used in IORs. The server ORB does not validate the speci-
fied host name.

518 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

Note You can only use the -ORBListenEndpoints option with servers. It has no
effect on pure clients.

Note You can also use the TAO_ORBENDPOINT environment variable to specify the
ORB’s listen endpoints. The value of this environment variable has exactly the
same syntax as the -ORBListenEndpoints option. If the
TAO_ORBENDPOINT environment variable is used in addition to the
-ORBEndpoint or -ORBListenEndpoints option, the endpoint(s) specified
by the environment variable are added to the list of the endpoints specified by
the above options.

IIOP Endpoints
TAO’s IIOP pluggable protocol utilizes TCP/IP as its underlying transport
mechanism. IIOP endpoints in TAO have the form:

-ORBListenEndpoints iiop://V.v@hostname1:port1,...,W.w@hostname2:port2

where “V.v” and “W.w” are the IIOP protocol versions associated with the
given address (hostname:port). Currently supported versions are 1.0, 1.1,
and 1.2.

Options are separated from addresses by a forward slash (‘/’). For instance, if
an IIOP endpoint is to occupy a port in the range from 5000-5009, the
following endpoint specification could be used:

myserver -ORBListenEndpoints iiop://host:5000/portspan=10

The preceding example will start a server on each of the ports 5000-5009 if
you issue the command 10 times. The 11th time will fail, since all ports in the
range are already in use.

IIOP addresses are comprised of a hostname (or an IP address) and a TCP port
on which the server listens. The hostname is used to select the network
interface on which to set up the endpoint and is used to generate the IOR.
Suppose a host has the following network interfaces:

eth0: foo1.bar.baz (DEFAULT)
eth1: foo2.bar.baz

o c i w e b . c o m 519

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

To set up an endpoint on the second network interface, “eth1,” either of the
following endpoint specifications could be used:

-ORBListenEndpoints iiop://foo2

or

-ORBListenEndpoints iiop://foo2.bar.baz

An available port will be chosen by TAO (actually the operating system
kernel) and placed into the IOR.

To set up an endpoint on a specific port, simply use an endpoint of the form:

-ORBListenEndpoints iiop://foo2:1234

where 1234 is the TCP port on which the endpoint will be opened. In this
case, an endpoint will be opened on the network interface associated with the
hostname foo2 on port 1234.

Port names are also accepted. For example, if a UNIX installation has a
service called “my_protocol” associated with port 1234 in the service
database in /etc/services, then the following would cause an endpoint to
be opened on the port associated with that service:

-ORBListenEndpoints iiop://foo2:my_protocol

Port numbers range from 0 (port is chosen by the operating system) to 65335.
Port numbers less than 1024 on UNIX systems are considered privileged and
require super-user privileges to access them. Also be aware that some ports
may already be in use by other applications.

If no address is specified (e.g., -ORBListenEndpoints iiop://), then an
endpoint with an automatically-chosen port number will be set up on each
network interface detected by TAO. Each endpoint will use the same port
number and will be represented in the generated IOR as a separate profile or as
an alternate address within a single IOR profile. Note that network interface
detection will only work on platforms that support this feature. If network
interface detection is not supported, then the default network interface will be
chosen.

520 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

Using a specification of the form -ORBListenEndpoints iiop://:1234
will create an endpoint with TCP port 1234 on each detected network
interface. Note that there is a colon (‘:’) preceding the port number 1234.
That colon is necessary for TAO to interpret 1234 as a port. Without the
colon, TAO would interpret 1234 as a hostname associated with a given
network interface.

Note Testing under Windows XP/2000 has shown that the gethostname()
function, used internally, may not return the fully-qualified domain name (i.e.,
returning “host” instead of “host.domain.com”). You may want to use the
-ORBListenEndpoints option on Windows XP/2000 to ensure that your
servers generate IORs that are usable from outside the local network.

When TAO is built with IPv6 support (through either the ipv6 MPC feature
or ACE_HAS_IPV6) you may also use an IPv6 endpoint definition along with
or instead of an IPv4 endpoint. IPv6 addresses 128 bits long and are typically
expressed as groups of hexadecimal quartets separated by a colon, such as
fe80:0134::1024:a401. Note that the syntax for IPv6 addresses contains a
shortcut for a single long span of zeros. As shown in the example address, two
consecutive colons indicates that the spanned hextets are all 0000.

To disambiguate IPv6 addresses with optional port specifiers. The address
portion is framed in square brackets, []. Thus an explicit IPv6 endpoint looks
like iiop://[fe80:0134::1024:a401]:12345.

Defaulted addresses may be constrained to either IPv4 or IPv6 by using the
explicit INADDR_ANY or IN6ADDR_ANY specifier, 0.0.0.0, or [::]
respectively. When using a defaulted address, TAO will enumerate all
non-local interface addresses, unless there are no non-local interfaces
available. Note that if you use the ifconfig or ipconfig system command to
view your available interval addresses, you will see the loopback designated
as ::1, and some other interface specifying an address starting with fe80:. The
fe80 address is a “link local” address that is not routable and thus TAO does
not use it in defaulted endpoints. Link local addresses may be used explicitly.

SHMIOP Endpoints
TAO's SHMIOP pluggable protocol utilizes shared memory as its underlying
transport mechanism. SHMIOP endpoints in TAO have the form

o c i w e b . c o m 521

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

-ORBListenEndpoints shmiop://V.v@port1,...,W.w@port2

where “V.v” and “W.w” are the SHMIOP protocol versions associated with
the given address (port). Currently supported versions are 1.0, 1.1, and 1.2.

SHMIOP addresses consist of a port number on which the server listens. Port
numbers range from 0 (port is chosen by operating system) to 65335. Port
numbers less than 1024 on UNIX systems are considered privileged and
require super-user privileges to access them. Also be aware that some ports
may already be in use by other applications.

TAO will automatically choose an address for a SHMIOP endpoint if the
address is omitted from the specification (i.e., -ORBListenEndpoints
shmiop://).

UIOP Endpoints
TAO’s UIOP pluggable protocol utilizes local IPC (i.e., UNIX domain
sockets) as its underlying transport mechanism.

UIOP endpoints in TAO have the form:

-ORBListenEndpoints uiop://V.v@rendezvous_point1,...,W.w@rendezvous_point2

where “V.v” and “W.w” are the UIOP protocol versions associated with the
given rendezvous point. Currently supported versions are 1.0, 1.1, and 1.2.

A UIOP address is the rendezvous point on which the server listens. This
rendezvous point is generally the full path to the desired UNIX domain socket
filename. Though relative paths can be used, their use is discouraged. The
maximum length of the rendezvous point is 108 characters, as dictated by the
POSIX.1g specification for local IPC rendezvous points. TAO will truncate
any rendezvous point name longer than 108 characters.

A UIOP endpoint with the absolute path rendezvous point /tmp/foobar is
created by specifying -ORBListenEndpoints uiop:///tmp/foobar,
where the optional protocol version and endpoint-specific options have been
omitted.

A UIOP endpoint with the relative path rendezvous point foobar is created in
the current directory by specifying -ORBListenEndpoints
uiop://foobar, but rendezvous points with relative paths are discouraged
because it is possible that other rendezvous points with the same base name
exist on a given system, giving rise to potential ambiguities.

522 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

Omitting the rendezvous point (i.e., specifying -ORBListenEndpoints
uiop://) will cause TAO to automatically create an absolute-path
rendezvous point. The rendezvous point will be located in a system temporary
directory and its name will begin with “TAO.”

SSLIOP Endpoints
SSLIOP stands for the Secure Sockets Layer (SSL) Inter-ORB Protocol. This
protocol is defined by the OMG as part of the CORBA Security Service
specification. SSLIOP uses GIOP as a messaging protocol and SSL as the
transport protocol. It is a drop-in replacement for IIOP, providing secure
communication between hosts.

SSLIOP endpoints are specified similarly to IIOP endpoints. An SSLIOP
endpoint is specified just like an IIOP endpoint with the addition of the
ssl_port endpoint-specific option:

-ORBListenEndpoints iiop://hostname:iiop_port/ssl_port=secure_port

where the hostname and IIOP port are defined just like in IIOP endpoints and
the ssl_port option specifies the port that will be used to establish a secure
connection for secure communications.

SSLIOP is described in more detail in 14.10 and 27.10.

DIOP Endpoints
DIOP stands for Datagram Inter-ORB Protocol and is a UDP-based transport
protocol. This protocol is only partially implemented; as such, there are
restrictions on its use. The DIOP implementation uses connectionless UDP
sockets, and therefore is intended for use as a low-overhead protocol for
certain classes of applications. The original motivation for this protocol was
applications that use only oneway operations.

Endpoints for DIOP are composed of the prefix “diop://”, followed by a
host and port combination, similar to IIOP endpoints. An example of a DIOP
endpoint is:

-ORBListenEndpoints diop://example.ociweb.com:12345

DIOP is described in more detail in 14.9.

o c i w e b . c o m 523

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

Endpoint-specific Options
An endpoint-specific option is used as follows:

-ORBListenEndpoints iiop://foo:1234/option=value

Additional options can be specified by separating each option with an
ampersand (‘&’) as follows:

-ORBListenEndpoints 'iiop://foo:1234/option1=value1&option2=value2'

Note that the address and the endpoint-specific options are separated by a
forward slash (‘/’) in this case, i.e., for IIOP endpoints. This character is
normally a slash (‘/’), but may differ for other types of pluggable protocol
endpoints. For example, UIOP endpoint-specific options are separated from
the address by a vertical bar (‘|’). Also note that when using more than one
option, quotes should be used to prevent the shell from interpreting the
ampersand (‘&’) as indicating that the process should be run in the
background.

See Also 17.13.40, 17.13.52, 18.6.7, and Section 8.5.1.2 of the CORBA 3.1
specification (OMG Document formal/08-01-04).

Examples IIOP Endpoint Examples
In the following example, we use the -ORBListenEndpoints command line
option to restrict IIOP connections to clients running on the same host as the
server by specifying localhost as the host name of the endpoint. No port
number is specified, so it will be selected randomly. The command line is:

myserver -ORBListenEndpoints iiop://localhost:

Here are some additional examples of IIOP endpoints:

-ORBListenEndpoints iiop://1.1@foo1:0
-ORBListenEndpoints iiop://1.1@foo:0,1.2@bar,baz:3456
-ORBListenEndpoints iiop://1.1@foo:0,1.2@bar,baz:3456/portspan=10
-ORBListenEndpoints iiop:///portspan=5 (note three slashes "///")
-ORBListenEndpoints iiop://:2020/portspan=20

SHMIOP Endpoint Examples
Here are some additional examples of SHMIOP endpoints:

-ORBListenEndpoints shmiop://1.1@0

524 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

-ORBListenEndpoints shmiop://1.1@0,3456

UIOP Endpoint Examples
Here are some additional examples of UIOP endpoints:

-ORBListenEndpoints uiop://1.1@/tmp/foo1
-ORBListenEndpoints uiop://1.1@/tmp/foo,1.2@/home/bar/baz

Multiple Protocol Endpoint Examples
The following example shows how to use the -ORBListenEndpoints
command line option to specify that the ORB is to listen on an IIOP endpoint
at port number 12345 on host tango and at the same time on a default UIOP
endpoint.

myserver -ORBListenEndpoints iiop://tango:12345 -ORBListenEndpoints uiop://

Here are some additional examples of multiple protocol endpoint
specification:

-ORBListenEndpoints
’iiop://1.1@foo1:0;shmiop://1.1@0,3456;uiop://1.1@/tmp/foo1’

17.13.44 ORBLogFile file
Description The -ORBLogFile option causes all ACE_DEBUG and ACE_ERROR output to

be redirected to file.

Usage The default destination for output from ACE_DEBUG and ACE_ERROR is
stderr. Use this option to redirect this output to file.

This option may be used with the -ORBDaemon option (17.13.7) to capture the
ACE_DEBUG and ACE_ERROR output that would otherwise be lost because the
-ORBDaemon option causes both stdout and stderr to be closed.

See Also 17.13.7, 17.13.8, 17.13.9

Example The following example shows how to redirect ACE_DEBUG and ACE_ERROR
output to the file myLogFile:

myserver -ORBLogFile /tmp/myLogFile

o c i w e b . c o m 525

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

The following example shows how to capture the ACE_DEBUG and
ACE_ERROR output from a daemon process:

myclient -ORBDaemon -ORBLogFile /tmp/myLogFile

17.13.45 ORBMaxMessageSize maxsize

Description This option controls whether and when TAO fragments GIOP messages. By
default, TAO does not fragment any messages and sends messages of any size
as a single GIOP message. When this option is set to a non-zero value, TAO
uses that as a maximum message size and will fragment messages as
necessary to bring them within that limit. This option only affects TAO’s
sending behavior for that particular ORB and does not affect its ability to
process GIOP fragments that it receives.

Usage Applications that send large GIOP request or reply messages may want to set
this option to avoid the processing overhead inherent in long GIOP messages.

Example The following example shows how to use the -ORBMaxMessageSize
command line option to limit GIOP messages sent to 10KB:

myserver -ORBMaxMessageSize 10240

17.13.46 ORBMulticastDiscoveryEndpoint endpoint
Description When CORBA::ORB::resolve_initial_references(“NameService”) is

called, TAO, by default, uses IP multicast to find the TAO Naming Service. It
is often the case that more than one Naming Service is running on a local
network during development, or in a deployed application where a large
number of objects are logically partitioned in some way. In such a case, it is
undesirable for all of the Naming Service servers to be listening for multicast
requests on the same endpoint.

Values for maxsize

0 (default) Allow GIOP messages of unlimited size. No GIOP
fragmentation occurs

> 0
Specifies the maximum number of bytes for a GIOP
message. Messages larger than this are fragmented and sent
in their individual fragments.

526 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

At startup, the TAO Naming Service joins a multicast group and is assigned a
multicast request port. The multicast group IP address and the request port
together form the endpoint on which the Naming Service listens for multicast
requests. The TAO Naming Service default multicast group IP address is
defined in $ACE_ROOT/ace/OS.h as 224.9.9.2 and the default multicast
request port number is defined in $TAO_ROOT/tao/default_ports.h as
10013.

The -ORBMulticastDiscoveryEndpoint option allows the user to specify
the multicast group IP address and the multicast request port for the TAO
Naming Service. The option -ORBNameServicePort allows the user to set
the multicast request port, but does not allow the user to set the multicast
group. In fact, -ORBMulticastDiscoveryEndpoint 224.9.9.2:port is
functionally equivalent to -ORBNameServicePort port. Both options can
be used to run more than one Naming Service on the same subnet.

Usage Use -ORBMulticastDiscoveryEndpoint when starting the TAO Naming
Service server to specify the multicast group it is to join and on which port it is
to listen for multicast requests. Use it when starting clients of the TAO
Naming Service to specify the multicast group and port to use when
multicasting a TAO Naming Service discovery request. This option is only
available on platforms that support IP multicast. Both server and client
applications may use this option.

In development situations where there is a limitation as to the port(s) a process
is allowed to use, -ORBMulticastDiscoveryEndpoint may be useful by
allowing multiple Naming Services to listen on the same port, but have
different multicast IP addresses.

This option has the following format:

-ORBMulticastDiscoveryEndpoint address:port

where address is the Naming Service’s multicast group IP address. This
must be a class D address in the range 224.0.0.0 to 239.255.255.255.
The Naming Service will fail if it is passed an address outside of this range.

port is the Naming Service’s multicast request port number. This port
number must be valid for your operating system and user permissions.

See Also 17.13.47, 22.2

o c i w e b . c o m 527

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

Example This example shows how to use the -ORBMulticastDiscoveryEndpoint
command line option to specify the multicast request group and port to use:

tao_cosnaming -m 1 -ORBMulticastDiscoveryEndpoint 224.1.1.1:9999
myserver -ORBMulticastDiscoveryEndpoint 224.1.1.1:9999
myclient -ORBMulticastDiscoveryEndpoint 224.1.1.1:9999

Alternatively the clients can use -ORBInitRef or -ORBDefaultInitRef to
specify the multicast endpoint:

myserver -ORBInitRef NameService=mcast://224.1.1.1:9999/NameService
myclient -ORBDefaultInitRef mcast://224.1.1.1:9999

17.13.47 ORBNameServicePort port
Description When CORBA::ORB::resolve_initial_references("NameService") is

called, TAO, by default, uses IP multicast to find the TAO Naming Service. It
is often the case that more than one Naming Service is running on a local
network during development, or in a deployed application where a large
number of objects are logically partitioned in some way. In such a case, it is
undesirable for all of the Naming Service servers to be listening for multicast
requests on the same port.

At startup, the TAO Naming Service is assigned a port on which to listen for
multicast requests. The -ORBNameServicePort option allows the user to
specify this port. If this option is not used, then the NameServicePort
environment variable (if it is set) is used. Otherwise, if this option is not used
and the environment variable is not set, then the port number is set to the value
of TAO_DEFAULT_NAME_SERVER_REQUEST_PORT, defined in
$TAO_ROOT/tao/default_ports.h as 10013.

Usage Use -ORBNameServicePort when starting the TAO Naming Service to
specify on which port it is to listen for multicast requests. Use it when starting
clients of the Naming Service to tell them the multicast port to use when
multicasting a TAO Naming Service discovery request. This option is only
available on platforms that support IP multicast. Both server and client
applications may use this option.

This option has the following format:

-ORBNameServicePort port

528 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

where port is the Name Server’s multicast request port number. This port
number must be valid for your operating system and user permissions.

See Also 17.13.46, 22.2

Example The following example shows how to use the -ORBNameServicePort
command line option to specify the multicast request port to use:

tao_cosnaming -ORBNameServicePort 12345
myserver -ORBNameServicePort 12345
myclient -ORBNameServicePort 12345

which is equivalent to:

tao_cosnaming -ORBMulticastDiscoveryEndpoint 224.9.9.2:12345
myserver -ORBMulticastDiscoveryEndpoint 224.9.9.2:12345
myclient -ORBInitRef NameService=mcast://:12345/NameService

17.13.48 ORBNegotiateCodesets enabled

Description Codeset negotiation is a tool used by CORBA applications to determine the
numerical codes used to represent character data. Codeset negotiation enables
applications running on systems that use different character representations,
such as UTF-8 or Latin1, to accurately exchange character data, by having one
side or the other translate the character codes so that the same character is
represented.

There are may instances where this functionality is simply unused, for
instance when the peer applications are all using TAO and running on
identical or similar hardware, with similarly configured operating systems. In
fact, applications that use TAO often operate on embedded systems that would
benefit from not even loading the code to support codeset negotiation and
character translation into memory.

Values for enabled

0
Disables the use of the codeset negotiation feature for character and
wide character data

1 (default)
Enables codeset negotiation and possibly character and wide character
data translation

o c i w e b . c o m 529

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

The default value of this option for dynamically linked applications is 1.
Statically linked applications that do not explicitly link to and initialize the
codeset library will behave as though -ORBNegotiateCodesets 0 was set.

Usage All of the functional code for supporting codeset negotiation resides in a
separately loadable library called TAO_Codeset. When the
-ORBNegotiateCodesets option is enabled in a dynamically linked
application, this library is loaded automatically.

Statically linked applications that want to allow configuration of codeset
negotiation must explicitly link to the TAO_Codeset library and must also
include the initializer code somewhere in the application with:

#include "tao/Codeset/Codeset.h"

You must enable the MPC feature negotiate_codesets to have static
applications link to the TAO_Codeset library. For example, you may set the
following option in
$ACE_ROOT/bin/MakeProjectCreator/config/default.features:

negotiate_codesets=1

TAO will report an error, "Unable to load TAO_Codeset", if the
-ORBNegotiateCodesets option is set and the TAO_Codeset library is not
available. If this occurs, the application will continue to run, but without
codeset support.

See Also 18.2.8, 4.3.2.3

Example The following example shows how to disable the use of codeset negotiation:

myserver -ORBNegotiateCodesets 0

530 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

17.13.49 ORBNodelay enabled

Description TAO enables the TCP_NODELAY socket option by default, resulting in the
disabling of the Nagle algorithm. The Nagle algorithm is used to reduce the
number of small packets on a WAN. Using -ORBNodelay with an argument
of 0 disables the TCP_NODELAY socket option and thus enables the Nagle
algorithm.

Usage Applications with many small request/reply messages and stringent timing
requirements can increase performance and improve predictability by
eliminating the delay in TCP packet sends introduced by the Nagle algorithm.

See Also W. Richard Stevens, UNIX Network Programming, Volume 1, pages 202-204.

Example The following example shows how to disable TCP_NODELAY, thereby enabling
the Nagle algorithm:

myserver -ORBNodelay 0

17.13.50 ORBNoProprietaryActivation
Description This is a new CORBA 3 ORB initialization option. It indicates that a server

should avoid the use of any proprietary activation framework upon start up.
Registration with an Implementation Repository (IMR) is an example of such
proprietary activation framework behavior that could be performed. Future
implementations may provide additional behaviors, based on CORBA 3’s
object reference template (ORT) specification.

Note This option is not currently supported in TAO. However, if this option is
present in the argument list (argv[]), CORBA::ORB_init() will accept the
option, but raises the CORBA::NO_IMPLEMENT system exception. Also, TAO
currently requires that this option, if present, must be followed by an
argument (e.g., -ORBNoProprietaryActivation 1), otherwise
CORBA::ORB_init() will not correctly parse the remaining options.

Values for enabled

0
Disables TCP_NODELAY, thus enabling the Nagle algorithm and
introducing a delay into TCP packet sends.

1 (default) Eliminates the delay in packet sends introduced by the Nagle algorithm.

o c i w e b . c o m 531

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

Usage This option should not be used in the current version of TAO. It is described
here only because some ORB initialization code exists to parse this option.

See Also 17.13.66, Section 8.5.1.3 of the CORBA 3.1 specification (OMG Document
formal/08-01-04)

17.13.51 ORBNoServerSideNameLookups enabled

Description By default, TAO looks up the host name when opening endpoints on the
server side. This option allows developers to avoid this look-up. This behavior
is also controlled by -ORBDottedDecimalAddresses, but that option also
affects whether names or numbers are placed in the IORs produced. This
option only controls the lookup.

Usage Use this option when you want to avoid the name look-up for servers but you
still want host names to appear in the IORs produced.

See Also 17.13.13

Example The following example shows how to use the
-ORBNoServerSideNameLookups command line option to avoid name
lookups on the server side:

myserver -ORBNoServerSideNameLookups 1

17.13.52 ORBObjRefStyle style

Description This option specifies the format used for printing Interoperable Object
References (IORs) as strings. Stringified IORs can be printed using the
standard OMG IOR format (“IOR:” followed by a long string of hexadecimal

Values for enabled

0 (default) Look up host names on the server side.

1 Do not look up host names on the server side.

Values for style

IOR (default) Use the standard OMG IOR format.

URL
Use a more readable format, similar to the form used in
Universal Resource Locators (URLs).

532 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

digits) or the more readable Universal Resource Locators (URL)-like format.
OMG IOR format is the default.

Usage During development and testing, you will often want to print IORs using the
URL-like format for easier debugging. However, the OMG standard IOR
format is slightly more efficient when used with operations such as
CORBA::ORB::string_to_object().

URL-style object references are provided in a format that is compatible with
the OMG-specified corbaloc format. See the description of -ORBInitRef
in 17.13.36 for more information on corbaloc object references.

In TAO, UIOP (local IPC) URL-style object references have a similar syntax,
as follows:
 <uioploc> = "uioploc://"[<addr_list>]["|"<key_string>]
 <addr_list> = [<address> ","]* <address>
 <address> = [<version> <rendezvous point>]
 <rendezvous point> = Valid Filesystem Path
 <version> = <major> "." <minor> "@" | empty_string
 <major> = number
 <minor> = number
 <key_string> = <string> | empty_string

IORs printed using the URL-like format will have the following form:
protocol://V.v@endpoint[/poa_name/...]/ObjectId

where V.v represents the major and minor protocol version.

For example:

corbaloc:iiop:1.2@host.domain.com:46432/NameService

uioploc://1.2@/tmp/TAOBZMY5Y|NameService

Note TAO uses a vertical bar ‘|’ in UIOP URL-style object references to separate
the object key from the rendezvous point. The forward slash ‘/’ could not be
used because it is a valid character in both the object key and the rendezvous
point.

For transient object references, a time stamp is encoded within the IOR as
well.

Both server and client applications may use this option.

o c i w e b . c o m 533

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

Example The following example shows how to use the -ORBObjRefStyle command
line option to specify that IORs should be displayed using a URL-like format:

myserver -ORBObjRefStyle URL

17.13.53 ORBParallelConnectDelay msec
Description This option, when used with -ORBUseParallelConnects option, specifies

a delay for use between parallel connects to different endpoints in a profile.
The default value for this option is zero, which means that there is no delay
between connection attempts. The specified delay value is in milliseconds.

Parallel connection attempts do not have to be truly parallel. In applications
that connect to a server with a lot of endpoints, perhaps frequently, the time
waiting for a connection to succeed may cause the application to run out of
socket descriptors. To avoid this problem, use
-ORBParallelConnectDelay to introduce a brief delay between starting
successive connection attempts. An early successful connection can then
avoid many failed ones. If the delay is small, a late success can still be reached
quickly.

Usage Attempting parallel connects to a busy server with no connect delay specified
can cause unnecessary additional load for the server. In these cases it is better
to introduce a delay via this option.

See Also 17.13.69

Example The following example shows how to use the -ORBParallelConnectDelay
option to set a parallel connection delay of 100 milliseconds.

myclient -ORBUseParallelConnects 1 -ORBParallelConnectDelay 100

534 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

17.13.54 ORBPreferIPV6Interfaces enabled

Description This option is only available when TAO is built with IPv6 support enabled,
through either the MPC ipv6 feature or ACE_HAS_IPV6.

When TAO is connecting to a server, this option specifies that all IPv6
interfaces should be tried before any IPv4 interfaces. Explicitly supplying a 0
argument causes TAO to prefer IPv4 first.
When ORBPreferIPV6Interfaces is not provided, interfaces are tried in
the order discovered.

This option affects IIOP and SSLIOP.

See Also 17.13.6, 17.13.67

Example The following example shows how to use the -ORBPreferIPV6Interfaces
command line option to force TAO to try using all IPv6 interfaces first:

myserver -ORBPreferIPV6Interfaces 1

17.13.55 ORBPreferredInterfaces list
Description This option allows a client ORB to be configured during the initialization with

the capability to choose preferred interface(s) during the invocation phase.
This capability is very useful for clients on multi-homed hosts because it
allows the client to choose specific interfaces/networks with which to
communicate with specific remote targets, or all remote targets.

Note Not all transport protocols use sockets. Thus, the arguments provided to these
options may be interpreted in a protocol-specific way.

Usage This option is only significant for ORBs in a client role. The list parameter is
defined as a comma separated list of target destinations and the interface
addresse(s) used to connect to it. The target and interface identifiers are

Values for enabled

0 (default) Clients prefer neither IPv4 nor IPv6 interfaces.s by default,
prefer IPv4 when 0 is supplied

1
When connecting to a server, TAO should prefer IPv6
interfaces.

o c i w e b . c o m 535

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

separated with either an equal sign(’=’) or a colon (’:’) although the colon is
not supported for IPv6 enabled builds. This option may be repeated to build up
a list of associations. The format of the list is:

target_network:interface,target_network:interface:...
target_network=interface,target_network=interface:...

Both the target_network and the interface parameters may be specified
as host names, IP addresses, or the wild-card character (’*’).

See Also 17.13.16

Examples Suppose a client is running on a host with two network interface cards with the
following host names:

malory.ociweb.com
arthur.ociweb.com

Now, suppose this client needs to communicate with a (target) server running
on a host named www.sometargethost.com. The application wishes to
constrain all connections to the server on that target host through the interface
malory.ociweb.com.

The following example shows how to use the -ORBPreferredInterfaces
command line option to achieve the desired result:

myclient -ORBPreferredInterfaces "www.sometargethost.com=malory.ociweb.com"

If all connections with remote servers at sometargethost.com are to be
constrained to the malory.ociweb.com interface, the wild-card character *
could be used, as in the following example:

myclient -ORBPreferredInterfaces "*.sometargethost.com=malory.ociweb.com"

When your interfaces are not named, you can use IP addresses for the target
network or local interface identifiers. In this example, all CORBA traffic is
routed through a single network interface regardless of destination:

myclient -ORBPreferredInterfaces "*=10.100.201.35"

536 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

17.13.56 ORBRcvSock buffersize
Description You may find it useful, when tuning an application’s performance, to control

the sizes of the protocol’s receive buffer in an attempt to maximize
throughput. This can be especially helpful if you have a priori knowledge of
the application’s needs and the dynamics of the network in which the
application is operating. The -ORBRcvSock option allows you to control the
buffer size of the socket on the receiving side.

Note Not all transport protocols use sockets. Thus, the arguments provided to these
options can be thought of as general I/O buffer sizes that may be interpreted in
a protocol-specific way.

Usage Both server and client applications may use this option. The default value for
this option, ACE_DEFAULT_MAX_SOCKET_BUFSIZ, is defined as 65536 in
$ACE_ROOT/ace/OS.h. Specify a value in bytes that is less than 65536.
Larger values generally improve throughput.

See Also 17.13.61

Example The following example shows how to use the -ORBRcvSock command line
option to specify receiving socket buffer size:

myserver -ORBRcvSock 8192

17.13.57 ORBServerId server_id
Description The CORBA specification (starting with CORBA 3.0) defines an ORB

initialization option to uniquely identify a server to an Implementation
Repository (IMR). The -ORBServerId option accepts a string for the
server_id argument. All object reference templates created in this ORB will
return the specified server id in the server_id attribute. All ORBs created in
a server must share the same server id. The default server id in TAO is an
empty string.

Usage This option currently has little effect on TAO in terms of how servers interact
with the IMR. The ORB’s server id is, however, used in the creation of an

o c i w e b . c o m 537

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

object reference template by each new POA that is created in a server. Future
revisions may assign more behavior to the server id specified by this option.

See Also 17.13.66, Section 8.5.1.1 of the CORBA 3.1 specification (OMG Document
formal/08-01-04)

Example The following example shows how to use the -ORBServerId command line
option to control the server id of the ORB.

myserver -ORBServerId MyServer

17.13.58 ORBServiceConfigLoggerKey logger_key
Description This option allows you to specify where to write ORB logging output. This

option is equivalent to passing the key to the
ACE_Service_Config::open() function.

Usage Both server and client applications may use this option. The default value is
ACE_DEFAULT_LOGGER_KEY, which depends on the platform type. Platforms
that support stream pipes use /tmp/server_daemon. Others use
localhost:20012.

Example The following will cause logging output to be written to the specified port on
the local machine.

myserver -ORBServiceConfigLoggerKey localhost:9999

538 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

17.13.59 ORBSingleReadOptimization enabled

Description A GIOP message includes a fixed-size message header and a message body. A
field in the message header indicates the size of the message in bytes. An ORB
can always read exactly one GIOP message by using the following algorithm:

• Read the fixed-size message header.

• Get the message size from the message header.

• Read the rest of the message as indicated by the size field in the header.

However, performing two read operations for each message may not be the
most efficient use of resources. By attempting to always read a larger chunk of
bytes and queuing any extra messages (or partial message) for later
processing, performance can be greatly improved.

The single read optimization in TAO enables the ORB to attempt to read each
message in a single read operation rather than in two read operations.

Usage Both server and client applications may use this option.

Normally, the default value of 1 (true) for this option is appropriate because it
results in better performance since fewer read operations are performed during
request and reply processing.

In real-time applications, this option should be set to 0 (false) to disable the
single read optimization, otherwise it may lead to priority inversions. For
example, suppose two or more requests arrive at a socket and are held in the
socket’s receive buffer for reading. If multiple requests are read from the
socket in a single read, the first request will be processed and the rest of the
requests will be queued. A reactor notification will then be used to wake up a
follower thread in the ORB’s leader-followers model. Meanwhile, new higher
priority requests may arrive on other sockets. But, since the TP reactor (the
default reactor type in TAO) dispatches notifications before normal I/O, the

Values for enabled

0
Disables the single read optimization, thereby requiring two read
operations to read each GIOP message (one to read the GIOP message
header, one to read the message body).

1 (default)

Each time the ORB reads a GIOP message from the transport, it will
read TAO_MAXBUFSIZE bytes, hoping to read an entire message. If it
reads more than one message (including a partial message), it will
queue them for later processing.

o c i w e b . c o m 539

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

lower-priority queued messages will be processed before newly-arrived
higher-priority requests, thereby leading to a priority inversion.

See Also Chapter 8

Example The following example shows how to disable TAO’s single read optimization:

myserver -ORBSingleReadOptimization 0

17.13.60 ORBSkipServiceConfigOpen
Description This option skips processing of any service configuration options for this

ORB.

Usage Use this option to ensure that the default svc.conf is not loaded.

See Also 17.13.63

Example Here is an example of applying the -ORBSkipServiceConfigOpen option
to prevent loading of a service configuration file:

server -ORBSkipServiceConfigOpen

17.13.61 ORBSndSock buffersize
Description You may find it useful, when tuning an application’s performance, to control

the sizes of the protocol’s send buffer in an attempt to maximize throughput.
This can be especially helpful if you have a priori knowledge of the
application’s needs and the dynamics of the network in which the application
is operating. The -ORBSndSock option allows you to control the buffer size of
the socket on the sending side.

Note Not all transport protocols will use sockets. Thus, the arguments provided to
these options can be thought of as general I/O buffer sizes that may be
interpreted in a protocol-specific way.

Usage Both server and client applications may use this option. The default value for
this option, ACE_DEFAULT_MAX_SOCKET_BUFSIZ, is defined as 65536 in

540 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

$ACE_ROOT/ace/OS.h. Specify a value in bytes that is less than 65536.
Larger values generally improve throughput.

See Also 17.13.56

Example The following example shows how to use the -ORBSndSock command line
option to specify the sending socket buffer size.

myserver -ORBSndSock 4096

17.13.62 ORBStdProfileComponents enabled

Description Agents that accept object requests or that provide locations for objects (i.e.,
servers) publish object locations using opaque, protocol-specific profiles. The
standard IORs encapsulate these profiles. A single IOR may contain multiple
profiles for a single CORBA object. For example, an IIOP profile includes the
host name and port at which the server ORB listens for requests.

A profile may also contain, in its so-called tagged components, additional
information, such as the character set understood by the server, security
tokens, and priority information. These tagged components are optional, but if
present, must be retained as part of the IOR, even if the IOR is passed between
ORBs. The default is to generate the optional standard profile components.

This option controls generation of the following optional tagged components:

• TAG_ORB_TYPE

• TAG_CODE_SETS

Usage Use the -ORBStdProfileComponents option to control whether the ORB
will generate optional tagged components in IORs. This option is applicable
only to server applications.

Specify a value of 0 for this option to suppress generation of the optional
tagged components, if clients do not need them, are operating under severe
memory constraints, or anticipate a very large number of IORs.

Values for enabled

1 (default) The ORB generates the OMG standard profile components.

0 The ORB does not generate the OMG standard profile components.

o c i w e b . c o m 541

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

Impact Suppressing the generation of these optional tagged components saves 28
bytes per IOR. Since these components are optional, the use of this option to
suppress them does not impact interoperability with other GIOP 1.1- or
1.2-compliant ORBs.

See Also The definition of TAO_STD_PROFILE_COMPONENTS in
$TAO_ROOT/tao/orbconf.h.

Example The following example shows how to use the -ORBStdProfileComponents
command line option to instruct the ORB not to generate optional standard
profile components:

myserver -ORBStdProfileComponents 0

17.13.63 ORBSvcConf config_file_name
Description By default, a service-configurator-based application looks in the current

directory for a file named svc.conf, which supplies directives to the service
configurator. You can use the -ORBSvcConf option to specify a different file
name. The config_file_name argument can be any valid path. The target file
may contain directives for non-TAO-related service objects and for TAO
components. You can supply multiple files to the service configurator by
supplying multiple -ORBSvcConf options on the command line. The
directives in each file are supplied to the service configurator in an additive
fashion. Using -ORBSvcConf on the command line is equivalent to passing
the -f option to the open() function of the ACE_Service_Config class.

Usage Both server and client applications may use this option. It is only applicable
on platforms with file systems.

A common usage for this option is when a directory contains several service-
configurator-based applications. Each needs its own service configuration file,
so it is not possible to use the default file name svc.conf. Use this option to
supply a different configuration file to each application. You may also use it to
supply different configurations to separate instances of the same application.

See Also 16.4

Example The following examples show how to use the -ORBSvcConf command line
option to specify alternate service configuration files to applications:

myserver -ORBSvcConf tsscommon.conf

542 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

myserver -ORBSvcConf $TESTROOT/rt_test/svc.conf -ORBSvcConf $HOME/svc.conf

17.13.64 ORBSvcConfDirective directive
Description Use -ORBSvcConfDirective to supply a single directive to the service

configurator from the command line. This option may be repeated to pass
multiple directives. The directive argument can be any valid service
configurator directive string. Using -ORBSvcConfDirective on the
command line is equivalent to passing the -S option to the open() function of
the ACE_Service_Config class.

Usage Both server and client applications may use this option. When it is not
possible to use a service configuration file with an application, applications
may use this option. A good example is an environment where there is no file
system. Developers may also use this option during development and testing
to quickly try alternate configurations, without modifying the configuration
file.

See Also 16.4, 17.13.63

Example The following example shows how to use the -ORBSvcConfDirective
command line option to pass directives to the ORB’s service configurator:

myserver -ORBSvcConfDirective "static Resource_Factory '-ORBReactorType tp'"

17.13.65 ORBTradingServicePort port
Description When CORBA::ORB::resolve_initial_references(“TradingService”) is

called, TAO, by default, uses IP multicast to find the TAO Trading Service. It
is often the case that more than one Trading Service is running on a local
network during development, or in a deployed application where a large
number of objects are logically partitioned in some way. In such a case, it is
undesirable for all of the Trading Service servers to be listening for multicast
requests on the same port.

At startup, the TAO Trading Service is assigned a port on which to listen for
multicast requests. The -ORBTradingServicePort option allows the user to
specify this port. If this option is not used, then the TradingServicePort
environment variable (if it is set) is used. Otherwise, if this option is not used

o c i w e b . c o m 543

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

and the environment variable is not set, then the port number is set to the value
of TAO_DEFAULT_TRADING_SERVER_REQUEST_PORT, defined in
$TAO_ROOT/tao/default_ports.h as 10016.

Usage Use -ORBTradingServicePort when starting the TAO Trading Service to
specify on which port it is to listen for multicast requests. Use it when starting
clients of the Trading Service to tell them the multicast port to use when
multicasting a TAO Trading Service discovery request. This option has the
following format:

-ORBTradingServicePort port

where port is the Trading Service’s multicast request port number. This port
number must be valid for your operating system and user permissions.

Both server and client applications may use this option. This option is only
available on platforms that support IP multicast.

Example The following example shows how to use the -ORBTradingServicePort
command line option to specify the multicast request port to use:

$TAO_ROOT/orbsvcs/Trading_Service/tao_costrading -ORBTradingServicePort 12345
myserver -ORBTradingServicePort 12345

17.13.66 ORBUseIMR enabled

Description The use of the -ORBUseIMR option has the following effects:

• In the ImplRepo, each of the server’s persistent POAs has its address set
to the server’s address and its current execution status set to running.

• The server embeds the ImplRepo’s address, rather than its own address, in
the IORs of its persistent objects.

Usage In order for a server to use the ImplRepo,

• The name of each of its persistent POAs must be added to the ImplRepo.

• It must obtain an object reference to the ImplRepo.

Values for enabled

0 (default) Do not use the Implementation Repository (ImplRepo).

1 Use the ImplRepo.

544 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

• It must be started using the -ORBUseIMR option with a value of 1.

The environment variable TAO_USE_IMR can be used instead of passing
-ORBUseIMR option on a server’s command line. Also, if the
tao_imr_activator is used to start a server, the -ORBUseIMR option is
automatically added to the server’s command line options by the Activator.

See Also Chapter 28

Example If the command

tao_imr_locator -o implrepo.ior

is used to start the ImplRepo, the command:

tao_imr -ORBInitRef ImplRepoService=file://implrepo.ior add MyPoa

is used (see 28.3) to add the name MyPoa to the repository, and if MyServer is
a server with a single persistent POA named MyPoa, the command

MyServer -ORBUseIMR 1 -ORBInitRef ImplRepoService=file://implrepo.ior

causes the following to occur:

• MyServer is started.

• In the ImplRepo, MyPoa’s address is set to MyServer’s address.

• In the ImplRepo, MyPoa’s current execution status is set to running.

• The address of the ImplRepo that was obtained from implrepo.ior is
used to construct IOR’s for MyPoa’s objects.

17.13.67 ORBUseIPV6LinkLocal enabled

Description Link local IPv6 addresses are non-routable, and thus are not suitable for use in
object references that are going to be distributed across a network. The are
disabled by default and can be enable using this option.

This option affects IIOP and DIOP.

Values for enabled

0 (default) Disallow use of the IPv6 link local address.

1 Allow use of the IPv6 link local address.

o c i w e b . c o m 545

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

Usage This option is useful when performing validation tests between hosts that are
connected to the same link.

See Also 17.13.6, 17.13.54

17.13.68 ORBUseLocalMemoryPool enabled

Description This option determines which memory allocator TAO uses for a variety of
internal purposes (such as message buffers). You can override the default
value at build time via the TAO_USES_LOCAL_MEMORY_POOL macro or set it
at run-time via this option.

You can directly specify the allocator to use for output CDR buffers via the
-ORBOutputCDRAllocator resource factory option. For those buffers, that
option can override the allocator specified here.

Usage The trade-off between the platform’s default memory allocator and TAO’s
memory pool is dependent on a number of factors including the platform you
are on, the nature of your application, and the nature of your usage patterns.
TAO’s memory pool can often be more efficient than the platform’s allocator.
One disadvantage of TAO’s memory pool is that once it allocates memory it
never returns it to the system.

See Also 18.6.12

Example The following example shows how to use the -ORBUseLocalMemoryPool
command line option to specify use of the memory pool allocator:

myserver -ORBUseLocalMemoryPool 1

Values for enabled

0 (default) TAO should use the platform’s default memory allocator.

1
TAO should use a local memory pool in place of the platform’s default
memory allocator.

546 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

17.13.69 ORBUseParallelConnects enabled

Description A server on a multi-homed host can produce profiles for object references that
contain many endpoints. For specific clients, some of the endpoints in the
profiles will be unreachable. By default, TAO clients try connecting to
endpoints sequentially, perhaps encountering a very long delay while failing
to reach unreachable endpoints.

When this option is enabled, TAO will attempt to connect to all the endpoints
in the profile in parallel. The first to either be found in the cache or
successfully connect is used and the other connection attempts are terminated.

The -ORBParallelConnectDelay option can be used to introduce delays
between the start of each endpoint connect.

Usage Use this option when you are using servers that publish IORs with multiple
endpoints and you want to optimize your connection times. For example, hosts
that belong to multiple networks could have multiple endpoints, only one of
which is reachable by a given client. Clients of such a server should use this
option to avoid lengthy delays when connecting.

Note To take full advantage of this option, you must use enable the
-ORBUseSharedProfile option on the server to allow shared profiles.
Failure to do so would result in separate profiles for each endpoint and would
not result in any parallelism for the clients.

Impact Use of this option will cause increased resource usage in terms of memory,
processing, and the network.

See Also 17.13.53, 17.13.70

Example
myserver -ORBUseSharedProfile 1
myclient -ORBUseParallelConnects 1

Values for enabled

0 (default)
Endpoints in a profile are tried one at a time. If a connect to one
succeeds it is used. If it fails, then the next endpoint in the profile is
tried.

1
Parallel connect feature is enabled. Parallel connections are attempted
to all endpoints in the profile. The first to succeed is used.

o c i w e b . c o m 547

1 7 . 1 3 O p t i o n D e s c r i p t i o n s

17.13.70 ORBUseSharedProfile enabled

Description When an IOR is created, the endpoints on which the ORB is listening for
requests are encoded into the IOR. The endpoints are contained within one or
more profiles in the IOR. An IOR may have multiple profiles and each profile
may have multiple endpoints. This option controls whether or not TAO will
combine multiple endpoints having the same protocol and protocol version
(e.g., IIOP 1.2) into a single profile.

Usage Use the -ORBUseSharedProfile option to control whether the ORB will
combine multiple endpoints into a single profile in IORs. This option is
applicable only to server applications.

Impact Combining multiple endpoints into a single profile results in slightly smaller
IORs. There is no appreciable performance impact associated with the use of
this option. Some legacy client ORBs may not be able to access more than one
endpoint from a single profile.

See Also 17.13.43

Example myserver -ORBUseSharedProfile 0

17.13.71 ORBVerboseLogging level

Description This option controls the amount of status data printed on each line of the
debug log. Higher numbers generate more output.

Usage Use the -ORBVerboseLogging option to obtain additional timing
information about each debug log entry.

Values for enabled

0
Specifies that the ORB should create a new profile for each endpoint
when building profiles for IORs.

1 (default)
Specifies that the ORB will combine multiple endpoints (with the same
protocol and protocol version) into a single profile.

Values for level

0(default) The same as not using the option.

1 Adds a timestamp to prefix each line of code.

2 Add even more verbosity

548 o c i w e b . c o m

O R B I n i t i a l i z a t i o n O p t i o n s

Impact The additional information printed out for each log entry may decrease your
application performance.

See Also 17.13.9, 17.13.44

Example myserver -ORBVerboseLogging 1 -ORBDebugLevel 10

o c i w e b . c o m 549

CHAPTER 18

Resource Factory

18.1 Introduction

The resource factory is responsible for constructing and providing access to
various resources used by ORBs within both clients and servers. ORB
resources include a reactor, protocol factories, and allocators for buffers used
during encoding and decoding of data transmitted between ORBs. Protocol
factories are responsible for supplying acceptors, connectors, and connection
handlers to enable interprocess communication.

TAO provides several different types of resource factories, summarized in
Table 18-1. The choice of resource factory to use depends upon such
considerations as the features your application requires and the environment in
which it will run. Many applications will function just fine with the default
resource factory and will not require any of the special features found in the
alternate resource factory implementations.

550 o c i w e b . c o m

R e s o u r c e F a c t o r y

With the exception of the advanced resource factory, the resource factory used
by the ORB is registered with the service configurator as
Resource_Factory. TAO’s default resource factory is statically registered
with the service configurator, so the static directive is used to supply
initialization options to it. To change the behavior of the default resource
factory, add a line similar to the line below to your service configuration file:

static Resource_Factory "-ORBoption value -ORBoption value ..."

The service configurator is discussed in greater detail in 16.3. The options
supported by the default resource factory are discussed in the following pages.

Table 18-1 Resource Factories provided with TAO

Resource Factory Section Description

Default Resource Factory 18.2 Unless configured otherwise, this is the
resource factory used.

Qt Resource Factory 18.3
This is a specialized resource factory
providing the means for integrating with
the Qt GUI toolkit from Trolltech.

Xt Resource Factory 18.4

This is a specialized resource factory
providing the means for integrating with
the X Window System’s Xt Intrinsics
toolkit.

Fox Resource Factory N/A
This is a specialized resource factory
providing the means for integrating with
the Fox toolkit.

Fl Resource Factory N/A
This is a specialized resource factory
providing the means for integrating with
the Fast Light toolkit (fltk).

Tk Resource Factory N/A
This is a specialized resource factory
providing the means for integrating with
the Tk framework.

Advanced Resource Factory 18.5

This factory provides more advanced
configuration options in addition to all
the features of the default resource
factory.

o c i w e b . c o m 551

1 8 . 2 I n t e r f a c e D e f i n i t i o n

18.2 Interface Definition

Within a TAO application, the resource factory is accessed via an interface
defined by the base class TAO_Resource_Factory. Here we show all of the
operations of the resource factory and describe their use in relationship to the
ORB, as well as the behavior of the default resource factory implementation
provided with TAO.

Whereas a reference to the resource factory may be obtained through the
service configurator, it is not intended for use external to the ORB core.
TAO’s ORB core object supplies the interface for retrieving objects supplied
by the resource factory.

Synopsis class TAO_Export TAO_Resource_Factory : public ACE_Service_Object {
enum Purging_Strategy {

LRU,
LFU,
FIFO,
NOOP

};

enum Resource_Usage{
TAO_EAGER,
TAO_LAZY

};

TAO_Resource_Factory (void);
virtual ~TAO_Resource_Factory (void);
virtual void disable_factory (void) = 0;
virtual ACE_Reactor* get_reactor (void);
virtual void reclaim_reactor (ACE_Reactor* reactor);
virtual TAO_LF_Strategy* create_lf_strategy (void) = 0;
virtual TAO_Acceptor_Registry* get_acceptor_registry (void);
virtual TAO_Connector_Registry* get_connector_registry (void);
virtual ACE_Allocator* input_cdr_dblock_allocator (void);
virtual ACE_Allocator* input_cdr_buffer_allocator (void);
virtual ACE_Allocator* input_cdr_msgblock_allocator (void);
virtual int input_cdr_allocator_type_locked (void);
virtual ACE_Allocator* output_cdr_dblock_allocator (void);
virtual ACE_Allocator* output_cdr_buffer_allocator (void);
virtual ACE_Allocator* output_cdr_msgblock_allocator (void);
virtual int use_locked_data_blocks (void) const;
virtual TAO_Flushing_Strategy* create_flushing_strategy (void) = 0;
virtual TAO_Connection_Purging_Strategy* create_purging_strategy (void) = 0;
virtual int purge_percentage (void) const;
virtual int cache_maximum (void) const;
virtual int max_muxed_connections (void) const;

552 o c i w e b . c o m

R e s o u r c e F a c t o r y

virtual int locked_transport_cache(void);
virtual ACE_Lock* create_cached_connection_lock (void);
virtual ACE_Lock* create_object_key_table_lock (void);
virtual int init_protocol_factories (void);
virtual TAO_ProtocolFactorySet* get_protocol_factories (void);
virtual int get_parser_names (char**& names, int& number_of_names);
virtual ACE_Allocator* amh_response_handler_allocator(void);
virtual ACE_Allocator* ami_response_handler_allocator(void);
virtual ACE_Allocator* create_corba_object_lock(void);
virtual TAO_Resource_Factory::Resource_Usage resource_usage_strategy(void)
const = 0;
virtual TAO_Codeset_Manager* codeset_manager (void);
virtual TAO_Configurable_Refcount create_corba_object_refcount (void);
virtual auto_ptr<TAO_GIOP_Fragmentation_Strategy>
 create_fragmentation_strategy (TAO_Transport * transport,
 CORBA::ULong max_message_size) const = 0;
virtual bool drop_replies_during_shutdown () const = 0;
virtual void use_local_memory_pool (bool);
};

18.2.1 Reactor Management
The resource factory interface defines an operation that returns a pointer to a
newly-created reactor. Each ORB instance in an application will have a
reactor, and may even have multiple reactors, but no reactor will be shared
among ORBs.

virtual ACE_Reactor* get_reactor (void);

TAO will use a reactor when dealing with connection management involving
the predefined protocols, for example IIOP, UIOP, and SHMIOP. At the very
least, TAO uses the reactor to supply non-blocking event-handling behavior in
the ORB. The interface also defines an operation that reclaims or deallocates
any resources used by the reactor.

virtual void reclaim_reactor (ACE_Reactor* reactor);

In addition to the default reactor, TAO provides various other reactors for
specialized needs. Specialized reactors are used with the Qt, Fl, Fox, Tk, and
Xt resource factories. Also, the advanced resource factory allows the selection
of other TAO-provided reactors if the default does not suit your needs. See
18.5 for information on using the advanced resource factory and selecting
other reactors.

o c i w e b . c o m 553

1 8 . 2 I n t e r f a c e D e f i n i t i o n

Another operation that relates to the reactor is create_lf_strategy():

virtual TAO_LF_Strategy* create_lf_strategy (void) = 0;

The TAO_LF_Strategy returned by this operation tells the ORB the method
by which threads vie for access to the reactor. The default resource factory
always returns a valid strategy, so the leader-follower model will be used to
synchronize access to the reactor. The advanced resource factory will return a
valid leader-follower strategy unless the reactor type chosen is select_st, in
which case it will return a null strategy.

An advanced resource factory option, shown in table Table 18-2, is used to
specify the type of reactor to be used by the ORB.

18.2.2 Allocators for CDR Conversion
Before data is transferred between ORBs, either as parameters to an
operation or as the result from an operation, the data must be put into a form
that is suitable for transmission. TAO is responsible for encoding the data on
the sending side and decoding the data on the receiving side. Encoding the
data involves marshaling, which is gathering up the bits of information to be
transmitted and placing them in a predictable order. The predictable order
specified by GIOP is called the Common Data Representation, or CDR. The
CDR is discussed in detail in Advanced CORBA Programming with C++,
13.3.

When TAO encodes data for sending or decodes data received, space is
required to hold the intermediate form of the data. This interim space is
managed using ACE_Message_Blocks. Message blocks contain data in units
of ACE_Data_Blocks, which provide a reference-counted wrapper around the
actual data buffer. The space used by these buffers is owned by the ORB that
manipulates them, therefore the allocation strategy used to manage the space
is provided by the resource factory. Different allocators can be used for
ACE_Message_Blocks. In addition, the ACE_Message_Block provides the
ability to use separate allocators for the ACE_Data_Blocks and the buffers.

Table 18-2 Options for Configuring the ORB’s Reactor Type

Option Section Description

-ORBReactorType reactor_type 18.7.6
Specify the type of reactor the ORB uses
to handle incoming connections,
requests, and other events.

554 o c i w e b . c o m

R e s o u r c e F a c t o r y

Therefore, the resource factory interface provides operations used by the ORB
to access allocators used to create ACE_Message_Block and
ACE_Data_Block objects and data buffers for input and output. The input
CDR allocator accessors are:

virtual ACE_Allocator* input_cdr_msgblock_allocator (void);
virtual ACE_Allocator* input_cdr_dblock_allocator (void);
virtual ACE_Allocator* input_cdr_buffer_allocator (void);

The buffers used to receive and decode incoming data may be passed up the
processing chain from the actual communication endpoint, through the ORB,
to the application code responsible for dealing with the data. Locking may be
required if multiple threads will access the data. The locked input CDR
allocator is:

virtual int input_cdr_allocator_type_locked (void);

The advanced resource factory option -ORBInputCDRAllocator (see
18.7.4) is provided to specify the type of lock used to protect access to the
input CDR allocators and the data they allocate. See 18.5 for information on
using the advanced resource factory. The default resource factory always
returns a non-zero value, which means access to the allocator for creating and
destroying data buffers is synchronized and therefore safe to be used by many
threads.

The following operations are used by the ORB to access allocators used for
encoding outgoing data:

virtual ACE_Allocator* output_cdr_msgblock_allocator (void);
virtual ACE_Allocator* output_cdr_dblock_allocator (void);
virtual ACE_Allocator* output_cdr_buffer_allocator (void);

Access to the ACE_Data_Blocks used to encode data being transmitted does
not normally need to be synchronized since the data blocks are not used for
any application-level processing. The ORB core provides data blocks used
during the CDR conversion process and uses the following resource factory
operation to determine the type of data block it is expected to produce:

virtual int use_locked_data_blocks (void) const;

o c i w e b . c o m 555

1 8 . 2 I n t e r f a c e D e f i n i t i o n

The default resource factory’s implementation returns a non-zero value from
use_locked_data_blocks() when -ORBConnectionCacheLock is set to
thread and returns zero when -ORBConnectionCacheLock is set to null.
The -ORBConnectionCacheLock option also affects connection caching.
(See 18.2.5 for a discussion of connection caching in TAO.)

In addition, the advanced resource factory’s implementation returns a
non-zero value from use_locked_data_blocks() when
-ORBInputCDRAllocator is set to thread, and returns zero when
-ORBInputCDRAllocator is set to null.

Since -ORBConnectionCacheLock and -ORBInputCDRAllocator are
separate options, both of which affect data-block locking, it is possible to
provide conflicting values when using the advanced resource factory. If
conflicting values are given, the value provided by
-ORBConnectionCacheLock will be used for data-block locking. If you use
both of these options, they should have the same setting to prevent unexpected
results.

The -ORBUseLocalMemoryPool ORB_init() option can be used to select
the type of allocator to use for the allocators discussed in this section. See
17.13.68 for details.

An advanced resource factory option, shown in table Table 18-3, is used to
control the type of locking used for accessing the input CDR conversion
allocator. Also shown is the corresponding option for controlling the output
CDR allocator and the relate zero-copy write optimization option.

Table 18-3 Options for Configuring Input CDR Conversion Allocator

Option Section Description

-ORBInputCDRAllocator
{thread | null} 18.7.4

Specify the type of locking to be used
for accessing the input CDR conversion
allocator.

-ORBOutputCDRAllocator
{default | mmap |
local_memory_pool}

18.6.12 Specify the allocator type to use for
output CDR buffers.

-ORBZeroCopyWrite 18.6.18
Enable the ORB to use a zero-copy write
optimization (implicitly specifies the
output CDR buffer allocator).

556 o c i w e b . c o m

R e s o u r c e F a c t o r y

18.2.3 Message Flushing Strategies
Data sent from one ORB to another must be converted into a common data
representation (CDR). After CDR conversion, the data is stored in
ACE_Message_Blocks. The message blocks are queued until they can be
flushed to the outgoing transport layer. The strategy by which messages are
flushed can vary, and affects the timing of the data being sent. The resource
factory interface defines the following operation, which returns the strategy to
be used for flushing messages:

virtual TAO_Flushing_Strategy* create_flushing_strategy (void) = 0;

The default flushing strategy returned by the default resource factory uses the
leader-follower pattern. Table 18-4 shows the option that affects which
message flushing strategy is used by the ORB.

18.2.4 Shutdown Strategies
When shutdown is called on an ORB, TAO can either let waiting client
threads continue to wait for a reply keep waiting or throw an exception. Table
18-5 shows the option that affects this behavior of the ORB.

18.2.5 Connection Cache Management Strategies
A client ORB establishes at least one connection to every server with which it
communicates. Under certain circumstances, more than one connection might
be established between a given client and a given server. For example, you can
configure the client-side ORB such that it will not multiplex requests over a
single connection (see 20.3.6), or you can establish multiple connections to a

Table 18-4 Message Flushing Strategy Options

Option Section Description

-ORBFlushingStrategy
{leader_follower | reactive
| blocking}

18.6.7 Selects the strategy for how messages
are flushed from the queue.

Table 18-5 Shutdown Strategy Options

Option Section Description

-ORBDropRepliesDuringShutdown
(0 | 1) 18.6.6

Specifies whether pending replies are
dropped when shutdown is called on
the ORB.

o c i w e b . c o m 557

1 8 . 2 I n t e r f a c e D e f i n i t i o n

server where each connection is used to transmit requests of a certain priority
or range of priorities (see 8.3.10).

The ORB maintains connections in a cache. When a request is about to be
sent, the ORB looks for an existing connection in the cache to use to transmit
the message. If a suitable connection is not available, the ORB may establish a
new connection for the message, then add the new connection to the cache.
TAO relies on these cached connections in both the server and the client for
optimization. As connections accumulate in the cache, the cache may need to
be purged to allow new connections to be added.

The TAO_Acceptor and TAO_Connector both use cache management
(purging) strategies supplied by the resource factory. The following
operations of the resource factory interface deal with cache management or
purging:

enum Purging_Strategy {
LRU,
LFU,
FIFO,
NOOP

};

virtual int locked_transport_cache (void);
virtual TAO_Connection_Purging_Strategy* create_purging_strategy (void) = 0;
virtual int purge_percentage (void) const;
virtual int cache_maximum (void) const;
virtual int max_muxed_connections (void) const;
virtual ACE_Lock* create_cached_connection_lock (void);

There are four defined purging strategies used by these operations:

• least recently used (LRU)—this strategy removes connections that have
been idle the longest.

• least frequently used (LFU)—this strategy removes connections that are
used least often.

• first in first out (FIFO)—this strategy removes the oldest connections,
regardless of how often they are used.

• no operation (NOOP)—this strategy does not purge connections at all.

The create_purging_strategy() operation creates and returns a
TAO_Connection_Purging_Strategy object that will match one of the
above-defined strategies. The TAO_Connection_Purging_Strategy

558 o c i w e b . c o m

R e s o u r c e F a c t o r y

object is passed to the TAO_Transport_Cache_Manager, thereby
instructing it on how to purge the cache. The default resource factory uses the
LRU strategy exclusively. The advanced resource factory can return any one of
these strategies as instructed by the -ORBConnectionPurgingStrategy
option. See 18.5 for information on using the advanced resource factory.

The purge_percentage() operation indicates the quantity of the cache to
remove if conditions require purging. The value returned must be between 0
and 100. The default resource factory returns 20 as the purge percentage by
default.

The cache_maximum() operation returns the maximum number of
connections that may be cached in the ORB. The default value is system
dependent and is based on the maximum number of file descriptors available
to the process.

The max_muxed_connections() operation returns the maximum number of
multiplexed connections that are allowed for a single remote endpoint. The
default value is zero, meaning there is no theoretical limit on the number of
connections that can be established (and cached) for a given remote endpoint.
If a value greater than zero is returned, and that limit is reached (i.e., the
maximum number of multiplexed connections have already been established
to a given endpoint), the thread needing a connection to transmit a request will
wait on a condition variable to be awaken when an existing connection
becomes idle.

The create_cached_connection_lock() operation returns the type of
lock that should be used when threads indirectly access the connection cache
through the ORB. Concrete, protocol-specific, derived classes of the
TAO_Transport abstract base class use this lock to ensure thread-safe access
to the connection cache when sending a request. The possible lock types
returned are a null lock (for no locking, as in single-threaded applications) and
a thread-safe lock (for use in multithreaded applications). The default resource
factory returns the thread-safe lock by default.

The locked_transport_cache() operation returns a boolean value to
indicate whether the connection cache needs to have a lock or not. The
TAO_Transport_Cache_Manager uses the value returned by this operation
to determine whether a lock should be used when threads access the
connection cache directly through its interface. The default resource factory’s
implementation of this operation returns false when the
-ORBConnectionCacheLock option is set to null and true when this

o c i w e b . c o m 559

1 8 . 2 I n t e r f a c e D e f i n i t i o n

option is set to thread. By default, the default resource factory returns true.
Therefore, unless configured otherwise, access to the connection cache is
synchronized.

Table 18-6 shows the options that control the cache management behavior of
the default resource factory.

18.2.6 Protocol Factories
TAO is intended to support more than just the common TCP/IP-based IIOP
for communication between ORBs. There are many situations where
alternative protocols provide a performance advantage or where TCP/IP is not
available. You can enable one or more of the other transport protocols
supplied with TAO or you can use a custom protocol.

Since multiple protocols can be enabled and made available to the ORB, the
resource factory interface defines operations that initialize and return the
protocols the ORB should support. These operations are:

virtual int init_protocol_factories (void);
virtual TAO_ProtocolFactorySet* get_protocol_factories (void);

Enabling the use of multiple protocols is a two-step process:

1. Define the protocol by supplying a protocol factory (see 14.18.3).

2. Make the protocol factory available to the ORB.

Table 18-6 Connection Cache Management Options

Option Section Description

-ORBConnectionCachePurgePercen
tage percent 18.6.4 Supply the amount of the cache to

purge. The default is 20 percent.

-ORBConnectionCacheMax limit 18.6.3

Supply the maximum number of
connections that may be cached in the
ORB. The default is system
dependent.

-ORBConnectionCacheLock
{thread | null} 18.6.2

Select the type of lock the ORB will
use to access the connection cache.
The default is thread.

-ORBMuxedConnectionMax limit 18.6.9
Supply the maximum number of
multiplexed connections allowed per
remote endpoint.

560 o c i w e b . c o m

R e s o u r c e F a c t o r y

Table 18-7 shows the option to make a protocol factory available to the ORB.
This option can be repeated to make multiple protocol factories available.

The protocols supplied with TAO are described in Chapter 14.

18.2.7 Custom IOR Parsers
CORBA defines a generic format, called Interoperable Object Reference
(IOR), to identify CORBA objects and define one or more paths through
which an object can be accessed. Each path references a server location that
implements the object and an opaque object key that is valid relative to that
particular server’s location.

TAO supports several IOR formats, including corbaloc:, corbaname:,
IOR:, and file:. However, some applications may benefit from other
formats. For example, an http: IOR format might allow applications to
download an object reference from a web server.

However, for a particular IOR format can be used, the ORB must be able to
parse it to make it usable to the application. TAO’s resource factory allows
application developers to implement custom IOR parsers and dynamically
register them with the ORB.

The resource factory interface defines the following operation, which the
ORB uses to retrieve the names of the IOR parsers it should use:

virtual int get_parser_names (char**& names, int& number_of_names);

The ORB’s string_to_object() operation queries each available IOR
parser to see if it is can parse the given stringified IOR format. When the ORB
finds a match, it uses that parser to convert the string into an object reference.
Using an IOR parser is more convenient than adding configuration code in the
application’s main() function. It also allows for easier integration with other
TAO components, such as the -ORBInitRef option (see 17.13.36).

Table 18-7 Protocol Factory Registration Options

Option Section Description

-ORBProtocolFactory pfactory 18.6.13
Declare that a protocol factory named
pfactory is available for supplying
connections.

o c i w e b . c o m 561

1 8 . 2 I n t e r f a c e D e f i n i t i o n

To implement an IOR parser, you must implement a class derived from
TAO_IOR_Parser. The example below shows what an HTTP IOR parser
might look like:

class HTTP_Parser : public TAO_IOR_Parser
{
public:
 virtual int match_prefix (const char* ior_string) const;
 virtual CORBA::Object_ptr parse_string (const char* ior,
 CORBA::ORB_ptr orb);
};

The match_prefix() function must recognize all the IOR prefixes that this
parser supports. Normally, each IOR parser understands only one prefix. A
typical implementation of the match_prefix() function might look like
this:

int HTTP_Parser::match_prefix (const char* ior_string) const
{
 static const char http_prefix[] = "http:";
 int cmp = ACE_OS::strncmp (ior_string, http_prefix, sizeof(http_prefix));
 return (cmp == 0);
}

The parse_string() function implements the actual string parsing. In your
implementation of parse_string(), you can safely assume that the string
has been validated by the match_prefix() function. Typically,
parse_string() will obtain or construct a string matching one of the
predefined IOR formats, such as a corbaloc: Object URL. In this example,
the more “normal” IOR is obtained by downloading a document from a web
server. It then uses string_to_object() on the downloaded IOR string to
return the object reference:

CORBA::Object_ptr HTTP_Parser::parse_string (
 const char* ior,
 CORBA::ORB_ptr orb)
{
 // Parse IOR as if it was an http: URL
 ACE_URL_Addr* url_addr = ACE_URL_Addr::create_addr (ior);

 ACE_HTTP_Addr* http_addr = dynamic_cast<ACE_HTTP_Addr*>(url_addr);

 // Connect to the remote host and download the web page, store the
 // contents in:

562 o c i w e b . c o m

R e s o u r c e F a c t o r y

 char* document_contents = ...;

 return orb->string_to_object (document_contents);
}

TAO uses the ACE Service Configurator framework to find the IOR parsers.
See 16.5 for more information on the ACE Service Configurator. The next
part of the example shows how to integrate the IOR parser with the service
configurator.

First you must declare, in the header file, a factory function and a description
of the service, this is easily accomplished via the following ACE macros:

ACE_STATIC_SVC_DECLARE_EXPORT (Export_Prefix, HTTP_Parser)
ACE_FACTORY_DECLARE (Export_Prefix, HTTP_Parser)

If you are only going to use Unix-like compilers and linkers, then you can
simply use TAO in place of Export_Prefix. However, under Microsoft
Windows variants, this string must be the prefix of the DLL export/import
macros used by your library. If you are going to statically link your IOR
Parser into the application you will also need to add the
ACE_STATIC_SVC_REQUIRE macro, as follows:

ACE_STATIC_SVC_DECLARE_EXPORT (Export_Prefix, HTTP_Parser)
ACE_FACTORY_DECLARE (Export_Prefix, HTTP_Parser)
ACE_STATIC_SVC_REQUIRE (HTTP_Parser)

Next, you must implement the services defined above. Using another group of
helper macros, you should add the following in your source file:

ACE_STATIC_SVC_DEFINE (HTTP_Parser,
 ACE_TEXT ("HTTP_Parser"),
 ACE_SVC_OBJ_T,
 &ACE_SVC_NAME (HTTP_Parser),
 ACE_Service_Type::DELETE_THIS |
 ACE_Service_Type::DELETE_OBJ,
 0)
ACE_FACTORY_DEFINE (Export_Prefix, HTTP_Parser)

The second argument to ACE_STATIC_SVC_DEFINE is the name of the
service in the ACE Service Configurator. It is customary, but not required, to
use the name of the class.

o c i w e b . c o m 563

1 8 . 2 I n t e r f a c e D e f i n i t i o n

The IOR parsers in the ORB can serve as more complete examples. You might
want to look in $TAO_ROOT/tao at FILE_Parser.h, CORBALOC_Parser.h,
CORBANAME_Parser.h, DLL_Parser.h, or MCAST_Parser.h.

Finally, you can dynamically add your IOR parser using the -ORBIORParser
resource factory option. For example, to add our HTTP IOR parser, we would
add the following service configurator directive:

static Resource_Factory "-ORBIORParser HTTP_Parser"

Table 18-8 shows the option that allows adding custom parsers to the resource
factory.

18.2.8 Code Set Identifiers and Translators
The CORBA specification defines a character set as a finite set of different
characters used for the representation, organization, or control of data.
Examples of character sets include the English alphabet, Kanji or sets of
ideographic characters, corporate character sets (commonly used in Japan),
and the characters needed to write certain European languages. A coded
character set (or code set) is defined as a set of unambiguous rules that
establishes a character set and the one-to-one relationship between each
character of the set and its bit representation or numeric value. Examples
include ASCII, ISO 8859-1, JIS X0208 (which includes Roman characters,
Japanese hiragana, Greek characters, Japanese kanji, etc.), and Unicode.

If a TAO client or server must operate in a non-US English host environment,
it may be necessary to declare the particular code set used to render text data,
either with char or wchar type codes. The resource factory allows you to
declare a specific code set identifier used natively for either char or wchar
data. The native code set is what is used when interacting with users, files,
printers, etc.

Occasionally, it is necessary to interoperate with other processes using
different native code sets. For each peer to render the data correctly, the
character data must be transformed from one code set to another. This

Table 18-8 Options for Adding IOR Parsers

Option Section Description

-ORBIORParser parser_name 18.6.8
Specify the service name of an IOR
parser that should be added to the
resource factory.

564 o c i w e b . c o m

R e s o u r c e F a c t o r y

transformation is the responsibility of a code set translator. The resource
factory is responsible for managing code set translators for char and wchar
data. The translators themselves are created by factory objects, which are
separately-loaded service objects. It is possible to configure many translator
factories, but only the translators that correspond to the configured native
char or wchar code set will participate in inter-ORB communication.

Four resource factory options, shown in table Table 18-9, control the
configuration of code set information.

18.2.9 Allocators for AMH and AMI Response Handling
When processing long duration requests, such as a database access or media
I/O, a service can take advantage of asynchronous method handling (AMH) to
decouple the receipt of a request from the processing of that request. AMH
allows a request to be received by one thread, processed by another, and
possibly have the reply issued by a third. The server’s ORB creates an AMH
response handler when the request is received. When request processing is
completed, this response handler is used to generate the reply sent back to the
client. For a detailed discussion of AMH, see Chapter 7.

Similarly, clients can use asynchronous method invocation (AMI) to avoid
blocking while waiting for a reply. The client’s ORB creates an AMI response
handler whenever an operation is invoked asynchronously on a remote proxy.

Table 18-9 Options for Configuring Code Sets

Option Section Description

-ORBNativeCharCodeset id 18.6.10

Specify the native code set identifier for
char data. The identifier may be
expressed by either a number or a locale
name.

-ORBNativeWCharCodeset id 18.6.11

Specify the native code set identifier for
wchar data. The identifier may be
expressed by either a number or a locale
name.

-ORBCharCodesetTranslator
factory 18.6.1

Name a translator available to convert
between the native char code set and
some other code set.

-ORBWCharCodesetTranslator
factory 18.6.17

Name a translator available to convert
between the native wchar code set and
some other code set.

o c i w e b . c o m 565

1 8 . 2 I n t e r f a c e D e f i n i t i o n

The response handler asynchronously receives the reply from the server and
delivers it to the proxy. For a detailed discussion of AMI, see Chapter 6.

The resource factory can be configured to use different types of allocators to
create AMH and AMI response handlers. The resource factory interface
provides the following operations that are used by the ORB to access the
allocators used to create AMH and AMI response handlers:

virtual ACE_Allocator* amh_response_handler_allocator (void);
virtual ACE_Allocator* ami_response_handler_allocator (void);

In a multithreaded environment, a locked allocator may be required. In a
resource constrained environment, such as an embedded system where
memory usage is a concern, the creation of locks may be undesirable. In such
cases, it is possible to configure the resource factory to create lock-free
allocators. By default, the advanced resource factory will create locked
allocators.

The advanced resource factory provides options to configure the type of
allocators used for AMH and AMI response handlers. These options are
shown in Table 18-10.

18.2.10 CORBA Object Synchronization
Locking is needed to synchronize access to the internal state of proxies to
remote CORBA objects when those proxies are shared by multiple threads.
An example of such internal state is the reference counts used to manage the
memory associated with the proxies. Single-threaded clients do not need
locking to protect the internal state and can therefore reduce memory usage
and locking overhead by using a null locking strategy.

Table 18-10 Options for Configuring AMH and AMI Response Handler
Allocators

Option Section Description

-ORBAMHResponseHandlerAllocator
{thread | null} 18.7.1

Specify the type of locking used
when accessing the AMH response
handler allocator.

-ORBAMIResponseHandlerAllocator
{thread | null} 18.7.2

Specify the type of locking used
when accessing the AMI response
handler allocator.

566 o c i w e b . c o m

R e s o u r c e F a c t o r y

The resource factory interface defines the following operation, which returns
the type of lock that should be used when threads access proxies to remote
CORBA objects.

virtual ACE_Lock* create_corba_object_lock (void);

The possible lock types returned from this operation are a null lock and a
thread-safe lock. The null strategy provides no locking to synchronize access
to the internal state of proxies to remote CORBA objects. The thread
strategy provides thread-safe access to this state. The default resource factory
returns a thread-safe lock by default.

Table 18-11 shows the option to configure the locking strategy used by the
ORB to synchronize access to the internal state of proxies to remote CORBA
objects.

18.2.11 Resource Usage Strategy
The ORB is responsible for creating various resources dynamically. For
example, when an object reference is received as part of a request or is
returned in a reply, the IOR is encoded in a input CDR stream. The ORB must
extract the IOR from the input CDR stream before the application can use it.
The ORB can either create a stub immediately upon extracting the IOR, which
is computationally expensive and resource intensive, or it can create a simple
encapsulation of the IOR and defer stub creation until a stub is actually needed
by the application (for example, to invoke a request via the object reference).

Some applications, such as those that deal with hundreds or even thousands of
object references (e.g., the Naming Service), can benefit by deferring stub
creation if a stub is not needed immediately. The benefits are realized in terms
of run time memory footprint and performance when large numbers of object
references are transmitted.

Table 18-11 CORBA Object Synchronization Strategy Options

Option Section Description

-ORBCorbaObjectLock
{thread | null} 18.6.5

Selects the type of lock threads use to
access the internal state of proxies to
remote CORBA objects. The default
behavior is to use a thread-safe locking
strategy.

o c i w e b . c o m 567

1 8 . 2 I n t e r f a c e D e f i n i t i o n

The ORB uses a resource usage strategy to determine whether it should create
such resources immediately or defer creating them until needed by the
application. The following operation of the resource factory interface allows
the ORB to access the resource usage strategy:

 enum Resource_Usage{
 TAO_EAGER,
 TAO_LAZY
 };

virtual TAO_Resouce_Factory::Resource_Usage resource_usage_strategy (void)
 const = 0;

The resource_usage_strategy() operation returns the type of resource
usage strategy to be used by the ORB. There are two defined resource usage
strategies that may be returned from this operation:

• eager (TAO_EAGER)—this strategy instructs the ORB to create certain
resources immediately.

• lazy (TAO_LAZY)—this strategy instructs the ORB to defer creation of
certain resources.

Note Currently, the resource usage strategy only affects the creation of stubs when
object references are extracted from input CDR streams. If the eager strategy
is used, a stub is created for each object reference as it is extracted. If the
lazy strategy is used, a simple encapsulation of the object reference is
created and a stub is only created if the application later uses the reference.
The behavior of the resource usage strategy may be extended in the future to
affect the creation of other types of resources, as well.

By default, the default resource factory provides an eager resource usage
strategy. This default behavior can be changed at compile time by defining the
following preprocessor macro in your $ACE_ROOT/ace/config.h file:

 #define TAO_USE_LAZY_RESOURCE_USAGE_STRATEGY 1

The type of resource usage strategy can also be changed at run time by using
the -ORBResourceUsage resource factory option as shown in Table 18-12.

568 o c i w e b . c o m

R e s o u r c e F a c t o r y

18.2.12 Refresh IOR Table
A server using defaulted listen endpoints along with the IORTable on a host
with late-enabled or transient network interfaces can enable the IOR refresh
feature to ensure forwarded object references contain up to date profile and
endpoint lists. This may be enabled programmatically as shown in Section
13.4, “IOR Refresh.” Alternatively use the -ORBRefreshIORTable resource
factory option as shown in Table 18-13.

18.3 Resource Factory for Qt GUI Toolkit

If you are building a TAO application that is integrated with the Qt GUI
toolkit from Trolltech <http://www.trolltech.com>, you must use the
ACE_QtReactor. For example, a TAO CORBA server that also has a
graphical user interface, developed with the Qt toolkit, needs to be responsive
to both CORBA requests and Qt events. Such an application must use the
ACE_QtReactor.

Note To use the ACE_QtReactor, you must place #define ACE_HAS_QT in your
$ACE_ROOT/ace/config.h file when you build ACE and TAO.

Initializing the ACE_QtReactor requires supplying a valid QApplication
pointer to the reactor constructor. A specialized resource factory is supplied
with TAO, providing the means for integrating with the Qt toolkit. This
factory, called the TAO_QtResource_Factory, is derived from the default
resource factory and may be used in its place.

Table 18-12 Resource Usage Strategy Configuration

Option Section Description

-ORBResourceUsage
{eager|lazy} 18.6.16

Determines how the ORB uses resources
when creating object references. The
default is eager.

Table 18-13 Refresh IOR Table Configuration

Option Section Description

-ORBRefreshIORTable {0|1} 18.6.15 Sets the initial enabled status of the IOR
Table’s IOR refresh feature.

o c i w e b . c o m 569

1 8 . 4 R e s o u r c e F a c t o r y f o r X W i n d o w i n g T o o l k i t

The TAO_QtResource_Factory accepts the same options as the default
resource factory. To use the TAO_QtResource_Factory, you must add a
directive to your service configuration file similar to the directive shown here:

dynamic Resource_Factory Service_Object* TAO:_make_TAO_QtResource_Factory()""

In addition to loading the new resource factory, a valid QApplication
pointer must be supplied to the factory before TAO attempts to initialize the
reactor. The file $TAO_ROOT/tests/QtTests/client.cpp contains the
following example code:

#include "testC.h"
#include <ace/Get_Opt.h>
#include "client.h"

int main (int argc, char* argv[])
{
 QApplication app (argc, argv);
 TAO_QtResource_Factory::set_context (&app);
 TAO_ENV_DECLARE_NEW_ENV;
 ACE_TRY
 {
 CORBA::ORB_var orb =
 CORBA::ORB_init (argc, argv, "" TAO_ENV_ARG_PARAMETER);
 ACE_TRY_CHECK;

 //...
 }
 //...
 ACE_ENDTRY;
 return 0;
}

In this example, we create a QApplication object and supply its address to
the TAO_QtResource_Factory via the static set_context() function.
Once the factory is initialized, the application proceeds to initialize and use
the ORB as usual.

18.4 Resource Factory for X Windowing Toolkit

If you are building a TAO application that is integrated with the X Window
System’s Xt Intrinsics toolkit, you must use the ACE_XtReactor. For
example, a TAO CORBA server that also has a graphical user interface,

570 o c i w e b . c o m

R e s o u r c e F a c t o r y

developed with an Xt-based toolkit, needs to be responsive to both CORBA
requests and Xt events. Such an application must use the ACE_XtReactor.

Note To use the ACE_XtReactor, you must place #define ACE_HAS_XT in your
$ACE_ROOT/ace/config.h file when you build ACE and TAO.

Initializing the ACE_XtReactor requires supplying an XtAppContext object
to the reactor constructor. A specialized resource factory is supplied with
TAO, providing the means for integrating with the Xt toolkit. This factory,
called the TAO_XT_Resource_Factory, is derived from the default resource
factory and may be used in its place.

The TAO_XT_Resource_Factory accepts the same options as the default
resource factory. To use the TAO_XT_Resource_Factory, you must add a
directive to your service configuration file similar to the directive shown here:

dynamic Resource_Factory Service_Object* TAO:_make_TAO_XT_Resource_Factory()""

In addition to loading the new resource factory, an XtAppContext must be
supplied to the factory before TAO attempts to initialize the reactor. The file
$TAO_ROOT/tests/Xt_Stopwatch/client.cpp contains the following
example code:

#include "testC.h"
#include <ace/Get_Opt.h>
#include "Control.h"
#include "Client.h"

int main (int argc, char* argv[])
{
 XtAppContext app;
 Widget toplevel = XtAppInitialize (&app, "Start & Stop", NULL, 0,
 &argc, argv, NULL, NULL, 0);
 TAO_XT_Resource_Factory::set_context (app);
 // ...
 ACE_DECLARE_NEW_CORBA_ENV;
 ACE_TRY
 {
 CORBA::ORB_var orb = CORBA::ORB_init (argc, argv, "", TAO_ENV_ARG_PARAMETER);
 ACE_TRY_CHECK;
 //...
 }
 //...

o c i w e b . c o m 571

1 8 . 5 A d v a n c e d R e s o u r c e F a c t o r y

 ACE_ENDTRY;
 return 0;
}

In this example, we create an XtAppContext object, initialize the top level
widget, and supply the context object to the TAO_XT_Resource_Factory
via the static set_context() function. Once the factory is initialized, the
application proceeds to initialize and use the ORB as usual.

18.5 Advanced Resource Factory

The advanced resource factory gives more control than the default resource
factory over the types of resources used and how those resources are accessed.
In addition to the options provided by the default resource factory, the
advanced resource factory provides options that allow selecting different
reactors, changing the locking method on input CDR allocators, and adjusting
the connection caching strategy. The advanced resource factory was created to
allow more advanced options, while keeping the footprint of the default
resource factory small.

The advanced resource factory inherits from the default resource factory and
accepts all of that factory’s options, in addition to its own. It can be loaded
dynamically using a service configurator directive of the form shown below,
all of which should be on one line:

dynamic Advanced_Resource_Factory Service_Object*
TAO_Strategies:_make_TAO_Advanced_Resource_Factory () "-ORBoption value
-ORBoption value ..."

It can also be loaded statically as follows:

• Add the following preprocessor #include directive to the file containing
main():

#include "tao/Strategies/advanced_resource.h"

You can omit this header file if you always use dynamic libraries.

• Link the TAO_Strategies library into the executable, or just inherit your
MPC project from the strategies base project.

• Specify a service configurator directive of the form:

572 o c i w e b . c o m

R e s o u r c e F a c t o r y

static Advanced_Resource_Factory "-ORBoption value -ORBoption value ..."

See 16.3 for more information on using the service configurator. Once you
have loaded the advanced resource factory, directives for the default resource
factory (i.e., Resource_Factory) have no effect and will generate warnings.

One of the key features of the advanced resource factory is the ability to select
a different reactor for use with the ORB. This variability enables the use of
TAO in an ACE-based application that needs a specialized reactor for
different types of events. For instance, the msgWFMO_Reactor is used with
Win32-based applications that support the COM messaging model as well.

The Fl, Fox, Tk, Qt and Xt reactors are not selected using the advanced
resource factory. These reactors require specialized resource factories because
the correct application contexts must be supplied to the reactor prior to ORB
initialization. The Qt resource factory (see 18.3) and Xt resource factory (see
18.4) are specializations of the default resource factory, so they can provide
this capability.

For additional information on the different types of reactors and their uses,
please refer to the appropriate ACE documentation via
<http://www.theaceorb.com/references/>.

The additional options provided by the advanced resource factory are
summarized in Table 18-14.

Table 18-14 Additional Options provided by Advanced Resource Factory

Option Section Description

-ORBAMHResponseHandlerAllocator
{thread | null} 18.7.1

Specify the type of locking used
when accessing the AMH response
handler allocator.

-ORBAMIResponseHandlerAllocator
{thread | null} 18.7.2

Specify the type of locking used
when accessing the AMI response
handler allocator.

-ORBConnectionPurgingStrategy
{lru | lfu | fifo | null} 18.7.3

Select the strategy for determining
the connections to purge from the
cache.

-ORBInputCDRAllocator {thread |
null} 18.7.4

Specify the type of locking used
when accessing the input CDR
allocator.

o c i w e b . c o m 573

1 8 . 5 A d v a n c e d R e s o u r c e F a c t o r y

-ORBReactorThreadQueue {lifo |
fifo} 18.7.5

Choose the strategy for determining
the order in which waiting threads are
selected to run the reactor’s event
loop when using the thread-pool
reactor type.

-ORBReactorType
{fl | msg_wfmo | select_mt |
select_st | tk_reactor | tp | wfmo}

18.7.6
Use this option to select an
alternative type of reactor for use
with the ORB.

Table 18-14 Additional Options provided by Advanced Resource Factory

Option Section Description

574 o c i w e b . c o m

R e s o u r c e F a c t o r y

18.6 Resource Factory Options

This section describes the individual options interpreted by the default
resource factory and any of its specializations, such as the Qt, Fl, Tk, Fox, and
Xt resource factories. These options are supplied to the resource factory by the
service configurator through the use of a static initialization directive (see
16.3).

This section does not describe the additional options supported by the
advanced resource factory. See 18.7 for those options.

18.6.1 ORBCharCodesetTranslator factory
Description Character data may require conversion from one code set to another in order to

interoperate with applications using different native code sets. While the
translator factory objects are loaded by their own service configuration
directive, this option causes the resource factory to evaluate the specified
factory to see if its translator is compatible with this application’s native code
set.

Usage There is no default code-set translator defined. Translators are declared by the
name given to the factory object that loads it. TAO may be used successfully
without loading any translators. In this case, the process is simply limited to
communicating in its configured native char code set. Many translators may
be configured, by repeating this option for each translator.

Impact Each char code set translator works by converting text data sent to a remote
process from the native char code set to a mutually agreed upon transmission
code set. The translator similarly converts text data received from a remote
process into the native char code set from the transmission code set.

Having many translators present increases the ORB’s ability to communicate
with a wide variety of remote processes. The code set used in transmission
may be the native code set for either side, or may be a third code set. If it is the
native code set for both sides, no translation is required. Otherwise, the
non-native side will have to translate the data. It is possible to use a third code
set that is translated by both the sides of the connection.

See Also 18.2.8, 18.6.10

Example dynamic AsciiToEbcdic Service_Object * mycodesetlib:_make_AsciiToEbcdic ()
static Resource_Factory "-ORBCharCodesetTranslator AsciiToEbcdic"

o c i w e b . c o m 575

1 8 . 6 R e s o u r c e F a c t o r y O p t i o n s

18.6.2 ORBConnectionCacheLock lock_type

Description TAO uses a cached-connection strategy to improve efficiency in establishing
connections. This strategy allows for the reuse of connection handlers, if
possible, rather than creating new ones.

In a multithreaded environment, access to the cache must be synchronized.
This option specifies the type of lock used to protect the connection cache.

Usage The default is acceptable for use in all applications. In applications that are
single-threaded, or those for which all interaction with a connection is through
a single thread in a multithreaded application, a null lock may be used.

A null lock must not be used when multiple threads are obtaining
connections from the cache.

Impact Use of a null lock will reduce the latency involved with obtaining a
connection. The null mutex class, supplied by ACE to minimize code
changes when switching from multi- to single-threaded applications, reduces
all locking operations to no-ops.

Note When using the advanced resource factory, it is possible for this option and
the -ORBInputCDRAllocator option to have conflicting values. Both
options affect data-block locking. If conflicting values are given, the value
provided by -ORBConnectionCacheLock will be used. If you use both of
these options, they should have the same setting to prevent unexpected results.

See Also 18.2.2, 18.7.4

Example static Resource_Factory "-ORBConnectionCacheLock null"

18.6.3 ORBConnectionCacheMax limit
Description Opened connections are added to the cache to facilitate their reuse. If a

process continues to run, and these connections are not reused appropriately,
the cache will continue to grow. Therefore, before each new connection, the
cache is checked and purged if it has reached the limit specified by this option.

Values for lock_type

thread (default) Specifies inter-thread mutex to guarantee exclusive access.

null No locking.

576 o c i w e b . c o m

R e s o u r c e F a c t o r y

The default is system dependent, but can be overridden at compile time by
defining the preprocessor macro TAO_CONNECTION_CACHE_MAXIMUM.

Usage Determining an appropriate limit for the cache may be completely dependent
upon available resources.

Impact The larger the cache limit, the more connection resources that may be used.

See Also 18.6.4

Example static Resource_Factory "-ORBConnectionCacheMax 1024"

18.6.4 ORBConnectionCachePurgePercentage
percent
Description Opened connections are added to the cache to facilitate their reuse. If a

process continues to run, and these connections are not reused appropriately,
the cache will continue to grow. Therefore, before each new connection, the
cache is checked and purged if it has reached the limit specified by the
-ORBConnectionCacheMax option or the system default, if that option was
not used. This option is used to set the amount of the connection cache
actually purged when it is time to do so. The default amount is twenty (20)
percent. If zero is supplied as a percent, then no cache purging will occur,
regardless of the strategy selected. A value less than zero will be interpreted as
zero and a value 100 or greater will result in removal of all cache entries.

Usage Determining an appropriate percentage of the cache to remove at one time
requires balancing the time required to actually perform the purge versus how
often purging will be necessary.

Impact The act of purging connections takes time. Depending on the frequency of
connection creation, a large percentage may be necessary to lower the time
between purges.

See Also 18.6.3

Example static Resource_Factory "-ORBConnectionCachePurgePercentage 50"

o c i w e b . c o m 577

1 8 . 6 R e s o u r c e F a c t o r y O p t i o n s

18.6.5 ORBCorbaObjectLock lock_type

Description When proxies to remote CORBA objects are shared among multiple threads,
access to their internal state (such as their reference counts) must be
synchronized. The -ORBCorbaObjectLock resource factory option allows
the user to specify the locking strategy to be used when accessing and
manipulating the internal state of remote CORBA object proxies.

Usage The default value of thread is appropriate for most applications. A
thread-safe locking strategy allows multiple threads to safely use and
manipulate proxies to remote CORBA objects.

Use the null strategy to reduce the memory and performance overhead
associated with locks. The null strategy should only be used in
single-threaded applications.

See Also 18.2.10

Example static Resource_Factory "-ORBCorbaObjectLock null"

18.6.6 ORBDropRepliesDuringShutdown enabled

Description When shutdown() is called on an ORB, this option will allow TAO to
continue processing any replies that are currently pending. When this option is
enabled, any pending replies are dropped and if they are subsequently
received they are not processed.

Disabling this option allows for the ability to process these pending replies
after a shutdown() call. Any pending replies will be dropped when
destroy() is called on that ORB.

Values for lock_type

thread
(default)

The internal state (e.g., reference count) of CORBA object
proxies is protected using a thread-safe locking strategy.

null
No locking is used to protect the internal state of CORBA
object proxies.

Values for enabled

0 (default)
When shutdown(true) is called on an ORB, any pending
replies continue to be processed until destroy() is called.

1
When shutdown(true) is called on an ORB, any pending
replies from servers are dropped and not processed.

578 o c i w e b . c o m

R e s o u r c e F a c t o r y

This option is only effective when shutdown() is called with the
wait_for_completion parameter set to true. When
wait_for_completion is false, the ORB terminates right away
regardless of the drop replies status.

Usage Applications that want to ignore replies after a shutdown should enable this
option.

Impact Some ill-behaved servers may never send their replies and applications
waiting for them may become hung.

Example static Resource_Factory "-ORBDropRepliesDuringShutdown 1"

18.6.7 ORBFlushingStrategy strategy

Description When one ORB must communicate with another, it looks at the request,
creates a message that will be understood by the other ORB, then sends the
message. The parts of the message are stored as ACE_Message_Blocks. The
ACE_Message_Blocks build up in a queue before they are flushed and the
data in them is sent. You can adjust the strategy by which the messages are
flushed using this option. For example, you can use this option to alter the
timing of message sending in your application.

Usage The default value is appropriate for most applications. A slight performance
gain can be achieved in a single-threaded application when the reactive
strategy is used because it does not perform any locking to synchronize access
to the reactor. Use the blocking strategy to avoid allowing the thread that is
waiting to flush messages to be made available to the ORB for potentially
handling incoming requests.

Impact The only optimization benefit is gained in a single-threaded application. In
this configuration, the reactive strategy will remove synchronization that

Values for strategy

leader_follower
(default)

Use the reactor and non-blocking I/O to send the outgoing
messages. This strategy participates in the leader-follower
pattern to synchronize access to the reactor.

reactive
Use the reactor, but do not take part in the leader-follower
pattern. This strategy is better used only in single-threaded
applications.

blocking
Use the blocking strategy, which flushes the queue as soon as
it becomes “full,” and blocks the thread until all the data is
sent.

o c i w e b . c o m 579

1 8 . 6 R e s o u r c e F a c t o r y O p t i o n s

controls access to the reactor when sending messages. The blocking strategy
ensures that the thread that is waiting to write to the transport will block until
it can write and cannot be used by the ORB to dispatch incoming requests.
The blocking strategy can lead to poor responsiveness and potential
deadlocks if all the threads used by the ORB are blocked waiting to write and
none is available to respond to incoming requests.

See Also 15.4.3

Example static Resource_Factory "-ORBFlushingStrategy reactive"

18.6.8 ORBIORParser parser_name
Description TAO supports several IOR formats, including corbaloc:, corbaname:,

IOR:, and file:. However, some applications may benefit from other
formats. For example, http: could allow applications to download an object
reference from a web server. This option allows application developers to
implement their own IOR parsers and dynamically add them to the ORB.

Using an IOR parser is more convenient than adding configuration code in the
application’s main() function. It also allows for easier integration with other
TAO components, such as the -ORBInitRef options.

Usage First create an IOR parser class that inherits from TAO_IOR_Parser. The
parser_name should be the ACE Service Configurator service name you
defined using the ACE_STATIC_SVC_DEFINE macro in your IOR Parser class.
Your custom parser should not attempt to match one of the predefined IOR
prefixes. Redefining or matching one of the predefined IOR prefixes may
cause unexpected behavior.

You can repeat this option to add multiple parsers.

Impact Additional IOR parsers can impact performance when calling the
string_to_object() operation. Each IOR parser added is queried to see if
it is a match. If it is a match, the parser is used to return the object reference.
The additional match checking and any overhead within the custom parser’s
code to look up the object reference can impact performance.

See Also 18.2.7

Example static Resource_Factory "-ORBIORParser HTTP_Parser"

580 o c i w e b . c o m

R e s o u r c e F a c t o r y

18.6.9 ORBMuxedConnectionMax limit
Description Opened connections are added to the cache to facilitate their reuse. Multiple

connections may be established for a given remote endpoint and stored in the
cache. This option allows an application to limit the number of connections
that can be established for a given remote endpoint.

Usage Determining an appropriate limit for the number of connections that can be
established for a given remote endpoint may be completely dependent upon
available resource and the number of client threads that are likely to be
concurrently invoking requests on objects in a given remote server.

Impact The larger the limit, the more per-endpoint connections that may be
established.

See Also 18.2.5, 20.3.6

Example static Resource_Factory "-ORBMuxedConnectionMax 1"

18.6.10 ORBNativeCharCodeset id

Description The native code set for characters is described by an entry in the Open
Software Foundation’s (OSF) Code and Character Set Registry, currently
version 1.2g. This value is embedded in object-reference profiles as a
declaration of the code set used to render text data written to files, consoles,
printers, etc. By default, TAO uses ISO 8859-1 as its character code set.

Usage Use this option to configure a different code set for character data. This may
be useful if you are deploying an application internationally, where different
installations may render text differently.

In order to use locale names in place of numeric values, you must separately
configure the code-set registry database in ACE to assign locale names to the
individual entries. The OSF does not define locale names for entries. The code
set registry database shipped with TAO defines entries for “ASCII,” and
“EBCDIC” as locale names for two common 8-bit code sets.

Values for id

0c00010001 (default)
The Code Set Registry id for ISO 8859-1, the CORBA
defined default for 8-bit character codes.

numeric code or
locale name

When not using the default code set, use some other Code Set
Registry Id value or locale name.

o c i w e b . c o m 581

1 8 . 6 R e s o u r c e F a c t o r y O p t i o n s

It is also possible to compile with an alternative code set id for char data by
changing the value of TAO_DEFAULT_CHAR_CODESET_ID in the source file
$TAO_ROOT/tao/corbafwd.h. Of course, this change requires the TAO
library be rebuilt, and affects every application that links to it. A default code
set id changed this way may still be overridden by the resource factory.

Impact Altering the native code set impacts information used to define the capabilities
of an ORB process. When then native code set of a client differs from that of a
server, the client must chose an alternate code set based on any translators in
either the client or server. If no suitable translator is available, then a client
will not be able to exchange text data with a server.

See Also 18.2.8, 18.6.1

Example static Resource_Factory "-ORBNativeCharCodeset 0x10020417"

18.6.11 ORBNativeWCharCodeset id

Description The native code set for wide characters is described by an entry in the Open
Software Foundation’s (OSF) Code and Character Set Registry, currently
version 1.2g. This value is embedded in object reference profiles as a
declaration of the code set used to render text data written to files, consoles,
printers, etc. By default, TAO uses UTF-16 as its wide character code set. This
default is a 2-octet code set commonly used by MS Windows applications. On
platforms such as Solaris, UCS-4, a 4-octet code set, is a better choice.

Usage Use this option to configure a different code set for wide character data. This
may be useful if you are deploying an application internationally, where
different installations may render text differently.

In order to use locale names in place of numeric values, you must separately
configure the code set registry database in ACE to assign locale names to the
individual entries. The OSF does not define locale names for entries. The code
set registry database shipped with TAO defines entries for “UCS-4,” and
“Unicode” as locale names for two common wide character code sets.

Values for id

0c00010109 (default)
The Code Set Registry id for UTF-16, also known as
Unicode.

numeric code or
locale name

When not using the default code set, use some other Code Set
Registry Id value or locale name

582 o c i w e b . c o m

R e s o u r c e F a c t o r y

It is also possible to compile with an alternative code set id for wchar data by
changing the value of TAO_DEFAULT_WCHAR_CODESET_ID in the source file
$TAO_ROOT/tao/corbafwd.h. Of course, this change requires the TAO
library be rebuilt, and affects every application that links to it. A default code
set id changed this way may still be overridden by the resource factory.

Impact Altering the native code set impacts information used to define the capabilities
of an ORB process. When then native code set of a client differs from that of a
server, the client must chose an alternate code set based on any translators in
either the client or server. If no suitable translator is available, then a client
will not be able to exchange text data with a server.

See Also 18.2.8, 18.6.17

Example static Resource_Factory "-ORBNativeWCharCodeset 0x00010104"

18.6.12 ORBOutputCDRAllocator allocator

Description This option specifies the type of memory allocator to use for output CDR buf-
fers. The three choices are the default platform allocator, the memory mapped
file allocator, and the local memory pool allocator.
Setting the memory-mapped or local memory allocators for this option over-
rides the -ORBUseLocalMemoryPool option.

Usage The memory mapped file allocator must be used in order for the sendfile opti-
mizations to be used. See 18.6.18 for more details. The most efficient allocator
for other applications is dependent on the platform and application details.

See Also 17.13.68, 18.6.18

Example static Resource_Factory "-ORBOutputCDRAllocator mmap"

Values for allocator

default (default)
Specifies the use of the platform’s default allocator for
output CDR buffers.

mmap
Specifies the use of a memory-mapped file allocator for
output CDR buffers.

local_memory_pool
Specifies use of a local memory pool allocator for output
CDR buffers.

o c i w e b . c o m 583

1 8 . 6 R e s o u r c e F a c t o r y O p t i o n s

18.6.13 ORBProtocolFactory factory_name

Description This option is used to “plug” pluggable protocols into TAO. Pluggable
protocols offer application designers the ability to deploy TAO-based objects
in an environment other than one using TCP/IP. The protocols specified here
are the transport layer, not the messaging layer. The inter-ORB messaging
protocol is GIOP. Pluggable protocols are discussed in depth in Chapter 14.

A GIOP message consists of a message header and, for request messages, a
sub-header containing additional information. The GIOP version 1.2 message
header contains the following fields: GIOP magic number; GIOP version;
GIOP flags; message type; and message length. For request messages there is
an additional request header that contains the following fields: service context;
request identifier; response flags; target address; and operation. Applications
operating in homogeneous (e.g., embedded, real-time) environments do not
require all of these fields.

See 14.10 and 27.10 for more information on using the SSLIOP_Factory and
using SSL with TAO.

Usage Multiple protocol factories may be added to the resource factory. Every time
the option is repeated, the specified protocol factory is added to a list of
available protocol factories.

The default, IIOP_Factory, must be specified if that protocol is desired,
along with any other protocol. If UIOP is available but IIOP is desired
exclusively, then IIOP_Factory must be specified as the only protocol
factory.

Values for factory_name

IIOP_Factory (default)
The factory providing protocol elements to support Internet
Inter-ORB Protocol.

DIOP_Factory
Support for GIOP over UDP/IP. This is not interoperable
with other ORBs.

SHMIOP_Factory
Support for Shared Memory Inter-ORB Protocol. This is not
interoperable with other ORBs.

SSLIOP_Factory Support for Secure Socket Layer Inter-ORB Protocol.

UIOP_Factory
Support for Unix domain (local IPC) Inter-ORB Protocol.
This is not interoperable with other ORBs.

custom factory
Application developers may produce specialized protocol
factories that satisfy the requirements of the interface and
provide behavior not already supplied with TAO.

584 o c i w e b . c o m

R e s o u r c e F a c t o r y

Additional protocols impact performance at the initialization of servers. For
each protocol initialized, a profile is added to an IOR, increasing its size.

See Also 17.13.43

Example dynamic DIOP_Factory Service_Object * TAO:_make_TAO_DIOP_Protocol_Factory() ""

dynamic My_Protocol_Factory Service_Object * mylib:_make_my_protocol_factory()
""

static Resource_Factory "-ORBProtocolFactory DIOP_Factory \
-ORBProtocolFactory UIOP_Factory \
-ORBProtocolFactory My_Protocol_Factory"

18.6.14 ORBReactorMaskSignals state

Description When using a select-based reactor, this option provides an additional level of
control. The ACE_Select_Reactor, in any of its threaded variations,
ordinarily masks signals during its operation. This provides a level of
signal-safety during these operations. Signal masking involves calls to the
kernel to mask the signals, then later to unmask them. The constructor for
ACE_Select_Reactor accepts a value to control this behavior. The default
for this value is 1, meaning “yes, mask signals,” but may also be 0 meaning
“no, do not mask signals.” The option -ORBReactorMaskSignals provides
the TAO developer the means for controlling this behavior.

Usage If your application registers signal handlers with the reactor, the default value
for this option is appropriate. Applications that do not use signal handlers and
wish to have the greatest performance possible may see a slight performance
gain by not masking signals.

Impact This option controls the behavior of the ACE_Select_Reactor, and only on
non-win32 platforms. Turning off signal masking in applications that also
register signal handlers with the reactor may cause unexpected behavior.

See Also 18.7.6

Example static Resource_Factory "-ORBReactorMaskSignals 0"

Values for state

0 Do not mask signals.

1 (default) Mask signals.

o c i w e b . c o m 585

1 8 . 6 R e s o u r c e F a c t o r y O p t i o n s

18.6.15 ORBRefreshIORTable enable
Values for enable

Description This option allows you to enable the refreshing of endpoint lists in IORTable
supplied object references without application involvement. Applications are
still able to use the IORTable interface to override this setting.

Usage The refresh feature of the IORTable is only useful on hosts that have transient
network interfaces. Use this service configurator option to select this behavior
at deployment time.

See Also 18.2.12, 13.4

Example static Resource_Factory "-ORBRefreshIORTable 1"

18.6.16 ORBResourceUsage usage_type
Values for usage_type

Description This option allows you to control the type of resource usage strategy used by
the ORB. The ORB uses the resource usage strategy to determine whether it
should create certain types of resources immediately or defer creating them
until needed by the application.

By default, an eager resource usage strategy is used. This strategy assumes
the application will immediately want to use resources, such as object
references. The lazy resource usage strategy allows the ORB to defer
creation of such resources until the application attempts to use them, if at all.

Usage Currently, this option only affects the creation of stubs when object references
are extracted from input CDR streams. With the eager resource usage
strategy, a stub is immediately created as each object reference is extracted.
With the lazy resource usage strategy, a stub is not created immediately.
Instead, a simple encapsulation of the object reference is created upon

0 (default) The IORTable’s refresh feature is not enabled initially.

1 The IORTable’s refresh feature is enabled initially.

eager (default)
The eager strategy instructs the ORB to create certain types
of resources (e.g., stubs) immediately.

lazy
The lazy strategy instructs the ORB to defer creation of
certain types of resources until actually needed by the
application.

586 o c i w e b . c o m

R e s o u r c e F a c t o r y

extraction and actual stub creation is deferred until the application actually
attempts to use the object reference (e.g., to invoke a request).

Some applications, such as the Naming Service, deal with hundreds or even
thousands of object references, but may never use them to invoke requests.
Such applications can benefit from the lazy resource usage strategy to avoid
creating unnecessary stubs. The benefits are realized in terms of reduced
memory footprint and better performance when object references are
transmitted.

The default resource usage strategy can be changed by adding the following
preprocessor macro definition to your $ACE_ROOT/ace/config.h file and
recompiling TAO:

#define TAO_USE_LAZY_RESOURCE_USAGE_STRATEGY 1

See Also 18.2.11

Example static Resource_Factory "-ORBResourceUsage lazy"

18.6.17 ORBWCharCodesetTranslator factory
Description Wide character data may require conversion from one code set to another in

order to interoperate with applications using different native code sets. While
the translator factory objects are loaded by their own service configuration
directive, this option causes the resource factory to evaluate the specified fac-
tory to see if its translator is compatible with this application’s native code set.

Usage There is no default code set translator defined. Translators are declared by the
name given to the factory object that loads it. TAO may be used successfully
without loading any translators. In this case the process is simply limited to
communicating in its configured native char code set. Many translators may
be configured, by repeating this option for each translator.

Impact Each wchar code set translator works by converting text data sent to a remote
process from the native wchar code set to a mutually-agreed-upon
transmission code set. The translator similarly converts text data received
from a remote process into the native wchar code set from the transmission
code set.

The number of octets transmitted per character depends on the maximum
character size as defined by the code set specification, not the width of a

o c i w e b . c o m 587

1 8 . 6 R e s o u r c e F a c t o r y O p t i o n s

wchar in the native environment. For instance, if a host platform defines wide
characters as being 4 octets, but the selected code set has a maximum width of
2 octets, then only 2 octets will be transmitted.

Having many translators present increases the ORB’s ability to communicate
with a wide variety of remote processes. The code set used in transmission
may be the native code set for either side, or may be a third code set. If it is the
native code set for both sides, no translation is required. Otherwise, the
non-native side will have to translate the data. It is possible to use a third code
set that is translated by both sides of the connection.

See Also 18.2.8, 18.6.11

Example The following example shows how to load a hypothetical wchar code set
translator for converting between the UCS-4 (32-bit) code set and the UTF-16
(16-bit) code set. The name given to our translator is UCS4ToUTF16, and it is
loaded from the MyTranslators library.

dynamic UCS4ToUTF16 Service Object* MyTranslators:_make_UCS4ToUTF16()
static Resource_Factory "-ORBWCharCodesetTranslator UCS4ToUTF16"

18.6.18 ORBZeroCopyWrite
Description Specifies that the ORB should use a zero-copy write method (currently this

means sendfile) to send messages. Because this requires the use of a mem-
ory mapped allocator, this option implicitly sets the output CDR allocator to
memory mapped (see the -ORBOutputCDRAllocator description, 18.6.12).

Usage If used on a platform or build that does not support sendfile, this option will
give a warning.

Impact Use of this option should increase the performance of TAO applications that
are sending many large messages.

See Also 18.6.12

Example This example shows how this option can be enabled:

static Resource_Factory "-ORBZeroCopyWrite"

588 o c i w e b . c o m

R e s o u r c e F a c t o r y

18.7 Advanced Resource Factory Options

This section describes the individual options interpreted by the advanced
resource factory. The advanced resource factory supports these options in
addition to those supported by the default resource factory described in 18.6.
See 18.5 for more information on using the advanced resource factory.

18.7.1 ORBAMHResponseHandlerAllocator type

Description Specify the type of locking used when accessing the AMH response handler
allocator.

Usage The default value of thread is appropriate for most applications. A
thread-safe AMH response handler allocator allows multiple threads to safely
access the allocator.

Use the null strategy to reduce the overhead associated with locking for
single-threaded applications.

This option only affects servers that use AMH.

See Also .18.2.9, Chapter 7

Example dynamic Advanced_Resource_Factory Service_Object*
TAO_Strategies:_make_TAO_Advanced_Resource_Factory ()
"-ORBAMHResponseHandlerAllocator null"

18.7.2 ORBAMIResponseHandlerAllocator type

Description Specify the type of locking used when accessing the AMI response handler
allocator.

Values for type

thread
(default) Uses a thread-safe allocator.

null Uses non thread-safe allocator.

Values for which

thread
(default) Uses a thread-safe allocator.

null Uses non thread-safe allocator.

o c i w e b . c o m 589

1 8 . 7 A d v a n c e d R e s o u r c e F a c t o r y O p t i o n s

Usage The default value of thread is appropriate for most applications. A
thread-safe AMI response handler allocator allows multiple threads to safely
access the allocator.

Use the null strategy to reduce the overhead associated with locking for
single-threaded applications.

This option only affects clients that use AMI.

See Also .18.2.9, Chapter 6

Example dynamic Advanced_Resource_Factory Service_Object*
TAO_Strategies:_make_TAO_Advanced_Resource_Factory ()
"-ORBAMIResponseHandlerAllocator thread"

18.7.3 ORBConnectionPurgingStrategy strategy

Description Opened connections are added to the connection cache so they can be reused.
However, if a process continues to run and these connections are not reused,
the cache will continue to grow. Therefore, before each new connection, the
cache is checked and purged if it has reached the limit specified by the
-ORBConnectionCacheMax option or the system default if that option was
not used. This option is used to select a cache management strategy that
ensures connections are available as needed.

Usage The correct connection cache management strategy depends upon the
behavior of the server’s clients. Those that use connections only once will
benefit from the FIFO strategy. When pools of connections are used for a
while, then not used, the LRU strategy will provide a better means of
removing unused connections. The LFU strategy will work best if the
connections are used regularly, some more than others. Finally, if the number
of connections used by a process can be determined a priori and does not
exceed the maximum number of simultaneous connections allowed on your

Values for strategy

lru (default) Purge least recently used connections.

lfu Purge least frequently used connections.

fifo Purge oldest connections (first in, first out).

null Do not purge connections.

590 o c i w e b . c o m

R e s o u r c e F a c t o r y

system, the null strategy is appropriate to avoid the instantiation of cache
management objects.

Impact The use of connection cache management may close connections in use,
depending on the algorithm chosen. If the FIFO strategy is selected, for
instance, and some old connections are not used for a long time, they may get
closed. Subsequent attempts to use these connections will suffer the penalty of
reconnection costs.

Purging the cache occurs infrequently, but will occur when a new connection
is required and none is available.

See Also 18.6.3, 18.6.4

Example dynamic Advanced_Resource_Factory Service_Object*
TAO_Strategies:_make_TAO_Advanced_Resource_Factory ()
"-ORBConnectionPurgingStrategy fifo
-ORBConnectionCachePurgePercentage 50"

18.7.4 ORBInputCDRAllocator lock_type

Description The input CDR allocator is used internally by the ORB to facilitate the
decoding and unmarshaling of data received from another ORB. To avoid
copying data that is received as arbitrarily large octet sequences, the receiving
buffer is passed to the application code that processes it. This transfer of data
may or may not involve passing ownership of the data between threads.

Usage If the data buffer containing the octet sequence is to be shared between
threads, access to it and to the allocator responsible for it must be
synchronized by using the thread strategy.

If the allocation and the processing of data in the buffer will be achieved
within the same thread, greater efficiency and predictability are possible by
avoiding the use of mutex locks. This is done by specifying the null strategy.

Note When using the advanced resource factory, it is possible for this option and
the -ORBConnectionCacheLock option to have conflicting values. Both

Values for lock_type

thread (default)
Access to the allocator for creating and destroying data buffers is
synchronized and therefore safe to be used by many threads.

null
The allocators are not thread safe and may only be used within a
single-thread context.

o c i w e b . c o m 591

1 8 . 7 A d v a n c e d R e s o u r c e F a c t o r y O p t i o n s

options affect data block locking. If conflicting values are given, the value
provided by -ORBConnectionCacheLock will be used. If you use both of
these options, they should have the same setting to prevent unexpected results.

See Also 18.2.2, 18.6.2

Example dynamic Advanced_Resource_Factory Service_Object*
TAO_Strategies:_make_TAO_Advanced_Resource_Factory () "-ORBInputCDRAllocator
null"

18.7.5 ORBReactorThreadQueue type

Description This option allows an application using the thread-pool reactor to specify the
order in which threads should be selected to run by the
ACE_Select_Reactor_Token. By default, threads are selected in FIFO
order by the ACE_Select_Reactor_Token.

The thread-pool reactor implements the Leader/Followers architectural
pattern described in Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects (POSA2). Briefly, if two or more threads
are waiting to run the reactor’s event loop, one thread becomes the leader and
gets into the event loop; the remaining threads are followers. When the reactor
dispatches an event onto the leader thread, a new leader is selected from
among the group of followers, then the leader continues to process the event.

This option controls the order in which a follower thread is selected to become
the new leader.

Usage This option is only usable when the reactor type is the thread-pool (tp) reactor.
Either setting should be suitable for any application.

Impact By using the LIFO reactor thread queue type, multithreaded applications may
experience a performance gain by maximizing CPU “cache affinity” by
ensuring that the thread waiting the shortest amount of time is selected as the
new leader first. However, the LIFO strategy requires an additional data
structure in the reactor to hold a list of waiting threads, rather than just using a

Values for type

lifo (default)
Threads that are waiting in the thread-pool reactor will be selected
to run in a last-in-first-out order (LIFO) order.

fifo
Threads that are waiting in the thread-pool reactor will be selected
to run in a first-in-first-out order (FIFO) order.

592 o c i w e b . c o m

R e s o u r c e F a c t o r y

native operating system synchronization object, such as a semaphore or
condition variable.

Results of using one strategy over the other will vary widely across different
platforms depending upon the number of CPUs, the amount of CPU cache,
and the efficiency of the operating system’s cache management strategy. In
addition, if the amount of time each thread spends in an upcall exceeds the
time between events, threads will not have to wait for events (i.e., they will
usually all be busy processing events), so the selection will have little effect.

See Also 18.7.6

Example dynamic Advanced_Resource_Factory Service_Object*
TAO_Strategies:_make_TAO_Advanced_Resource_Factory () "-ORBReactorThreadQueue
fifo"

18.7.6 ORBReactorType reactor_type

Description ACE supplies a variety of reactors that may be used to support specialized
types of event-driven applications. The reactor is the component of ACE that
separates the detection of events from the handling of those events. TAO uses
a reactor to accept new connections in a socket context, as well as responding

Values for reactor_type

fl
The FL (“fast, light”) toolkit reactor. This reactor is available
only when ACE is built with support for the FL toolkit.

msg_wfmo
The Message Wait For Multiple Objects reactor, available on
Win32 systems only.

select_mt
Multithreaded select reactor. This reactor uses the select()
system call to monitor sockets for input and output availability,
and employs locks to enforce synchronization between threads.

select_st
The single-threaded select reactor. This reactor is also based on
the select() system call, but assumes it is running in a single
thread and therefore does not perform any locking.

tk_reactor
The Tk toolkit reactor. This reactor is available only when ACE
is built with support for the Tk toolkit.

tp (default)

The thread-pool reactor. This reactor allows for many threads to
be used to handle events. If a thread is available to handle an
event, the event is dispatched right away. Otherwise it is queued
until a thread becomes ready.

wfmo The Wait For Multiple Objects reactor, available on Win32 only.

o c i w e b . c o m 593

1 8 . 7 A d v a n c e d R e s o u r c e F a c t o r y O p t i o n s

to incoming and outgoing data. The default reactor is perfectly suitable to
handle the needs of the ORB in any context.

Usage Only one reactor type may be specified. If this option is repeated, the last
value specified will be used.

Use this option for applications that require a specialized reactor. For
example, a Win32 GUI-based application must use the reactor built on the
WaitForMultipleObjects() system call to properly integrate with the
environment.

Impact The choice of reactor has very little impact on the application. The only
optimization benefit is gained in a single-threaded select-based application. In
this configuration, the single-threaded select reactor will remove a single lock
from the event-handling loop. Otherwise, the choice of reactor is entirely
dependent on the configuration of the application.

See Also 15.3.11, 18.6.7

Example dynamic Advanced_Resource_Factory Service_Object*
TAO_Strategies:_make_TAO_Advanced_Resource_Factory () "-ORBReactorType msg_wfmo"

594 o c i w e b . c o m

R e s o u r c e F a c t o r y

o c i w e b . c o m 595

CHAPTER 19

Server Strategy Factory

19.1 Introduction

Certain elements of the ORB relate only to server-side behavior. In this
context, the server is any application that passively accepts connections from
other processes and receives requests from those other connections. The
server strategy factory is responsible for supporting features of TAO that are
specific to servers, including demultiplexing and concurrency-related
strategies. The demultiplexing strategies are used to locate POAs and active
objects responsible for handling requests. The concurrency strategies control
the thread-creation flags and other concurrency-related behaviors.

The server strategy factory is registered with the service configurator using the
name Server_Strategy_Factory. TAO’s default server strategy factory is
statically registered with the service configurator and is initialized using the
static directive. To supply options to the default server strategy factory, add
a line, similar to the line shown below, to your service configuration file:

static Server_Strategy_Factory "-ORBoption value -ORBoption value ..."

The service configurator is discussed in greater detail in Chapter 16.

596 o c i w e b . c o m

S e r v e r S t r a t e g y F a c t o r y

19.2 Interface Definition

Within a TAO application, the server strategy factory is accessed via an
interface defined by the base class TAO_Server_Strategy_Factory. Here
we show all the public and protected functions of the server strategy factory
and describe their use in relationship to the ORB, and the behavior of the
default server strategy factory implementation.

The implementation behind this interface is intended to supply parameters to a
number of TAO internal objects, such as the ORB core, POA, POA manager,
and the various acceptor implementations supporting different pluggable
protocols.

Synopsis class TAO_Server_Strategy_Factory : public ACE_Service_Object
{
public:

struct Active_Object_Map_Creation_Parameters
{

Active_Object_Map_Creation_Parameters (void);
CORBA::ULong active_object_map_size_;
TAO_Demux_Strategy object_lookup_strategy_for_user_id_policy_;
TAO_Demux_Strategy object_lookup_strategy_for_system_id_policy_;
TAO_Demux_Strategy reverse_object_lookup_strategy_for_unique_id_policy_;
int use_active_hint_in_ids_;
int allow_reactivation_of_system_ids_;

CORBA::ULong poa_map_size_;
TAO_Demux_Strategy poa_lookup_strategy_for_transient_id_policy_;
TAO_Demux_Strategy poa_lookup_strategy_for_persistent_id_policy_;
int use_active_hint_in_poa_names_;

};
TAO_Server_Strategy_Factory (void)
virtual ~TAO_Server_Strategy_Factory (void)
virtual int open (TAO_ORB_Core* orb_core);
virtual int enable_poa_locking (void);
virtual int activate_server_connections (void);
virtual int thread_per_connection_timeout (ACE_Time_Value &timeout);
virtual int server_connection_thread_flags (void);
virtual int server_connection_thread_count (void);
virtual const Active_Object_Map_Creation_Parameters&

active_object_map_creation_parameters (void) const
protected:

Active_Object_Map_Creation_Parameters active_object_map_creation_parameters_
};

o c i w e b . c o m 597

1 9 . 2 I n t e r f a c e D e f i n i t i o n

19.2.1 Factory Initialization
The constructor and destructor are defaults and otherwise not interesting.
Since the class TAO_Server_Strategy_Factory is derived from
ACE_Service_Object, the initialization of the factory is expected to be
performed by an implementation of the virtual function
ACE_Service_Object::init(int argc, ASYS_CHAR *argv[]). The
default server strategy factory implements this function by parsing options
provided to it by the service configurator. See below for a complete listing of
the options parsed by the default server strategy factory.

To complete the initialization of the server strategy factory, the open()
operation is provided:

virtual int open (TAO_ORB_Core* orb_core);

The ORB core calls TAO_Server_Strategy_Factory::open() during its
initialization, after it has processed its configuration options. This allows all of
the service objects that may be dynamically loaded to be initialized before
there is any chance that the server strategy factory may need them. The default
server factory does nothing in open().

19.2.2 Server Concurrency
An important configuration issue is controlling concurrency-related behavior.
The use of threads within an application can increase the capacity of the
application, particularly on hosts with multiple processors, but at a cost of
increased complexity within the application. The most difficult issue to deal
with in a multithreaded application is the synchronization of access to
different parts of the application and to data. TAO has been designed with the
goal of creating servers that may support hundreds or thousands of clients on
very large hosts, as well as creating extremely small, special purpose servers
that may have few clients, and must be extremely efficient. To support these
different goals, the server strategy factory provides functions to control the
concurrency behavior of the server, as well as thread-creation parameters.

virtual int activate_server_connections (void);

This function is used by other parts of the ORB to determine how to deal with
multithreaded servers. If the concurrency strategy is to use a thread per
connection, then the function activate_server_connections() must

598 o c i w e b . c o m

S e r v e r S t r a t e g y F a c t o r y

return non-zero. The default server factory returns a non-zero value for
activate_server_connections() if -ORBConcurrency is set to
thread-per-connection, or zero if reactive is specified.

When the server is configured to use a thread per connection, the service
handlers associated with each new connection are made active. That is, a new
thread is spawned, which runs code for the handler. This is possible because
the connection handlers used in TAO are based on the ACE Active Object
pattern, and use the service handler’s activate() function to start running in
a separate thread. The server strategy factory is responsible for supplying the
appropriate parameters to be used in the call to activate() through the
following functions:

virtual int server_connection_thread_flags (void);
virtual int server_connection_thread_count (void);

The default server strategy factory supplies both THR_BOUND and
THR_DETACHED as the values of the server connection thread flags. The
default server factory always returns 1 for the thread count. There is no
mechanism provided for using more than one thread per connection.

Table 19-1 Server Concurrency Options

Option Section Description

-ORBConcurrency
{reactive | thread-per-connection} 19.3.5

The default value, reactive,
specifies that requests will be
handled using an event handler
model.
The thread-per-connection
value specifies that a thread will be
dedicated to handling requests for
each connection established by
clients.

Table 19-2 Thread Flags Option

Option Section Description

-ORBThreadFlags
{THR_BOUND |
 THR_DAEMON |
 THR_DETACHED |
 THR_NEW_LWP |
 THR_SUSPENDED}

19.3.9

Multiple thread flags may be specified as a single
value by combining the desired flags using a vertical
bar (‘|’) between the flags. When -ORBThreadFlags
is not specified, the default flags THR_BOUND and
THR_DETACHED apply. The THR_DAEMON flag is not
allowed on Win32 platforms.

o c i w e b . c o m 599

1 9 . 2 I n t e r f a c e D e f i n i t i o n

In addition, for the thread-per-connection concurrency model, each thread that
is spawned to handle requests arriving on a given connection must be
periodically awaken to check for possible ORB shutdown. The server strategy
factory provides the following function for this purpose:

virtual int thread_per_connection_timeout (ACE_Time_Value &timeout);

This function returns -1 if the compile-time default (specified as the
preprocessor macro TAO_DEFAULT_THREAD_PER_CONNECTION_TIMEOUT in
$TAO_ROOT/tao/orbconf.h) should be used; zero if threads should block
without checking for ORB shutdown; or a positive non-zero value and sets the
timeout parameter with the value specified by the following option:

19.2.3 Demultiplexing Strategies
When resolving a request, the ORB must perform three lookups. The word
demultiplexing or demux is used to describe the act of looking up an object
based on an object identifier. The first lookup is to locate the POA identified
by the request. The second is a lookup on the POA to find the servant, or
active object, that will handle the request. The final lookup is performed
within the active object to resolve the function signature requested. The
function signature lookup is controlled by the IDL compiler via the -H
command line option (see 4.10), and will generally use the perfect hashing
algorithm as generated by the GNU gperf application.

TAO provides three configurable strategies to servers for demultiplexing
POAs and servants: the Linear Search strategy, the Dynamic Hash strategy,
and the Active Demux strategy.

The server strategy factory is not directly responsible for providing the
demultiplexing operations; rather it supplies the configuration information to
the parts of the ORB that maintain the tables used to demultiplex components
of requests. These parameters are supplied by the following function:

Table 19-3 Thread-per-Connection Timeout Option

Option Section Description

-ORBThreadPerConnectionTimeout
{infinite | milliseconds} 19.3.10

Specifies how frequently threads
should check for possible ORB
shutdown in servers using the
thread-per-connection concurrency
model.

600 o c i w e b . c o m

S e r v e r S t r a t e g y F a c t o r y

virtual const Active_Object_Map_Creation_Parameters&
 active_object_map_creation_parameters (void) const

The value returned from this function is a structure that encapsulates all of the
state information needed to construct the desired demultiplexing strategies.
The default strategy factory populates the active object map creation
parameters by interpreting two sets of options, the POA Map options and the
Active Object Map options. The strategy used within an active object to
resolve a particular function signature is determined by the IDL complier, and
therefore is not included as part of the active object map creation parameters
structure.

19.2.3.1 Linear Search
The linear search strategy is the simplest demultiplexing strategy. Entities are
stored in an unsorted array. As elements are removed from the list, the
position of the hole is retained in a free list. New elements added to the list
will fill these holes, or be appended to the list. Locating elements of the list
requires examining the key value of each element in the list sequentially, until
the matching element is found.

The cost of adding a new element to the linear search map is small, as no
calculations are performed to convert the key value from one form to another.

Another point to consider is the cost of growing the list. As described below, it
is possible to specify an initial size for the active object maps and for the POA
maps. If the number of elements in the map extends beyond this size, the map
will grow. This growth involves allocating twice as much space as the
previous map contained, duplicating each existing element, using its copy
constructor, finally releasing the old space by calling each element’s
destructor.

When comparing relative performance of the linear search strategy versus
other strategies, the lookup time is O(n/2) on average, and O(n) worst case.
The linear search strategy does not scale well to large numbers of objects.

19.2.3.2 Dynamic Hash
The dynamic hash strategy is substantially more efficient than the linear
search for handling larger numbers of elements. This strategy uses a hash table
to achieve a nearly constant lookup time regardless of the size of the table.
Occasionally two or more keys will result in the same hash table index. Using

o c i w e b . c o m 601

1 9 . 2 I n t e r f a c e D e f i n i t i o n

a sufficiently large table will mitigate this, but when such “collisions” occur,
the elements sharing the table index are searched linearly.

Compared to the linear search strategy, there is a greater constant cost for each
access of the map. The key value must be hashed before it may be used to
insert or locate an element. The hashing algorithm used for object identifiers
and POA names is encoded in ACE::hash_pjw().

Unlike the linear search strategy, or the active demux strategy, the map size of
the dynamic hash remains fixed throughout the life of the process. If the
selected map size is smaller than the actual number of elements stored,
hashing collisions will occur, resulting in degraded lookup performance.

19.2.3.3 Active Demux
For the greatest performance in demultiplexing, TAO uses the active
demultiplexing strategy. Active demultiplexing takes advantage of the ACE
Active Map, that uses array indices and object “generations” as the search key.
The effect of this is that searching the active map involves only a single array
dereference. Active maps are optimized for storage, reusing slots made
available by the removal of earlier entries. To guard against incorrect
references, entries in an active map have a generation, which is the count of
the number of times a particular slot has had a value assigned to it. For this
reason, active demultiplexing is available only when an object reference is
transient and guaranteed not to be reused. The size of the active map will
increase over time in the same manner as with the linear search strategy.

In case of persistent objects, or objects with references that may be reused,
TAO provides an extension to the standard object reference demultiplexing.
An active “hint” may be added to the POA name or the object key that is used
to attempt to locate an object in a secondary active map. It is not guaranteed
that the hint is valid, and if it is not, then the dynamic hash table or linear
search will resolve the reference. The use of active hints in object identifiers
or POA names will increase the size of each map accordingly.

19.2.4 POA Map Options
All POAs within a server must register themselves with the root POA. The
root POA submits these registrations to the object adapter, which adds them to
the appropriate map. The TAO object adapter maintains two separate maps,
one for POAs with persistent IDs and one for POAs with transient IDs. To

602 o c i w e b . c o m

S e r v e r S t r a t e g y F a c t o r y

construct its maps, the object adapter obtains a reference to the struct
Active_Object_Map_Creation_Parameters and refers to the following
values:

CORBA::ULong poa_map_size_;
TAO_Demux_Strategy poa_lookup_strategy_for_transient_id_policy_;
TAO_Demux_Strategy poa_lookup_strategy_for_persistent_id_policy_;
int use_active_hint_in_poa_names_;

The default server strategy factory options that set these values are shown in
this table.

19.2.5 Active Object Map Parameters
Once a POA is resolved, it must locate an active object that will be used to
handle the request. Each POA contains maps of active objects, one for objects
created using the system ID policy, and another one for objects created using
the user ID policy. When the unique ID policy is used, a map is created for
performing reverse lookups of ID, based on the object adapter.

Table 19-4 POA Map Creation Options

Option Section Description

-ORBActiveHintInPOANames {1 | 0} 19.3.2

Allows the use of active hints for
POAs when the policy otherwise
does not allow active demux. This
sets the value of the parameter
use_active_hint_in_poa_
names_

-ORBPersistentIDPolicyDemuxStrategy
{dynamic | linear} 19.3.6

Select strategy for demultiplexing
POAs defined with the Persistent
ID policy. This sets the value of
poa_lookup_strategy_for_
persistent_id_policy_.

-ORBPOAMapSize size 19.3.7

Sets the initial number of entries
in the POA lookup tables. This
sets the value of the parameter
poa_map_size_. Default is 24.

-ORBTransientIDPolicyDemuxStrategy
{active | dynamic | linear} 19.3.11

Selects the strategy for
demultiplexing POAs with the
TRANSIENT_ID policy. This
sets the value of the parameter
poa_lookup_strategy_for_
transient_id_policy_.

o c i w e b . c o m 603

1 9 . 2 I n t e r f a c e D e f i n i t i o n

To construct its maps, the POA obtains a reference to the struct
Active_Object_Map_Creation_Parameters and refers to the following
values:

CORBA::ULong active_object_map_size_;
TAO_Demux_Strategy object_lookup_strategy_for_user_id_policy_;
TAO_Demux_Strategy object_lookup_strategy_for_system_id_policy_;
TAO_Demux_Strategy reverse_object_lookup_strategy_for_unique_id_policy_;
int use_active_hint_in_ids_;
int allow_reactivation_of_system_ids_;

The default server strategy factory options that set these values are shown in
Table 19-5.

Table 19-5 Active Object Map Creation Options

Option Section Description

-ORBActiveHintInIDs {1 | 0} 19.3.1

Allows the use of active hints for
active objects when the policy
otherwise does not allow active
demux. Sets the value of
use_active_hint_in_ids_.

-ORBActiveObjectMapSize size 19.3.3

Sets the initial number of entries in
the active object lookup tables.
Default is 64. Sets the value of
active_object_map_size_.

-ORBAllowReactivationOfSystemIDs
{1 | 0} 19.3.4

Allows the reactivation of system
generated IDs. Sets the value of
allow_reactivation_of_
system_ids_.

-ORBSystemIDPolicyDemuxStrategy
{active | dynamic | linear} 19.3.8

Selects strategy for demultiplexing
active objects defined with the
System ID policy. Sets the value of
object_lookup_strategy_for
_system_id_policy_.

-ORBUniqueIDPolicyReverseDemuxStrategy
{dynamic | linear} 19.3.12

Selects the strategy for looking up
object IDs using the active object
reference, when the object was
defined using the Unique ID
policy. This sets the value of
reverse_object_lookup_stra
tegy_for_unique_id_policy_.

604 o c i w e b . c o m

S e r v e r S t r a t e g y F a c t o r y

19.3 Default Server Strategy Factory Options

The remainder of this chapter describes the individual options interpreted by
the default server strategy factory supplied with TAO. These options are
supplied to the default server strategy factory by the service configurator,
through the use of the static initialization directive (see 16.3).

19.3.1 ORBActiveHintInIDs enabled

Description This option controls the embedding of additional information in the object
reference for use as a hint in resolving object references. These hints may
allow for faster resolution of object references. When the POA policy
USER_ID is used in creating new object IDs, TAO is not able to use its active
demux strategy based solely on the ID. This can have an impact on
performance, as the number of active objects bound to a POA increases. By
allowing TAO to concatenate some additional information to the object ID, a
secondary active map may be used to look up the object reference. As long as
the hint is valid, the associated object will be located, using the fast lookup of
the active demux strategy. If the hint is no longer valid, perhaps from the
active object having been destroyed, then reconstructed, the lookup strategy
otherwise defined will be used to locate the object.

Usage Add active hint information to the object ID and use this information to more
efficiently look up the servants in the POA.

-ORBUserIDPolicyDemuxStrategy
{dynamic | linear} 19.3.13

Selects the strategy for
demultiplexing active objects
defined with the User ID policy.
This sets the value of
object_lookup_strategy_for
_user_id_policy_.

Table 19-5 Active Object Map Creation Options

Option Section Description

Values for enabled

1 (default) Hints are to be used in object IDs.

0 Hints are not to be used in object IDs.

o c i w e b . c o m 605

1 9 . 3 D e f a u l t S e r v e r S t r a t e g y F a c t o r y O p t i o n s

Impact The use of active hints as an additional component of the object ID portion of
the IOR will generally reduce object lookup time, in some cases substantially
so. The cost of doing so is in the form of space. The hint requires an extra
eight bytes in the IOR. An active map is used to facilitate the lookup, based on
the hint. This is in addition to the secondary lookup method, either a dynamic
hash or linear search table.

Active lookup tables are reallocated when space is required to store more
entries than is available.

When used in conjunction with -ORBAllowReactivationOfSystemIDs
with a value of 1, it provides predictable latency regardless of the number of
object IDs in a POA.

See Also 19.3.3

Example static Server_Strategy_Factory "-ORBActiveHintInIDs 0"

19.3.2 ORBActiveHintInPOANames enabled

Description Adding active hints to the POA names embedded in the object key may allow
for faster lookup of POAs by the ORB core. The use of hints in POA names is
turned on by default.

Usage Turn ON this option when predictability/performance is important, and you
are using multiple POAs.

Turn OFF this option to minimize memory usage.

Impact The active hints passed in the object key facilitate quick look up of POA
names, and make the lookup time predictable for any level of nested POAs.

Active hints result in larger IORs and extra server-side state. They also
increase the request size (typically by eight bytes) since additional hint
information is added to the POA name in the object key.

When used in conjunction with active demuxing strategy for POA lookups,
active hints provide predictable latency regardless of the number and nesting
of POAs.

See Also 19.3.7

Values for enabled

1 (default) Hints are to be used in POA names.

0 Hints are not to be used in POA names.

606 o c i w e b . c o m

S e r v e r S t r a t e g y F a c t o r y

Example static Server_Strategy_Factory "-ORBActiveHintInPOANames 0"

19.3.3 ORBActiveObjectMapSize map_size
Description This option specifies the initial number of entries in the active object map. By

default, the active object map is initialized with sixty-four (64) entries if no
map size is specified. The default active object map size is specified as the
preprocessor macro TAO_DEFAULT_SERVER_ACTIVE_OBJECT_MAP_SIZE in
$TAO_ROOT/tao/orbconf.h. This value affects all of the active object
maps and hint tables. When the dynamic hash strategy is used for SYSTEM_ID
or USER_ID active objects, the value specified here determines the total
number of hash table buckets. When using either the linear search or active
demux strategies, this value specifies the initial number of entries in the map.

Usage If any POA in a server is going to manage more than the default number of
active objects, then a larger number should be specified. On the other hand, if
memory conservation is important, and the maximum number of active
objects on any POA is going to be less than the default, then specify a smaller
number.

Impact Setting the initial map size too small degrades the predictability of the
application. This degradation takes the form of map resizing when linear or
active demux strategies are used, and inefficient lookups when the dynamic
strategy is used.

This option controls the initial size of the maps for user-specified object IDs,
system-generated object IDs, and the reverse lookup map. Setting this value
larger than the number of active objects in the system wastes memory for
linear and active demux strategies. When using the dynamic demux strategy,
increasing the size of the map may improve performance.

See Also 19.3.1, 19.3.8

Example static Server_Strategy_Factory "-ORBActiveObjectMapSize 100"

o c i w e b . c o m 607

1 9 . 3 D e f a u l t S e r v e r S t r a t e g y F a c t o r y O p t i o n s

19.3.4 ORBAllowReactivationOfSystemIDs enabled

Description This option controls whether system-generated object IDs can be reactivated.
When enabled, it allows an ID that was generated by the system to be reused
after it has been deactivated. This would typically occur when clients hold
references to objects whose servants are deactivated. Further use of the
reference would force the server to activate a servant with the old ID.

Usage Servers that use system-generated IDs in an environment where the lifespan of
a server (or servant) may be less than the lifespan of its clients should enable
this option.

Override the default value to disable the reuse of system ids when it is known
that no client will want to reactivate a previously-deactivated servant with a
system-generated id.

Impact When disabled, the IORs can be shortened, an extra comparison in the critical
upcall path removed, and some memory on the server side can be saved. This
allows the use of active demultiplexing as the primary lookup strategy for
resolving object references.

The reuse of object IDs presents a problem in that it limits TAO’s ability to
use the active demultiplexing strategy with system-generated IDs. This
situation requires the use of hints to obtain the greatest performance.

See Also 19.3.1, 19.3.8

Example static Server_Strategy_Factory "-ORBAllowReactivationOfSystemIDs 0"

19.3.5 ORBConcurrency strategy

Description This option specifies the concurrency strategy used by the ORB to control
server behavior. When multiple clients attempt to simultaneously connect to a

Values for enabled

1 (default) Enables the reuse of previous system-generated object IDs.

0 Guarantees the uniqueness of system-generated object IDs.

Values for strategy

reactive (default)
The ORB’s reactor is used to reactively process
incoming requests from all connections.

thread-per-connection A new thread is spawned to service each connection.

608 o c i w e b . c o m

S e r v e r S t r a t e g y F a c t o r y

server, the response time for each client may suffer. The problem is made even
worse when each request takes a long time to execute. Response time may be
improved by using multiple threads in the server. However, when dealing with
legacy code that is not thread safe, multithreading may not be possible.

Usage The default value, reactive, is appropriate when requests take a fixed,
relatively uniform amount of time and are largely I/O bound. The reactor type
used by the ORB is controlled by the -ORBReactorType option. Each thread
that calls ORB::run() or ORB::perform_work() can be used by the reactor
to process requests. The thread pool reactor must be specified to effectively
use multiple threads in the reactive mode.

The use of thread-per-connection is appropriate when there are multiple
connections active simultaneously and the clients are set up to use only one
request per connection. It should not be used in situations where the time
required to service a request is small compared to the time required to create a
thread. The use of thread-per-connection requires that data shared by
servants be locked and common functions be thread safe.

Impact When using thread-per-connection, a new thread is created for each
connection made. This allows for more prompt servicing of new connections
generally, but adds the cost of thread creation for every new connection.

See Also 15.3.6, 19.3.10, 18.7.6

Example static Server_Strategy_Factory "-ORBConcurrency thread-per-connection"

19.3.6 ORBPersistentIDPolicyDemuxStrategy strategy

Description This option selects the algorithm the ORB core uses for locating a persistent
POA, based on an object request. The active demultiplexing strategy is not
available for POAs identified with the PERSISTENT policy. Persistent POAs
are intended to outlive the server process, and active demultiplex index values
are valid only during the life of the process that generates them. An active hint
may be used along with the object id to benefit from the performance boost of
active demultiplexing.

Values for strategy

dynamic (default) Use a dynamic hashing strategy.

linear Use a linear search strategy.

o c i w e b . c o m 609

1 9 . 3 D e f a u l t S e r v e r S t r a t e g y F a c t o r y O p t i o n s

Usage If the number of persistent POAs is small, and a design goal is to minimize the
memory footprint of a server, the linear search strategy will provide
reasonable performance with the smallest memory footprint.

Impact The dynamic hashing strategy incurs the additional lookup cost of hashing the
POA name.

The linear search strategy quickly degrades lookup performance as the
number of persistent POAs increases and results in additional performance
degradation as the addition of new persistent POAs forces the map to resize.

See Also 19.3.2, 19.3.7, 19.3.11

Example static Server_Strategy_Factory "-ORBPersistentIDPolicyDemuxStrategy linear"

19.3.7 ORBPOAMapSize map_size
Description This option specifies the initial number of entries in the POA map. The default

value is twenty-four (24), as specified by the preprocessor macro
TAO_DEFAULT_SERVER_POA_MAP_SIZE in $TAO_ROOT/tao/orbconf.h.
This value affects all of the POA maps and hint tables. When the dynamic
hash strategy is used for PERSISTENT or TRANSIENT POAs, the value
specified here determines the total number of hash table buckets. When using
either the linear search or active demux strategies, this value specifies the
initial number of entries in the map.

Usage If any ORB in a server is going to have more than the default number of
POAs, then a larger number should be specified. On the other hand, if memory
conservation is important, and the maximum number of POAs is going to be
less than the default number, it is possible to use a smaller number.

Impact Setting the initial map size too small degrades the predictability of the
application. This degradation takes the form of map resizing when linear or
active demux strategies are used, and inefficient lookups when the dynamic
strategy is used.

This option controls the initial size of the maps for both transient and
persistent POAs. Setting this value larger than the number of POAs in the
system wastes memory for linear and active demux strategies. When using the
dynamic demux strategy, increasing the size of the map may improve
performance.

See Also 19.3.2, 19.3.11

610 o c i w e b . c o m

S e r v e r S t r a t e g y F a c t o r y

Example static Server_Strategy_Factory "-ORBPOAMapSize 10"

19.3.8 ORBSystemIDPolicyDemuxStrategy strategy

Description This option defines the demultiplexing strategy used by the POA for
managing active objects with system-generated object identifiers. The active
demultiplexing strategy provides the smallest lookup time per request, but at
the cost of an eight-byte identifier. Dynamic hashing provides performance
that is nearly as good as the active demux, but using a four-byte identifier. The
linear search strategy provides reasonable performance for small maps, using
a four-byte identifier, but does not scale very well as the number of active
objects increases.

Usage Selecting the appropriate strategy involves determining the number objects a
POA must service and the cost associated with an eight-byte identifier versus
a four-byte identifier.

Impact The cost associated with the active demultiplexing strategy is a larger object
key and the occasional resizing of the map if the initial size is too small. The
cost of the dynamic hashing strategy is degraded performance as the number
of objects increases. The cost of the linear search is quickly-degraded
performance as the number of objects increases and the possible resizing of
the map as additional active objects are added.

See Also 19.3.3

Example static Server_Strategy_Factory "-ORBSystemIDPolicyDemuxStrategy dynamic"

Values for strategy

active (default) Use the active demultiplexing strategy.

dynamic Use the dynamic hashing strategy.

linear Use the linear search strategy.

o c i w e b . c o m 611

1 9 . 3 D e f a u l t S e r v e r S t r a t e g y F a c t o r y O p t i o n s

19.3.9 ORBThreadFlags flags

Description This option specifies the flags to use when creating new threads in a server.
These thread creation flags are used when the concurrency strategy is
specified as thread-per-connection. In that case, the service handlers
activated when a new connection is established are supplied these flags by the
connection acceptor. By default, new threads are created with both the
THR_BOUND and THR_DETACHED flags.

Usage Multiple thread flags may be specified as a single value by combining the
desired flags using a vertical bar (‘|’) between the flags. No spaces may appear
between the values and the ‘|’. For example:

-ORBThreadFlags THR_BOUND|THR_NEW_LWP

Impact This option only has an effect when the concurrency strategy is set to
thread-per-connection. The specific impact to your system depends on
your operating system’s threading capability.

If there is a limit to the number of lightweight processes that may be created,
the use of THR_NEW_LWP can fail if your process exceeds that value.

An application may require that threads be invoked by a scheduler. To achieve
this goal in an environment where requests are received asynchronously, the
THR_SUSPENDED flag allows newly-created threads to wait to be started by a
scheduler. This, of course, requires an application configured to resume all
suspended threads appropriately.

See Also 19.3.5

Example static Server_Strategy_Factory "-ORBThreadFlags THR_BOUND|THR_SUSPENDED"

Values for flags

THR_BOUND (default)
Each new thread is bound to a LWP, allowing for each to be
scheduled separately.

THR_DAEMON
Not available for Win32 based platforms. The wait()
function cannot be invoked on daemon threads.

THR_DETACHED (default) Threads do not return status when they terminate.

THR_NEW_LWP Creates a new light weight process for thread processing.

THR_SUSPENDED Creates new threads in the “suspended” state.

612 o c i w e b . c o m

S e r v e r S t r a t e g y F a c t o r y

19.3.10 ORBThreadPerConnectionTimeout time

Description When using the thread-per-connection concurrency strategy for a
server, the ORB will spawn a new thread for each new connection, and that
thread will be dedicated to handling incoming requests over its connection.
These threads will remain active as long as the connection remains
established. However, since these threads do not normally participate in the
ORB’s reactor, they need a way to determine if the ORB has been shut down.
A timer can be used to wake up each thread on a specific time interval to
check to see if the ORB has shutdown. The default time interval is indicated
by the preprocessor macro TAO_THREAD_PER_CONNECTION_TIMEOUT,
defined in $TAO_ROOT/tao/orbconf.h as 5000 milliseconds (5 seconds).
You can use this server strategy factory option to either disable the timeout or
change its value.

Usage Timeout after 1 second.
-ORBThreadPerConnectionTimeout 1000

Do not timeout.
-ORBThreadPerConnectionTimeout infinite

Impact This option only has an effect when the concurrency strategy is set to
thread-per-connection. The specific impact to your system depends on
your operating system’s threading capability.

See Also 15.3.6.2, 19.3.5

Example static Server_Strategy_Factory "-ORBThreadPerConnectionTimeout infinite"

Values for time

infinite Threads spawned to handle requests for each client
connection will never check for ORB shutdown.

n > 0
Threads spawned to handle requests for each client
connection will check for ORB shutdown every n
milliseconds (default is 5000).

o c i w e b . c o m 613

1 9 . 3 D e f a u l t S e r v e r S t r a t e g y F a c t o r y O p t i o n s

19.3.11 ORBTransientIDPolicyDemuxStrategy strategy

Description This option defines the demultiplexing strategy used by the ORB core for
managing transient POAs. The active demultiplexing strategy provides the
smallest lookup time per request, but at the cost of an eight-byte identifier.
Dynamic hashing provides performance that is nearly as good as the active
demux, but using a four-byte identifier. The linear search strategy provides
reasonable performance for small maps, using a four-byte identifier, but does
not scale very well as the number of active objects increases.

Usage Selecting the appropriate strategy involves determining the number of
transient POAs that will be mapped and the cost associated with an eight-byte
identifier versus a four-byte identifier.

Impact The active demultiplex strategy results in a larger object key and the
occasional resizing of the map if the initial size is too small. The hashing
strategy degrades performance as the number of objects increases. The linear
search strategy quickly degrades lookup performance as the number of objects
increases and results in additional performance degradation when the addition
of new active objects forces the map to resize.

See Also 19.3.2, 19.3.7

Example static Server_Strategy_Factory "-ORBTransientIDPolicyDemuxStrategy dynamic"

19.3.12 ORBUniqueIDPolicyReverseDemuxStrategy strategy

Description This option defines the strategy used by a POA to locate an object identifier,
based on a servant reference. This reverse lookup is possible only when the
POA’s uniqueness policy is set to UNIQUE_ID, meaning that each object ID
will be associated with a different servant. If MULITPLE_ID is selected as the

Values for strategy

active (default) Use the active demultiplexing strategy.

dynamic Use the dynamic hashing strategy.

linear Use the linear search strategy.

Values for strategy

dynamic (default) Use a dynamic hash algorithm.

linear Use a linear search algorithm.

614 o c i w e b . c o m

S e r v e r S t r a t e g y F a c t o r y

uniqueness policy, there can be many object identifiers associated with a
servant, so a reverse lookup is not possible.

Usage The default strategy is generally better than the linear search strategy. This is
because the hashing algorithm for servants is simply to convert a pointer to the
servant to an unsigned long. In a case of a highly-optimized environment,
where the dynamic mapping classes are compiled out of ACE, then the linear
search must be used.

Impact Space is allocated for a servant-to-object-ID map only when the POA’s
uniqueness policy is set to UNIQUE_ID. The amount of space initially
allocated for the reverse lookup table is the same as the active object map size.

See Also 19.3.3

Example static Server_Strategy_Factory "-ORBUniqueIDPolicyReverseDemuxStrategy linear"

19.3.13 ORBUserIDPolicyDemuxStrategy strategy

Description This option defines the demultiplexing strategy used by the POA for
managing active objects with user-specified object identifiers. Dynamic
hashing provides very good lookup performance at the expense of hashing the
object identifier. The linear search strategy provides reasonable performance
for small maps, but does not scale very well as the number of active objects
increases. Active demultiplexing is not an option with user-specified object
identifiers, but an active hint may be used along with the native strategy for
increased performance.

Usage Selecting the appropriate strategy involves determining the number of objects
a POA must service and the cost associated with hashing the object identifiers
versus iterating through a list comparing object identifiers.

Impact The dynamic hashing strategy incurs the additional lookup cost of hashing the
object identifier.

The linear search strategy quickly degrades lookup performance as the
number of objects increases, and results in additional performance
degradation as the addition of new active objects forces the map to resize.

Values for strategy

dynamic (default) Use a dynamic hash algorithm.

linear Use a linear search algorithm.

o c i w e b . c o m 615

1 9 . 3 D e f a u l t S e r v e r S t r a t e g y F a c t o r y O p t i o n s

See Also 19.3.1, 19.3.3

Example static Server_Strategy_Factory "-ORBUserIDPolicyDemuxStrategy linear"

616 o c i w e b . c o m

S e r v e r S t r a t e g y F a c t o r y

o c i w e b . c o m 617

CHAPTER 20

Client Strategy Factory

20.1 Introduction

The client strategy factory supports those elements of TAO that are specific to
the behavior of clients. A client, for this discussion, is any application that
actively establishes connections to other processes, sends requests, and
perhaps receives replies. The client strategy factory provides control over
several resources used by clients. For example, the factory supplies the
mechanism employed when waiting for a response from a server. The client
strategy factory also supplies a transport multiplexor that enables multiple
asynchronous requests across a single connection. All of these objects are
used by TAO internally and are not intended to be used by application code.

The client strategy factory is registered with the service configurator using the
name Client_Strategy_Factory. TAO’s default client strategy factory is
statically registered with the service configurator and is initialized using the
static directive. To supply options to the default client strategy factory, add
a line, similar to the line shown below, to your service configuration file:

static Client_Strategy_Factory "-ORBoption value -ORBoption value ..."

618 o c i w e b . c o m

C l i e n t S t r a t e g y F a c t o r y

The service configurator is discussed in greater detail in Chapter 16.

20.2 Interface Definition

Within a TAO application, the client strategy factory is accessed via an
interface defined by the class TAO_Client_Strategy_Factory. Here we
show all of the public functions of the client strategy factory, describe their
use in relationship to the ORB, and the behavior of the default client strategy
factory implementation.

Synopsis class TAO_Export TAO_Client_Strategy_Factory : public ACE_Service_Object
{
public:

enum Connect_Strategy
{
 TAO_BLOCKED_CONNECT,
 TAO_REACTIVE_CONNECT,
 TAO_LEADER_FOLLOWER_CONNECT
};

TAO_Client_Strategy_Factory (void);
virtual ~TAO_Client_Strategy_Factory (void);

virtual ACE_Lock* create_profile_lock (void);
virtual TAO_Transport_Mux_Strategy* create_transport_mux_strategy
(TAO_Transport* transport);
virtual TAO_Wait_Strategy* create_wait_strategy (TAO_Transport* transport);
virtual int allow_callback (void);
virtual TAO_Connect_Strategy *create_connect_strategy (TAO_ORB_Core *);

virtual Connect_Strategy connect_strategy (void) const;
virtual bool use_cleanup_options (void) const;
virtual TAO_Configurable_Refcount create_profile_refcount (void);
virtual ACE_Lock *create_transport_mux_strategy_lock (void);
virtual int reply_dispatcher_table_size (void) const;

};

20.2.1 Profile Locking
CORBA defines a generic format called the Interoperable Object Reference
(IOR) to identify objects. An object reference identifies a CORBA object and
one or more paths through which the object can be accessed. Each path
references one server location that implements the object, and an opaque
identifier valid on that particular server. References to server locations are

o c i w e b . c o m 619

2 0 . 2 I n t e r f a c e D e f i n i t i o n

called profiles. An object may have multiple server locations to support load
balancing, fault tolerance, or other quality-of-service-specific optimizations.

Usually, an IOR’s state is accessed in a read-only fashion by the client-side
ORB. However, if the client receives a LOCATION_FORWARD reply message
from a server, the client-side ORB can modify the IOR’s state to update the
affected profiles. Without appropriate synchronization, multiple threads can
modify the IOR’s internal profile information, potentially leading to
corruption of the IOR’s internal state or to inconsistent views of that state by
other threads.

The profile lock interface is used internally by the stub to protect access to
profile objects. A profile is an abstraction of the endpoint of a connection. For
instance, the profile of an IIOP connection is defined by an open socket.
Occasionally a profile in use may have to change, particularly if the location
of a remote object changes. A lock is needed to protect against multiple
threads attempting to modify the stub’s profile. The client strategy factory
supplies this lock through the following function:

virtual ACE_Lock* create_profile_lock (void);

The default client strategy factory creates a lock of the type specified by the
ORBProfileLock option, shown in Table 20-1.

The default behavior is to create a thread mutex. This enables a stub to be used
by many threads in a client. If a client is single threaded, or all processing
related to a single stub is performed in a single thread, use of a null mutex is
acceptable and may provide better performance.

20.2.2 Transport Multiplexing Strategies
Transport multiplexing can optimize the use of a single connection between a
client and a server for many concurrent requests. There are currently two
kinds of transport multiplexing strategies defined: exclusive and multiplexed.

Table 20-1 Profile Locking Option

Option Section Description

-ORBProfileLock {thread | null} 20.3.4
Determines the type of profile lock
created by the default client strategy
factory.

620 o c i w e b . c o m

C l i e n t S t r a t e g y F a c t o r y

An exclusive transport uses a connection to service a single request and
receive a reply before making it available for another request. A multithreaded
client using the exclusive transport strategy will open a new connection for
each concurrent request.

The multiplexed strategy allows multiple concurrent requests to share a
connection, using asynchronous callbacks to handle the distribution of the
replies. The multiplexed strategy uses a hash table to store the pending replies.
This table’s size is configured via the -ORBReplyDispatcherTableSize
option. Locking for this table as well as other data used by the multiplexed
strategy is determined by -ORBTransportMuxStrategyLock.

The transport multiplexing strategy is used internally by the transport portion
of the communications protocol. The transport portion handles open
connections and is defined as part of the pluggable protocols framework:

virtual TAO_Transport_Mux_Strategy *create_transport_mux_strategy
(TAO_Transport *transport);

The default client strategy factory supplies the appropriate type of strategy
object, based on the option supplied to it by the service configurator. The
options for selecting and configuring the multiplexing strategy are listed in
Table 20-2.

20.2.3 Wait Strategies
Wait strategy objects are used by the transport layer in the client to control the
client’s behavior while the client is anticipating a response from a server, after
invoking a synchronous request. The wait strategy is also known as the client
connection handler. The client strategy factory interface is required to return a
wait strategy object for use by the protocol transport object:

Table 20-2 Transport Multiplexing Strategy Options

Option Section Description

-ORBTransportMuxStrategy
{exclusive | muxed} 20.3.6

Determines the multiplexing strategy
object created by the default client
strategy factory.

-ORBReplyDispatcherTableSize
size 20.3.5

Specifies the size of the dispatching
table used by the muxed multiplexing
strategy.

-ORBTransportMuxStrategyLock
{null | thread} 20.3.7 Determines the lock used by the muxed

multiplexing strategy object.

o c i w e b . c o m 621

2 0 . 2 I n t e r f a c e D e f i n i t i o n

virtual TAO_Wait_Strategy *create_wait_strategy (TAO_Transport *transport);

The default client strategy factory will return a wait strategy object that is one
of the following four specializations: wait-on-read, wait-on-reactor,
wait-on-leader-follower, or wait-on-leader-follower-no-upcall.

Wait-on-read is the simplest implementation. There is no locking and no
reactor is used for the reply. When a request is sent to the server, this wait
strategy simply blocks until it has read the reply. This strategy does not
support handling new requests, and hence nested upcalls, while waiting for the
reply from the server. This strategy provides the lowest possible overhead for
a multithreaded environment. In a single-threaded client this strategy has an
adverse affect on performance, as the process would block on every call.
Wait-on-read corresponds to the rw option.

Wait-on-reactor is a very effective strategy for single-threaded clients. With
this model, the transport registers with the reactor and uses an event handler
internally to wait for a response. This strategy should only be used for
single-threaded clients, as the threads must share access to the reactor.
Wait-on-reactor corresponds to the st option.

Wait-on-leader-follower is the strategy intended for use in reactor-based
multithreaded clients. This strategy enables multiple threads to register with a
reactor and use an event handler for processing the reply when it is available.
Wait-on-leader-follower corresponds to the mt option, and is the default.

The wait-on-leader-follower-no-upcall strategy combines the features of the
wait-on-read and wait-on-leader-follower strategies. Like the
wait-on-leader-follower strategy, it allows multiple threads to register with a
reactor and participate in the leader-follower interaction described in 15.4.4.3.
However, like the wait-on-read strategy, it does not allow these threads to
handle nested upcalls. Wait-on-leader-follower-no-upcall corresponds to the
mt_noupcall option.

Note The wait-on-leader-follower-no-upcall wait strategy is an experimental wait
strategy. It was designed specifically for and has been thoroughly tested in the
use cases presented in 15.4.4.4. It has not been exercised in a wide variety of
other use cases. Please use caution and due diligence in testing your
application's behavior with this option if you decide to use it.

622 o c i w e b . c o m

C l i e n t S t r a t e g y F a c t o r y

More information on the effect of wait strategy on threading behavior is
provided in 15.3.6 and 15.4.4.

The client strategy factory interface defines another function that indicates
whether callbacks should be allowed:

virtual int allow_callback (void);

This function returns zero when the wait-on-read wait strategy is used. It
returns a non-zero value otherwise. The wait-on-read strategy will still allow
callbacks as long as the application is multithreaded. This function is currently
only used to enable special optimizations when using SHMIOP in
combination with the wait-on-read wait strategy.

The default client strategy factory supplies the appropriate type of strategy
object, based on the option supplied to it by the service configurator. By using
the ORBWaitStrategy option, shown in Table 20-3, the choice of a wait
strategy is deferred until run time.
Table 20-3 Wait Strategy Options

Note The -ORBWaitStrategy option is the same as the
-ORBClientConnectionHandler option. The use of the
-ORBClientConnectionHandler option has been deprecated.

Note If you use the wait-on-read (rw) wait strategy option, you should also use the
exclusive transport multiplexing option. Otherwise, unexpected results may
occur. See 20.2.2.

Option Section Description

-ORBWaitStrategy {mt | st |
rw | mt_noupcall} 20.3.8

Determines the type of wait strategy
object created by the default client
strategy factory.

-ORBConnectionHandlerCleanup
{0 | 1} 20.3.1 Specifies connection handler cleanup for

use with the receive-wait wait strategy.

-ORBDefaultSyncScope {none |
transport | server | target} 20.3.3 Specify the default synch scope for

one-way calls

o c i w e b . c o m 623

2 0 . 2 I n t e r f a c e D e f i n i t i o n

20.2.4 Connect Strategies
Connect strategy objects are used by the transport layer in the client to control
the client’s behavior while initiating a connection to a server. The client
strategy factory interface is required to return a connect strategy object for use
by the transport-protocol-specific connector object:

virtual TAO_Connect_Strategy *create_connect_strategy (TAO_ORB_Core
*orb_core);

The default client strategy factory will return a connect strategy object that is
one of the following three specializations: blocking, reactive, or
leader-follower.

The blocking connect strategy is the simplest implementation. There is no
locking and no reactor is used to wait for the connection to succeed or fail.
When a connection is attempted to a server, this connect strategy simply
blocks until the connection attempt completes successfully or fails with an
error. This strategy provides the lowest possible overhead for a multithreaded
environment. In a single-threaded client this strategy may have an adverse
affect on performance, as the process would block each time a new connection
is established. The blocking connect strategy corresponds to the blocked
option.

The reactive connect strategy is a very effective strategy for single-threaded
clients. With this model, the connector registers with the reactor and uses an
event handler internally to wait for the connection attempt to complete. The
thread is not blocked while the connection is being attempted. This strategy
should only be used for single-threaded clients, as the threads must share
access to the reactor. The reactive connection strategy corresponds to the
reactive option.

The leader-follower connect strategy is intended for use in reactor-based
multithreaded clients. This strategy enables multiple threads to register with a
reactor and use an event handler for dealing with completed connection
attempts. The leader-follower connect strategy corresponds to the lf option,
and is the default.

More information on the effect of connect strategy on threading behavior is
provided in 15.4.1.

The default client strategy factory supplies the appropriate type of strategy
object, based on the option supplied to it by the service configurator. By using

624 o c i w e b . c o m

C l i e n t S t r a t e g y F a c t o r y

the ORBConnectStrategy option, shown in Table 20-4, the choice of a
connect strategy is deferred until run time.
Table 20-4 Connect Strategy Option

20.3 Client Strategy Factory Options

The remainder of this chapter describes the individual options interpreted by
the default client strategy factory. These options are supplied to the default
client strategy factory by the service configurator through the use of a static
initialization directive (see 16.3).

20.3.1 ORBConnectionHandlerCleanup enabled

Description When using the receive-wait wait strategy, the default behavior (for
performance reasons) will not consistently clean up connection handlers when
errors occur. This option specifies that the receive-wait strategy should ensure
that these resources are properly cleaned up.

Usage Use this option when using the receive-wait wait strategy and you need to
ensure that resources are cleaned up properly after errors.

This option requires that the ORB’s event processing loop is active. You must
have a thread calling orb::run() or orb::perform_work() in order for
the connection handlers to be cleaned up as appropriate.

Impact There is a small performance impact to enabling this option as it requires
registering and unregistering connection handler with the reactor for each
invocation.

Option Section Description

-ORBConnectStrategy {lf |
reactive | blocked} 20.3.2

Determines the type of connect strategy
object created by the default client
strategy factory.

Values for enabled

0 (default)
No connection handler cleanup happens when errors occur while using
the receive-wait wait strategy.

1
Enables connection handler cleanup when errors occur while using the
receive-wait wait strategy.

o c i w e b . c o m 625

2 0 . 3 C l i e n t S t r a t e g y F a c t o r y O p t i o n s

See Also 20.3.8

Example static Client_Strategy_Factory "-ORBConnectionHandlerCleanup 1"

20.3.2 ORBConnectStrategy connect_type

Description This option specifies the way clients wait while initiating connections to
servers. The choice of connect strategy depends on the architecture of the
client.

The default multithreaded lf strategy uses the reactor and exhibits
non-blocking behavior when initiating a connection to a server. This strategy
participates in the leader-follower protocol to synchronize access to the
reactor.

The reactive strategy is based on a traditional reactor that waits for events,
then loops through event handlers sequentially within a single thread of
control.

Finally, in the blocked strategy, the transport-level connector blocks for the
duration of the connection attempt with the server. This option should only be
used in multithreaded environments.

Usage In a single-threaded application, either the leader-follower or reactive options
are acceptable. In a multithreaded application, either the leader-follower or the
blocking options are acceptable.

Impact The reactive option provides a performance improvement in single threaded
applications by avoiding the overhead of thread management and locking.

The blocking option provides the lightest weight code, but pushes the burden
of thread management to the application developer.

See Also 15.4.1

Example static Client_Strategy_Factory "-ORBConnectStrategy reactive"

Values for handler_type

lf (default)
Use the multithreaded connect strategy, which is based on the
leader-follower model.

reactive
Use the reactive connect strategy, which allows non-blocking connects
in a single-threaded client.

blocked
Use the blocking connect strategy. Client threads block while initiating
a connection with a server.

626 o c i w e b . c o m

C l i e n t S t r a t e g y F a c t o r y

20.3.3 ORBDefaultSyncStrategy type

Description This option is intended to allow an application to be deployed with different
one-way synchronization than it was originally written. The default sync
scope as defined in the CORBA Messaging specification is
SYNC_WITH_TRANSPORT which means that a one-way call will block only as
long as it takes to establish a connection if necessary then send the request. It
does not wait for any sort of a reply, which could be an exception. If you need
to be able to handle exceptions, at least SYNC_WITH_SERVER is required.
Ordinarily this is done explicitly by the application developer applying a
CORBA::SyncScope policy to an object reference or the ORB.

There may be cases where the developer is not aware of this need, such as
when a server it uses is deployed behind an Implementation repository, load
balanced, or made fault tolerant. Or even if a corbaloc style IOR is used. All
of these situations make use of location forwarding to have the client stub
code update its connection information and retransmit a request. This cannot
happen if the request is a one-way.

Usage Set this option to server to ensure proper request forwarding.

Example static Client_Strategy_Factory "-ORBDefaultSyncStrategy server"

20.3.4 ORBProfileLock lock_type

Description This option controls the locking strategy for the internal state of an object
reference. In particular, the profile portion is guarded to avoid modification as
the result of receiving LOCATION_FORWARD messages.

Values for type

none equivalent to SYNC_NONE
transport
(default) equivalent to SYNC_WITH_TRANSPORT

server equivalent to SYNC_WITH_SERVER

target equivalent to SYNC_WITH_TARGET

Values for lock_type

thread (default) Access to the object profiles is guarded with a mutual exclusion lock.

null Object profiles are not locked.

o c i w e b . c o m 627

2 0 . 3 C l i e n t S t r a t e g y F a c t o r y O p t i o n s

By default, a thread mutex lock is used to synchronize access to the profile
during forwarding events.

Usage A client application may safely avoid the use of locks if it is single threaded, if
object references are not shared among threads, or if LOCATION_FORWARD
messages are guaranteed not to be received.

Impact Using a null mutex for object references, when it is safe to do so, enhances
performance.

The extra lock introduces potential for priority inversion.

Example static Client_Strategy_Factory "-ORBProfileLock null"

20.3.5 ORBReplyDispatcherTableSize size

Description When -ORBTransportMuxStrategy is set to muxed, this option defines the
size of the hash table used for demultiplexing reply messages that are received
on that connection.

Usage If your client applications can have many pending replies on a single
connection, setting this option to a higher value should allow for more
efficient dispatching of replies.

Impact Each increment of this value causes the ORB to consume at least 16 additional
bytes of memory per connection.

See Also 20.3.6

Example static Client_Strategy_Factory "-ORBReplyDispatcherTableSize 64"

Values for size

16 (default)
Allocate space for 16 elements in the reply dispatcher table that is
used for multiplexed connections.

> 0
Specify the number of elements to allocate in the reply dispatcher
table used for multiplexed connections.

628 o c i w e b . c o m

C l i e n t S t r a t e g y F a c t o r y

20.3.6 ORBTransportMuxStrategy strategy

Description This option controls the request multiplexing strategy of the transport. The
exclusive strategy means that no more than one request may be pending on
a single connection. If another request is issued, a new connection must be
established. The muxed strategy enables more than one pending request on a
single connection. With this strategy, pending requests and the related
callbacks are stored in a table so that responses may be routed appropriately.
The size of this table is specified by the -ORBReplyDispatcherTableSize
option.

Note Use of this option does not guarantee that multiple requests to the same server
will use the same connection, it just allows the ORB to do so. A number of
factors may cause TAO to open multiple connections to the same server, even
when the muxed strategy is used.

The transport multiplexing strategy is used by the pluggable transport. See
14.18.3 for details of the pluggable transport.

Usage The exclusive strategy is intended for use with ordinary synchronous
request/reply behavior. This strategy provides a smaller memory footprint as
no table is needed to store pending requests.

Impact The muxed strategy is required for asynchronous messaging. The muxed
strategy may also be desirable in a multithreaded client where many client
threads are simultaneously invoking synchronous requests through a single
ORB to the same target server. If the exclusive strategy is used in this case,
multiple connections may be created between the client and server ORBs to
transmit multiple simultaneous requests, which can be a problem in
environments where resources, such as file descriptors, are scarce.

See Also 15.4.2, 20.3.5, 20.3.7

Example static Client_Strategy_Factory "-ORBTransportMuxStrategy exclusive"

Values for strategy

exclusive Only one request may be pending on a connection.

muxed (default) Pending requests are multiplexed on a connection.

o c i w e b . c o m 629

2 0 . 3 C l i e n t S t r a t e g y F a c t o r y O p t i o n s

20.3.7 ORBTransportMuxStrategyLock lock_type

Description This option controls the locking strategy for the muxed strategy of
-ORBTransportMuxStrategy.

By default, a thread mutex lock is used to synchronize access to the
multiplexed strategy’s table during the processing of requests and replies.

Usage A client application may safely avoid the use of these locks if it is single
threaded or if it can guarantee only one thread is engaged in TAO-related
activities.

Impact Using a null mutex for this strategy, when it is safe to do so, enhances
performance.

See Also 20.3.6

Example static Client_Strategy_Factory "-ORBTransportMuxStrategyLock null"

20.3.8 ORBWaitStrategy handler_type

Description This option specifies the way client threads wait for replies during two-way
invocations. In two-way invocations, the client thread is expected to behave
synchronously with respect to the server. The client submits a request, then

Values for lock_type

thread (default)
When the transport multiplexing strategy is muxed, its data is
guarded with a mutual exclusion lock.

null
When the transport multiplexing strategy is muxed, its data is not
locked.

Values for handler_type

mt (default)
Use the multithreaded wait strategy, which is based on the
leader-follower model.

mt_noupcall
Use the multithreaded wait strategy, which is based on the
leader-follower model, but which does not allow client threads to
handle nested upcalls while they are waiting for replies from a server.

st
Use the single-threaded wait strategy, which allows multiple
connection handlers to share a reactor.

rw
Use the receive-wait wait strategy. Client threads block while waiting
for replies from servers.

630 o c i w e b . c o m

C l i e n t S t r a t e g y F a c t o r y

immediately waits for a reply. The choice of wait strategy depends on the
architecture of the client application.

The multithreaded strategy implements the leader-follower pattern, in which
many connection-handler threads are used to asynchronously handle replies
from the server.

The single-threaded reactive strategy is based on a traditional reactor that
waits for events, then loops through event handlers sequentially within a
single thread of control.

In the receive-wait strategy, the connection handler blocks in the recv()
system call waiting for a reply from the server. This option should only be
used in multithreaded environments.

Note This option has no effect for AMI requests as they do not ever wait for a reply.

Usage In a single-threaded application, either the multithreaded or single-threaded
reactor-based options are acceptable. In a multithreaded application, either the
multithreaded or the receive-wait options are acceptable.

Impact The single-threaded reactor option provides a performance improvement over
the multithreaded strategy by avoiding the overhead of thread management
and locking.

The receive-wait option provides the lightest weight code, but pushes the
burden of thread management to the application developer.

The multithreaded-no-upcall option allows multiple connection-handler
threads to share the same reactor, but avoids nested upcalls. It is considered
and experimental feature.

See Also 15.3.6, 18.6.7, 20.3.2, 20.3.6

Example static Client_Strategy_Factory "-ORBWaitStrategy st"

Note If you use the wait-on-read (rw) wait strategy option, you should also use the
exclusive transport multiplexing option (20.3.6) to avoid sharing a single
connection among threads making concurrent outgoing requests to the same
server.

o c i w e b . c o m 631

2 0 . 3 C l i e n t S t r a t e g y F a c t o r y O p t i o n s

Note You must also use the blocked connect strategy (20.3.2) and the blocking
flushing strategy (18.6.7) when using the wait-on-read (rw) wait strategy to
keep the client thread from entering the ORB’s leader-follower during
connection establishment or during output flushing and potentially being used
by the ORB to handle incoming requests.

632 o c i w e b . c o m

C l i e n t S t r a t e g y F a c t o r y

o c i w e b . c o m 633

Part 4

TAO Services

634 o c i w e b . c o m

o c i w e b . c o m 635

CHAPTER 21

TAO Services Overview

21.1 Introduction

The OMG’s CORBAservices specifications define basic services—such as
Naming, Events, and Notification—that can be used in a wide variety of
applications. Each CORBAservice specification includes standard IDL
interfaces that help insulate application developers from differences in
implementation. Applications benefit by reusing existing components;
CORBA vendors benefit by being able to focus on quality of implementation
rather than on interface design.

A governing design principle for the OMG services is that each service does
only one thing, but it does it very well. For example, the Naming Service and
Object Trading Service provide similar functionality. The Naming Service
allows applications to look up objects by name; it is like the telephone white
pages. By contrast, the Object Trading Service looks up objects based on the
properties of the services they provide; it is like the yellow pages. Yet, in spite
of the commonality between the object lookup strategies for white pages and
yellow pages, there is a separate service defined for each. This minimizes the
interfaces and keeps them as simple as possible. It also makes it possible to

636 o c i w e b . c o m

T A O S e r v i c e s O v e r v i e w

use the basic OMG services as building blocks for more sophisticated custom
services.

Another governing design principle is to use CORBA features, such as IDL,
for specifying the interface separately from the implementation.
Consequently, the OMG services from any CORBA compliant ORB can be
used by servers and clients from another CORBA compliant ORB. You could,
for example, use TAO’s Naming Service for distributed objects that are using
a CORBA ORB based on Java, such as JacORB.

As mentioned in Chapter 1, TAO implements a number of the OMG’s
CORBAservices, as well as certain TAO-specific services. The OMG-defined
CORBAservices are easily distinguished from non-OMG-defined services by
the names of the modules; all the OMG services include the prefix “Cos” in
the module name. For example, the Naming Service interfaces are all
contained within the module CosNaming. Table 21-1 lists the services that are
provided with TAO and the libraries with which applications that use each
service must link.

21.2 Customizing Access to the Services

The CORBAservices specifications do not deal with implementation issues
such as executable file names or allowable command-line arguments. In fact,
you can view the driver programs (the code that initializes and registers the
servants implementing the CORBAservices) used for the TAO services as
sample drivers. If you examine the source code of the drivers you will find
that they are quite small and simple; most of the work is done by the servants
in the libraries that implement the IDL interfaces of the services.

Note To avoid confusion, when discussing CORBA and TAO services, the term
service refers to the library code that implements the IDL interfaces, whereas
the term server refers to the executable that instantiates and initializes the
servant(s) running this code.

The servants that implement the CORBA and TAO services have been
designed so that they can be easily created and initialized within your own
application programs. By accessing these services programmatically, you can
guarantee that the service you need will be available during the lifetime of

o c i w e b . c o m 637

2 1 . 3 T A O ’ s O R B S e r v i c e s L i b r a r i e s

your application, take advantage of collocation optimizations, and reduce the
number of processes in your application.

21.3 TAO’s ORB Services Libraries

The code that implements the IDL interfaces for each of the services included
with TAO is located within one or more libraries. Services with a single
library put all their code in that single library which must be linked by all
clients and servers participating in that service. Many other services break the
service functionality into multiple libraries. A common pattern, shared by
several services, is to have individual stub, skeleton, and server libraries. For
example, the Naming Service has the following libraries:

• TAO_CosNaming - Naming service stub and client code

• TAO_CosNaming_Skel - Naming service skeleton code

• TAO_CosNaming_Serv - Naming service server code

The TAO_CosNaming library contains the code needed by Naming Service
clients that only need to interact with this service as CORBA clients. The
TAO_CosNaming_Skel library contains the generated skeletons and is
required if your Naming Service client implements any service-defined IDL
interfaces. The TAO_CosNaming_Serv library contains all the code necessary
in building servers for the Naming Service. The server library usually includes
the vast majority of a service’s code and means that clients no longer need to
link this code with their application.

Some services place some of their functionality in additional libraries and
require application developers to link those libraries when those features are
desired. These feature-oriented libraries are discussed in the chapter
documenting that service.

The source code for these libraries is contained in the
$TAO_ROOT/orbsvcs/orbsvcs directory and its subdirectories. The TAO
services and their individual libraries are listed in Table 21-1.

Table 21-1 TAO ORB Services Libraries

Service Library Name

Audio/Video Streaming TAO_AV

638 o c i w e b . c o m

T A O S e r v i c e s O v e r v i e w

Concurrency Control
TAO_CosConcurrency
TAO_CosConcurrency_Skel
TAO_CosConcurrency_Serv

Event
TAO_CosEvent
TAO_CosEvent_Skel
TAO_CosEvent_Serv

Fault Tolerance

TAO_FaultTolerance
TAO_FT_ClientORB
TAO_FTORB_Utils
TAO_FTRT_ClientORB
TAO_FtRtEvent
TAO_FTRTEventChannel
TAO_FT_ServerORB

Interface Repository TAO_IFRService

Life Cycle TAO_CosLifeCycle
TAO_CosLifeCycle_Skel

Load Balancing TAO_CosLoadBalancing

Log (Admin)
TAO_DsLogAdmin
TAO_DsLogAdmin_Skel
TAO_DsLogAdmin_Serv

Log (Event-based)
TAO_DsEventLogAdmin
TAO_DsEventLogAdmin_Skel
TAO_DsEventLogAdmin_Serv

Log (Notify-based)
TAO_DsNotifyLogAdmin
TAO_DsNotifyLogAdmin_Skel
TAO_DsNotifyLogAdmin_Serv

Log (RTEvent-based)
TAO_RTEventLogAdmin
TAO_RTEventLogAdmin_Skel
TAO_RTEventLogAdmin_Serv

Naming
TAO_CosNaming
TAO_CosNaming_Skel
TAO_CosNaming_Serv

Notification

TAO_CosNotification
TAO_CosNotification_Skel
TAO_CosNotification_Serv
TAO_CosNotification_Persist
TAO_CosNotification_MC
TAO_CosNotification_MC_Ext
TAO_RTNotification

Object Trading
TAO_CosTrading
TAO_CosTrading_Skel
TAO_CosTrading_Serv

Property
TAO_CosProperty
TAO_CosProperty_Skel
TAO_CosProperty_Serv

Table 21-1 TAO ORB Services Libraries

Service Library Name

o c i w e b . c o m 639

2 1 . 3 T A O ’ s O R B S e r v i c e s L i b r a r i e s

In addition, some common functionality shared by multiple services is located
in utility libraries such as TAO_Svc_Utils and TAO_PortableGroup.

The combination of multi-library services, dependencies between services,
and the utility libraries make generating the full set of service libraries a
challenge. The easiest way to resolve these dependencies is to use MPC and
TAO’s service base projects to generate your link commands. For example, to
build an executable that uses TAO’s Naming Service as a pure CORBA client,
create an MPC project that inherits from the namingexe base project. The
following sample MPC project file is taken from
$TAO_ROOT/orbsvcs/tests/Simple_Naming/Simple_Naming.mpc:

project(*Client) : namingexe, utils, portable_server {
 Source_Files {
 client.cpp
 }
}

The namingexe project simply inherits from the naming and taoexe
projects. The naming project ensures that we get the proper include paths,
environment variables, and link to the TAO_CosNaming library. You can also
derive your projects directly from naming, naming_skel, and
naming_serv base projects that TAO defines.

Using any of these projects simplifies your build process and may make it
more portable if there are further library changes in later versions of TAO.
Look in $ACE_ROOT/bin/MakeProjectCreator/config for all of TAO’s
base projects. See Chapter 3 and the MPC documentation for more
information on using MPC.

Real-Time Event

TAO_RTEvent
TAO_RTEvent_Skel
TAO_RTEvent_Serv
TAO_RTCORBAEvent
TAO_RTKokyuEvent
TAO_RTSchedEvent

Real-Time Scheduling TAO_RTSched
TAO_RTCosScheduling

Security TAO_Security

Time
TAO_CosTime
TAO_CosTime_Skel
TAO_CosTime_Serv

Table 21-1 TAO ORB Services Libraries

Service Library Name

640 o c i w e b . c o m

T A O S e r v i c e s O v e r v i e w

To access the header files for the services, use the form:

#include <orbsvcs/service-nameC.h>

For example, to include the header file for the Naming Service, add the
following line to your code:

#include <orbsvcs/CosNamingC.h>

21.4 Locating Service Objects

Many of TAO’s services can be located by passing a pre-defined object
identifier to the ORB’s resolve_initial_references() operation. For
example:

// Initialize the ORB.
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Resolve the Naming Service.
CORBA::Object_var naming_obj = orb->resolve_initial_references("NameService");

When resolve_initial_references() is passed an object identifier
(such as “NameService”), it attempts to find the corresponding service
object. The resolve_initial_references() implementation performs
the following steps, in order, until the operation succeeds, an exception
occurs, or the operation times out:

Note The general algorithm here is compliant with section 8.5.3, “Configuring
Initial Service References,” of the OMG CORBA 3.1 specification. The details
of the environment variables (step 3) and multicast discovery (step 4) are
specific to TAO.

1. If an initial reference to the service object was previously specified using
CORBA::ORB::register_initial_reference(), that object
reference is returned.

2. If the initial reference to the service object was specified using the
ORBInitRef option, e.g.,

-ORBInitRef NameService=corbaloc::tango:2809/NameService

o c i w e b . c o m 641

2 1 . 4 L o c a t i n g S e r v i c e O b j e c t s

then the stringified object reference provided as an argument to
-ORBInitRef is passed to CORBA::ORB::string_to_object() to
obtain the object reference to the service object. See 17.13.36 for more
information about the ORBInitRef option.

3. An environment variable name is constructed by appending “IOR” to the
object identifier. If this environment variable is set, its value is passed to
CORBA::ORB::string_to_object() as above. For example, when the
object identifier is NameService, the corresponding environment
variable is NameServiceIOR.

4. If the service object identifier is one of NameService,
TradingService, InterfaceRepository, or ImplRepoService
then TAO attempts multicast discovery of the service. See 21.4.1 for
details of multicast discovery.

5. If the ORBDefaultInitRef option was used, e.g.,

 -ORBDefaultInitRef corbaloc::tango:2809

then a slash character (“/”) plus the service object identifier are appended
to the URL prefix provided as an argument to -ORBDefaultInitRef.
The resulting stringified object reference is then passed to
CORBA::ORB::string_to_object() as above. See 17.13.10 for more
information about the ORBDefaultInitRef option.

6. Return a null object reference.

21.4.1 Multicast Service Discovery
TAO implements a multicast discovery mechanism for locating the following
services:

• Naming

• Trading

• Implementation Repository

• Interface Repository

Whenever the CORBA-standard and environment variable mechanisms are
not available for locating one of these services, TAO tries to use its multicast
mechanism to locate the service. The basic process is that a datagram is sent to
a multicast address and port requesting the location of the service. Any servers

642 o c i w e b . c o m

T A O S e r v i c e s O v e r v i e w

listening on this address reply with their object reference. If multiple services
reply, the client uses the first response it receives. If no server replies within
the timeout specified by the preprocessor macro
TAO_DEFAULT_SERVICE_RESOLUTION_TIMEOUT defined in
$TAO_ROOT/tao/orbconf.h, an exception of type
CORBA::ORB::InvalidName is raised.

By default, multicast discovery is enabled for clients, meaning they attempt to
use it when other mechanisms are not used. Most servers disable it by default
and supply command line options to enable it (typically -m 1).

Although multicast discovery works well for some applications, its use is
problematic for others. The most common issue encountered is when multiple
servers are configured to use the same multicast address. Different client
applications then randomly connect to one of the available servers based on
which reply is received. Typically, this is not what the application requires or
expects.

The following steps describe how the multicast address and port are
determined for a given service. Once the address and port are defined the
remaining steps are skipped.

1. If the object indentifier is NameService and the
ORBMulticastDiscoveryEndpoint option was specified, the value of
its argument is used as the IP address and port number.

2. Except for the Interface Repository, each of the other services that use
multicast discovery defines an ORB initialization option that allows for
run-time specification of the multicast discovery port.

3. The multicast discovery port can also be specified via an environment
variable for each of the services.

4. If all of the previous methods fail, the default multicast discovery port
number for that service is used. The default port numbers are defined in
$TAO_ROOT/tao/default_ports.h using preprocessor macros. For
example, the Naming Service’s default port number is defined by
TAO_DEFAULT_NAME_SERVER_REQUEST_PORT.

If the address is not specified in step 1 above, then the default multicast
address of 224.9.9.2 is used. The following table summarizes the Object ID,

o c i w e b . c o m 643

2 1 . 4 L o c a t i n g S e r v i c e O b j e c t s

ORB initialization option, environment variable, and default port for each of
the services that use multicast.

In addition, multicast discovery can also be specified via the -ORBInitRef
and -ORBDefaultInitRef options. See 17.13.36 for more details.

Table 21-2 Multicast Discovery Services

Object ID
ORB Initialization
Option

Environment
Variable

Default
Port

NameService -ORBNameServicePort NameServicePort 10013

TradingService -ORBTradingServicePort TradingServicePort 10016

ImplRepoService -ORBImplRepoServicePort ImplRepoServicePort 10018

InterfaceRepository N/A InterfaceRepoServicePort 10020

644 o c i w e b . c o m

T A O S e r v i c e s O v e r v i e w

o c i w e b . c o m 645

CHAPTER 22

Naming Service

22.1 Introduction

The OMG Naming Service version 1.3 (OMG Document formal/04-10-03)
defines a means for mapping names to object references. Names are composed
of sequences of simple structures that are, in turn, constructed from text
strings. The Naming Service allows applications in a distributed system to
locate CORBA objects by name rather than by caching object references or
passing around stringified IORs. It is similar to the white pages in a phone
book that maps telephone numbers to names. Chapter 18 of Advanced CORBA
Programming with C++ presents a detailed discussion of the Naming Service.

TAO provides a complete implementation of the Naming Service
specification.

Note TAO does not support the Lightweight Naming Service defined in section 3 of
the Version 1.3 Naming Service Specification. The Lightweight Naming
Service is a subset of the full naming service of resource-constrained systems.

646 o c i w e b . c o m

N a m i n g S e r v i c e

The Naming Service may be run as a stand-alone executable called
tao_cosnaming, or it can be built into an application by linking in the
appropriate libraries. The Naming Service interfaces and data types from the
OMG’s CosNaming module are defined in the file
$TAO_ROOT/orbsvcs/orbsvcs/CosNaming.idl. Applications that use
TAO’s Naming Service implementation should include the header file
$TAO_ROOT/orbsvcs/orbsvcs/CosNamingC.h and link with the
TAO_CosNaming library. Applications that wish to implement the Naming
Service internally will need to link with the TAO_CosNaming_Skel and
TAO_CosNaming_Serv libraries.

A variant of the Naming Service, discussed in 22.9, is available that provides a
fault tolerant implementation which supports replication of state between dual
redundant servers, transparent and seamless failover, and load balancing
functionality.

22.1.1 Road Map
The Naming Service is perhaps the most widely used of all the OMG CORBA
services. It is well documented in sources such as Advanced CORBA
Programming with C++ and Pure CORBA. Therefore, this chapter does not
attempt to completely explain how to use the standard Naming Service from
your application. Instead, this chapter focuses on the TAO-specific features of
the Naming Service.

If you want to learn more about...

• how to find the Naming Service from within your application, see 22.2,
“Resolving the Naming Service.”

• code that uses the basic Naming Service features from an application’s
clients and servers, see 22.3, “Naming Service Example.”

• using the “corbaloc” and “corbaname” Object URL features of the
Interoperable Naming Service specification, see 22.4, “Object URLs.”

• code that uses the extended Naming Service interfaces
(NamingContextExt), see 22.5, “The NamingContextExt Interface.”

• TAO’s classes that implement Naming Service features, for both clients
and servers, see 22.6, “TAO-Specific Naming Service Classes.”

• how to use TAO’s Naming Service utility programs, see 22.7, “Naming
Service Utilities.”

o c i w e b . c o m 647

2 2 . 2 R e s o l v i n g t h e N a m i n g S e r v i c e

• command-line options affecting TAO’s tao_cosnaming executable,
including the Naming Service persistence features, see 22.8, “Naming
Service Command Line Options.”

• using the Fault Tolerant Naming Service, see 22.9, “Fault Tolerant
Naming Service.”

To fully understand and take advantage of the Naming Service’s features, be
sure to read Chapter 18 of Advanced CORBA Programming with C++ or
Chapter 6 of Pure CORBA in addition to this chapter.

Full source code for all the examples presented in this chapter is in the TAO
source code distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/NamingService.

22.2 Resolving the Naming Service

To find the Naming Service, your application can use the
CORBA::ORB::resolve_initial_references() operation, passing it
the string “NameService”. For example:

// Initialize the ORB.
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Resolve the Naming Service.
CORBA::Object_var naming_obj = orb->resolve_initial_references("NameService");

CORBA::ORB::string_to_object() may also be used to resolve the
Naming Service. Examples using this technique are provided in 23.4.

When resolve_initial_references() is passed the string
“NameService”, it attempts to find the root Naming Context of the Naming
Service. TAO’s resolve_initial_references() implementation is
discussed in more detail in 21.4.

If resolve_initial_references() succeeds, it returns the CORBA
object reference to the Naming Service's root Naming Context. To use this
object reference as a CosNaming::NamingContext, you must first narrow
it, as follows:

CosNaming::NamingContext_var root =
 CosNaming::NamingContext::_narrow(naming_obj.in());

648 o c i w e b . c o m

N a m i n g S e r v i c e

TAO’s Naming Service implements the CosNaming::NamingContextExt
interface from OMG Document formal/02-09-02, so you can also narrow the
object reference returned from resolve_initial_references() as
follows:

CosNaming::NamingContextExt_var root =
 CosNaming::NamingContextExt::_narrow(naming_obj.in());

22.3 Naming Service Example

To help you become familiar with the TAO Naming Service, we now present
a simple example based on the Messenger example which was introduced in
Chapter 3.

Recall that the original Messenger server writes an IOR as a string to a file.
The client then reads the IOR string from the file and converts it back into an
object reference. Of course, to use this mechanism, the client and server must
be running on the same machine or at least on machines that share a file
system, or you must transmit the stringified IOR to the client through some
other means. To overcome this limitation, we will use the Naming Service and
assume that both the server and client have access to the Naming Service.

22.3.1 Source Code Listings for the Example
We have modified the Messenger server and client source code to use the
Naming Service rather than working with a stringified IOR. Full source code
for this example is in the TAO source code distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/NamingService/Messenger.

22.3.1.1 Server C++ Source Code File
The server now uses the Naming Service rather than writing its IOR as a string
to a file. The implementation of the server is in MessengerServer.cpp.

#include "Messenger_i.h"
#include <orbsvcs/CosNamingC.h>
#include <iostream>

int main(int argc, char* argv[])
{
 try {

o c i w e b . c o m 649

2 2 . 3 N a m i n g S e r v i c e E x a m p l e

 // Initialize orb
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 //Get reference to Root POA
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj.in());

 // Activate POA Manager
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();

 // Create an object
 PortableServer::Servant_var<Messenger_i> messenger_servant =
 new Messenger_i();

 // Find the Naming Service
 CORBA::Object_var naming_obj =
 orb->resolve_initial_references("NameService");
 CosNaming::NamingContext_var root =
 CosNaming::NamingContext::_narrow(naming_obj.in());
 if(CORBA::is_nil(root.in())) {
 std::cerr << "Nil Naming Context reference" << std::endl;
 return 1;
 }

 // Bind the example Naming Context, if necessary
 CosNaming::Name name;
 name.length(1);
 name[0].id = CORBA::string_dup("example");
 try {
 CORBA::Object_var dummy = root->resolve(name);
 }
 catch (const CosNaming::NamingContext::NotFound &) {
 CosNaming::NamingContext_var dummy = root->bind_new_context(name);
 }

 // Bind the Messenger object
 name.length(2);
 name[1].id = CORBA::string_dup("Messenger");

 PortableServer::ObjectId_var oid =
 poa->activate_object(messenger_servant.in());
 CORBA::Object_var messenger_obj = poa->id_to_reference(oid.in());
 root->rebind(name, messenger_obj.in());

 std::cout << "Messenger object bound in Naming Service" << std::endl;

 // Accept requests
 orb->run();
 orb->destroy();

650 o c i w e b . c o m

N a m i n g S e r v i c e

 }
 catch(CORBA::Exception& ex) {
 std::cerr << "Caught a CORBA exception: " << ex << std::endl;
 return 1;
 }
 return 0;
}

22.3.1.2 Client C++ Source Code File
The client now uses the Naming Service rather than reading the server object’s
IOR as a string from a file. The implementation of the client is in the file
MessengerClient.cpp.

#include "MessengerC.h"
#include <orbsvcs/CosNamingC.h>
#include <iostream>

int main(int argc, char* argv[])
{
 try {
 // Initialize orb
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Find the Naming Service
 CORBA::Object_var naming_obj =
 orb->resolve_initial_references("NameService");
 CosNaming::NamingContext_var root =
 CosNaming::NamingContext::_narrow(naming_obj.in());
 if(CORBA::is_nil(root.in())) {
 std::cerr << "Nil Naming Context reference" << std::endl;
 return 1;
 }

 // Resolve the Messenger object
 CosNaming::Name name;
 name.length(2);
 name[0].id = CORBA::string_dup("example");
 name[1].id = CORBA::string_dup("Messenger");
 CORBA::Object_var obj = root->resolve(name);

 // Narrow the Messenger object reference
 Messenger_var messenger = Messenger::_narrow(obj.in());
 if (CORBA::is_nil(messenger.in())) {
 std::cerr << "Not a Messenger reference" << std::endl;
 return 1;
 }

o c i w e b . c o m 651

2 2 . 3 N a m i n g S e r v i c e E x a m p l e

 // Send a message
 CORBA::String_var message = CORBA::string_dup("Hello!");
 messenger->send_message("TAO User", "TAO Test", message.inout());
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "Caught a CORBA exception: " << ex << std::endl;
 return 1;
 }
 std::cout << "Message was sent" << std::endl;
 return 0;
}

22.3.2 Building the Example
The example includes an MPC file Messenger.mpc that defines projects for
building MessengerServer and MessengerClient. These projects can be
built from the workspace generated from
$TAO_ROOT/orbsvcs/DevGuideExamples/DevGuideExamples.mwc.

22.3.3 Running the Example
Now that you have built the server and client, you are ready to run the
example using the Naming Service. The first step is to start the Naming
Service, which can be done with or without support for multicast discovery.

22.3.3.1 Starting the Naming Service with Multicasting
The TAO Naming Service server executable is typically found in the directory
$TAO_ROOT/orbsvcs/Naming_Service.

TAO clients will try to locate the Naming Service as described in 22.2. If they
cannot locate the Naming Service by another method, they will attempt to
locate it using multicast discovery. When invoked with the -m 1 option, the
Naming Service will listen for these multicast service discovery requests and
respond with the IOR of its root naming context.

Multicasting is connectionless, so a process sending a request need not wait
for a recipient to respond. However, datagrams do not guarantee message
delivery, nor are messages necessarily received in the same order as they were
transmitted.

652 o c i w e b . c o m

N a m i n g S e r v i c e

Note For more details see the discussions of multicast service discovery in 21.4.1
and the mcast: address in 17.13.10.

If your network supports multicast, and you want your applications to find the
Naming Service using multicast service discovery, start the TAO Naming
Service server as follows (assuming that tao_cosnaming is in your PATH):

$ tao_cosnaming -m 1

Next, run the MessengerServer in its own terminal window:

$./MessengerServer

and run the MessengerClient from a different terminal window:

$./MessengerClient

You should see the following messages in the MessengerServer’s window:

Message from: TAO User
Subject: TAO Test
Message: Hello!

and in the MessengerClient’s window:

message was sent

The client terminates, but the MessengerServer will continue to run until
you kill it. After you kill the MessengerServer, the Naming Service will
have a binding to an object reference that is no longer valid (persistent object
references, notwithstanding). You could kill the Naming Service or send a
request to the Naming Service to unbind the reference.

Compare this with the commands needed to run the server and client without
the Naming Service as given in 3.3.8. You no longer need to share files
between the server and the client. Using the Naming Service makes it possible
to manage a large number of objects without relying on the existence of a file
system shared among the distributed objects in the system.

o c i w e b . c o m 653

2 2 . 3 N a m i n g S e r v i c e E x a m p l e

Discriminating between Multiple Naming Services
Suppose you want to access a particular Naming Service server when another
Naming Service server is running and both are using multicast for service
discovery. For example, there may be a deployment Naming Service running
on your subnetwork, but you want to test your code using a development
Naming Service without impacting users of the more stable deployment
service.

You could use the -ORBListenEndpoints and -ORBInitRef options as
described in 21.4, thus avoiding multicast discovery of the Naming Service.
Or, you could specify a multicast port other than the default Naming Service
multicast discovery port, as follows:

• Set the multicast port that the Naming Service server should use. For our
example, we will use port 10999:

$ tao_cosnaming -m 1 -ORBNameServicePort 10999

• Provide clients of the Naming Service the port to use for locating the
Naming Service. Do this by setting the NameServicePort environment
variable to 10999 before running applications that access the Naming
Service (shown here using UNIX shell syntax):

$ NameServicePort=10999; export NameServicePort

or pass the port as a command line option:

$./MessengerServer -ORBNameServicePort 10999 &

You may want to specify a multicast address and a port other than the default
Naming Service values. Do this as follows:

• Set the multicast address and port for the Naming Service server to use.
For our example, we will use address 224.0.0.3 and port 10999:

$ tao_cosnaming -m 1 -ORBMulticastDiscoveryEndpoint 224.0.0.3:10999

• Provide clients of the Naming Service the address and port to use for
locating the Naming Service. Do this by passing the address and port as a
command line option:

$./MessengerServer -ORBMulticastDiscoveryEndpoint 224.0.0.3:10999

654 o c i w e b . c o m

N a m i n g S e r v i c e

or

$./ MessengerServer -ORBInitRef \
 NameService=mcast://224.0.0.3:10999::/NameService

Another technique is to have the Naming Service server write the IOR of the
root Naming Context to a file:

$ $TAO_ROOT/orbsvcs/Naming_Service/tao_cosnaming -o /tmp/ns.ior&

$./MessengerServer -ORBInitRef NameService=file:///tmp/ns.ior

22.3.3.2 Starting the Naming Service without Multicasting
Suppose you do not have the ability to use multicasting for your particular
network configuration or you choose not to use multicasting for discovery of
the Naming Service. The approach we use in this case is to specify an
endpoint on which the Naming Service server’s ORB will listen for CORBA
requests, then specify the Naming Service’s object reference to the
applications using the -ORBInitRef option.

Run the Naming Service server in a separate session:

$ tao_cosnaming -ORBListenEndpoints iiop://tango:2809

The -ORBListenEndpoints option is passed to CORBA::ORB_init() and
causes the Naming Service server’s ORB to listen for requests on the specified
endpoint. See 17.13.43 for more information on the -ORBListenEndpoints
option.

Run MessengerServer and MessengerClient in another session. We
specify the object reference of the Naming Service’s root Naming Context by
passing the -ORBInitRef option to each one:

$./MessengerServer \
 -ORBInitRef NameService=corbaloc:iiop:tango:2809/NameService &

$./MessengerClient \
 -ORBInitRef NameService=corbaloc:iiop:tango:2809/NameService

o c i w e b . c o m 655

2 2 . 4 O b j e c t U R L s

The -ORBInitRef option is passed to CORBA::ORB_init() and initializes
the application’s ORB with the association between the string NameService
and the corbaloc Object URL provided as an argument. When the
application invokes resolve_initial_references(“NameService”),
the Object URL is passed to CORBA::ORB::string_to_object() as
described in 22.2. See 17.13.36 for more information on the -ORBInitRef
option. See 22.4.1 for more information on using corbaloc Object URLs.

You can also specify the Naming Service IOR using the NameServiceIOR
environment variable, as shown here using UNIX shell syntax:

$ NameServiceIOR=corbaloc:iiop:tango:2809/NameService; export NameServiceIOR

22.4 Object URLs

22.4.1 corbaloc URL
An application can find the Naming Service by passing a URL to
CORBA::ORB::string_to_object() instead of using
CORBA::ORB::resolve_initial_references().

The corbaloc URL syntax provides an easy way for users to manipulate a
string form of an object reference. It has the syntax:

"corbaloc:"[<protocol id>]":"<protocol addr>

There are two protocols defined in the specification:

• The “resolve initial references” form:

"corbaloc:rir:"[/<keystring>].

For example: corbaloc:rir:/NameService.

• The IIOP form:

"corbaloc:"["iiop"]":"<host>[":"<port>][/<keystring>].

For example: corbaloc:iiop:rome.here.com:2204.

656 o c i w e b . c o m

N a m i n g S e r v i c e

The default corbaloc protocol is IIOP with a default port of 2809, as defined
in the CORBA Core specification. Therefore corbaloc::rome.here.com
is equivalent to corbaloc:iiop:rome.here.com:2809.

The corbaloc syntax allows for future/proprietary protocols. TAO supports
the proprietary protocols uiop and shmiop.

The corbaloc syntax may be used for the address specified in the options
-ORBDefaultInitRef and -ORBInitRef, but not for
-ORBListenEndpoints. The corbaloc:rir protocol can be used for
neither -ORBDefaultInitRef nor -ORBInitRef because circular
references would result.

The description given above is simplified, but covers the most frequently
utilized parts of the corbaloc syntax. See 17.13.10 and 17.13.36 for more
information on the protocols supported by TAO. See Part 2 of the CORBA 3.1
specification, 7.6.10.1, for the full description of the corbaloc URL syntax
and semantics.

22.4.1.1 corbaloc Example Code
We have modified the NamingService/Messenger client source code to
use string_to_object(). Full source code for this example is in the TAO
source code distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/NamingService/corbaloc
_Messenger. Only MessengerClient.cpp has changed. The
MessengerClient now accepts a command line parameter that is a URL to
be passed to string_to_object(). The only change is that the call to
resolve_initial_references() has been replaced with:

 char* url = "corbaloc:rir:/NameService"; // default URL to InitRef
 if (argc < 2) {
 std::cout << "Defaulting URL to " << url << std::endl;
 std::cout << "Usage: " << argv[0]
 << " [-ORB options] [corbaloc URL for the name service]"
 << std::endl;
 }
 else {
 url = argv[1];
 }

 // Find the Naming Service
 CORBA::Object_var naming_obj = orb->string_to_object(url);

o c i w e b . c o m 657

2 2 . 4 O b j e c t U R L s

The new MessengerClient will use a URL provided as a command line
parameter to locate the Naming Service.

22.4.1.2 Running the corbaloc example
Here are some examples of using the corbaloc object URL with the updated
MessengerClient example.

Start the Naming Service server using IIOP on the local machine:

tao_cosnaming -ORBListenEndpoints iiop://localhost:2809

Start the MessageServer using -ORBDefaultInitRef with a corbaloc
URL (recall that the default port for corbaloc is 2809 and the default
transport is IIOP):

MessengerServer -ORBDefaultInitRef corbaloc::localhost

Or start the MessengerServer using -ORBInitRef with a corbaloc URL:

MessengerServer -ORBInitRef NameService=corbaloc::localhost/NameService

Or specify a particular port:

MessengerServer -ORBInitRef NameService=corbaloc::localhost:2809/NameService

Now, start the MessengerClient using the URL parameter (default to port
2809):

MessengerClient corbaloc::localhost/NameService

Or start the MessengerClient using a corbaloc:rir form URL (you must
specify the initial reference):

MessengerClient -ORBInitRef NameService=corbaloc::localhost:2809/NameService
corbaloc:rir:/NameService

22.4.2 corbaname
An application can find both the Naming Service and a name in the Naming
Service by passing a corbaname URL to string_to_object().

The corbaname URL syntax is

"corbaname:"<corbaloc>["#"<string_name>]

658 o c i w e b . c o m

N a m i n g S e r v i c e

where <corbaloc> is the address of the Naming Service and
<string_name> is the stringified name of the object to be found in the
Naming Service. A stringified name is a string representation of the
CosNaming::Name sequence with the syntax:

<string_name> = <name_component>["/"<name_component]*
<name_component> = <name>["."<type>]

Here are some examples:

corbaname:rir:#root/middle.my_type/leaf
corbaname::ns_node:9999#usa/arizona/tempe

The backslash ‘\’ character escapes the reserved meaning of ‘/’, ‘.’, and ‘\’ in a
stringified name.

corbaname has an additional escaping requirement for the ‘\’ backslash
character and other special characters1. If a character that requires escaping is
present in a name component it is encoded as two hexadecimal digits
following a ‘%’ character to represent the octet.

A CosNaming::Name “leaf/esc_slash” and type “leaf_type” under the name
“root.esc_dot” would have the stringified name of:

root\.esc_dot/leaf\/esc_slash.leaf_type

And escaped for corbaname2 thus:

root%5c.esc_dot/leaf%5c/esc_slash.leaf_type

See the to_string() and to_url() method descriptions in 22.5 for another
example of escaping.

1. US-ASCII alphanumeric characters and the following: ";" | "/" | ":" | "?" | "@" |
"&" | "=" | "+" | "$" | "," | "-" | "_" | "." | "!" | "~" | "*" | "’" | "("| ")" are not escaped.
All others must be escaped.

2. common escapes: ’\’ => “%5c”, ’<’ => “%3c”, ’>’ => “%3e”, ’ ’ => “%20”, ’%’
=> “%25”

o c i w e b . c o m 659

2 2 . 4 O b j e c t U R L s

22.4.2.1 corbaname Example Code
We have modified the NamingService/Messenger client source code to
pass a corbaname URL to string_to_object(). Full source code for this
example is in the TAO source code distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/NamingService/corbanam
e_Messenger. Only MessengerClient.cpp has changed. The
MessengerClient now accepts a command line parameter that is a URL to
be passed to string_to_object(). The only change is that the following
code:

 // Find the Naming Service
 CORBA::Object_var naming_obj = orb->resolve_initial_references("NameService");
 CosNaming::NamingContext_var root =
 CosNaming::NamingContext::_narrow(naming_obj.in());
 if (CORBA::is_nil(root.in())) {
 std::cerr << "Nil Naming Context reference" << std::endl;
 return 1;
 }

 // Resolve the Messenger object
 CosNaming::Name name;
 name.length(2);
 name[0].id = CORBA::string_dup("example");
 name[1].id = CORBA::string_dup("Messenger");
 CORBA::Object_var obj = root->resolve(name);

has been replaced with:

 char* url = "corbaname:rir:#example/Messenger"; // default URL to InitRef
 if (argc < 2) {
 std::cout << "Defaulting URL to " << url << std::endl;
 std::cout << "Usage: " << argv[0]
 << " [-ORB options] [corbaname URL for message server]"
 << std::endl;
 }
 else {
 url = argv[1];
 }

 // Resolve the Naming Service and the Messenger.
 CORBA::Object_var obj = orb->string_to_object(url);

The last statement first finds the Naming Service, then resolves the object
reference of the Messenger using the name "example/Messenger" (relative
to the root Naming Context).

660 o c i w e b . c o m

N a m i n g S e r v i c e

22.4.2.2 Running the corbaname example
Start the Naming Service server and MessengerServer as described in
22.4.1.2.

Start the client with a corbaname that does not require the
-ORBDefaultInitRef option:

MessengerClient corbaname:iiop:localhost:2809#example/Messenger

Or defaults to use the IIOP protocol:

MessengerClient corbaname::localhost:2809#example/Messenger

Or default protocol (IIOP) and default port (2809):

MessengerClient corbaname::localhost#example/Messenger

Or use the Resolve Initial Reference form (you must tell the ORB where the
Naming Service is located with the -ORBInitRef option):

MessengerClient -ORBInitRef NameService=corbaloc::localhost:2809/NameService
corbaname:rir:#example/Messenger

22.5 The NamingContextExt Interface

The NamingContextExt interface is derived from NamingContext and
defines operations to convert between CosNaming::Names and stringified
names. The interface is defined in
$TAO_ROOT/orbsvcs/orbsvcs/CosNaming.idl as follows:

module CosNaming
{
// ... other interfaces ...

 interface NamingContextExt : NamingContext
 {
 typedef string StringName; // Stringified form of a Name.
 typedef string Address; // URL<address> such as myhost.xyz.com.
 typedef string URLString; // Stringified form of a URL<address>.
 StringName to_string (in Name n) raises (InvalidName);
 Name to_name (in StringName sn) raises (InvalidName);
 exception InvalidAddress {};
 URLString to_url (in Address addr,

o c i w e b . c o m 661

2 2 . 5 T h e N a m i n g C o n t e x t E x t I n t e r f a c e

 in StringName sn)
 raises (InvalidAddress, InvalidName);
 Object resolve_str (in StringName n)
 raises (NotFound, CannotProceed, InvalidName, AlreadyBound);
 };
 };

22.5.1 NamingContextExt Operations
The operations of the NamingContextExt interface are:

• to_string(): Converts a CosNaming::Name to a stringified name. If
the Name is invalid, an exception of type
CosNaming::NamingContext::InvalidName is raised.

• to_name(): Converts a stringified name to a CosNaming::Name. If the
stringified name is syntactically malformed or violates an implementation
limit, an exception of type
CosNaming::NamingContext::InvalidName is raised.

• resolve_str(): A convenience operation that resolves a name in the
same manner as resolve(), but it accepts a stringified name as a
parameter instead of a CosNaming::Name.

• to_url(): Converts a corbaloc URL <address>/<key_string>
component and a stringified name to a fully formed corbaloc Object
URL. Examples of the <address>/<keystring> parameter are:

- iiop:rome.phx.ociweb.com

- :rome.phx.ociweb.com/a/b/c

- shmiop:12345/a/b/c

to_url() performs any escapes necessary on the parameters and returns
a fully formed URL string. An exception is raised if either the corbaloc
address and key parameter or name parameter are malformed. It is illegal
for the stringified name to be empty. If the address is empty, an exception
of type CosNaming::NamingContextExt::InvalidAddress is
raised.

22.5.2 Name Conversion Examples
Here are some examples using the NamingContextExt interface:

662 o c i w e b . c o m

N a m i n g S e r v i c e

1. The following code shows the initialization of a
CosNaming::NamingContextExt object and a call to the
to_string() method:

 // Find the Naming Service
 CORBA::Object_var naming_obj =
 orb->resolve_initial_references("NameService");
 CosNaming::NamingContextExt_var naming_context_ext =
 CosNaming::NamingContextExt::_narrow(naming_obj.in());
 if (CORBA::is_nil(naming_context_ext.in())) {
 std::cerr << "Nil Naming Context reference" << std::endl;
 return 1;
 }

 CosNaming::Name name;
 name.length(2);
 name[0].id = CORBA::string_dup("root.esc-dot");
 name[0].kind = CORBA::string_dup("kind1");
 name[1].id = CORBA::string_dup("leaf/esc-slash");
 name[1].kind = CORBA::string_dup("kind2");

 // Convert Name to String Name.
 CORBA::String_var str_name = naming_context_ext->to_string(name);
 std::cout << "str_name: " << str_name.in() << std::endl;

It produces the following output:

str_name root\.esc-dot.kind1/leaf\/esc-slash.kind2

Notice that the “.” and “/” characters in the Name have been escaped.

2. The following code converts the str_name() above back into a
CosNaming::Name object:

 std::cout << "str_name: " << str_name.in() << std::endl;

 // Convert String Name to Name.
 CosNaming::Name * tname = naming_context_ext->to_name(str_name);

 std::cout << "converted back to a CosNaming::Name: " << std::endl;
 std::cout << " name[0] = " << (* tname)[0].id.in() << " , "
 << (* tname)[0].kind.in() << std::endl;
 std::cout << " name[1] = " << (* tname)[1].id.in() << " , "
 << (* tname)[1].kind.in() << std::endl;

With the following output:

str_name: root\.esc-dot.kind1/leaf\/esc-slash.kind2

o c i w e b . c o m 663

2 2 . 6 T A O - S p e c i f i c N a m i n g S e r v i c e C l a s s e s

converted back to a CosNaming::Name:
name[0] = root.esc-dot , kind1
name[1] = leaf/esc-slash , kind2resolve_str

3. The following code shows the to_url() method being used:

 // Create a URL string for the application object.
 CORBA::String_var address =
 CORBA::string_dup(":berlin.phx.ociweb.com:2809/key/str");

 std::cout << "call to_url(\"" <<address.in() << "\"" << std::endl;
 std::cout << " ,\"" << str_name.in() << "\")"<< std::endl;

 CORBA::String_var url_string =
 naming_context_ext->to_url (address.in(), str_name.in());

 std::cout << "to_url result: " << url_string.in() << std::endl;

With these results:

call to_url(":berlin.phx.ociweb.com:2809/key/str"
 ,"root\.esc-dot.kind1/leaf\/esc-slash.kind2")
to_url result:
corbaname::berlin.phx.ociweb.com:2809/key/str#root%5c.esc-dot.kind1/leaf%5
c/esc-slash.kind2

22.6 TAO-Specific Naming Service Classes

22.6.1 Using the TAO_Naming_Client Class
TAO defines a TAO_Naming_Client class that simplifies the interface for
accessing and using the Naming Service. The resulting code is now dependent
on this TAO specific class, but the class would be trivial to port for use with
other ORBs if portability is an issue.

The remainder of this section shows the changes necessary to convert the
previous example to use the TAO_Naming_Client class. Full source code for
this example is in the TAO source code distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/NamingService/Naming_Client.

To use the TAO_Naming_Client, you must add the following include
directive:

#include <orbsvcs/Naming/Naming_Client.h>

664 o c i w e b . c o m

N a m i n g S e r v i c e

Now instead of calling resolve_initial_references() and narrowing
the resulting object reference, simply create a TAO_Naming_Client object
and call init() on it.

 // Find the Naming Service
 TAO_Naming_Client naming_client;

 if(naming_client.init (orb.in ()) != 0){
 std::cerr << "Could not initialize naming client." << std::endl;
 return 1;
 }

The init() member function will return a non-zero value when it fails to
locate the Naming Service and initialize properly. Now, the naming client can
be used as a smart pointer to access the root Naming Context via
operator->(). For example, in the MessengerClient:

CORBA::Object_var obj = naming_client->resolve(name);

Similarly, in the MessengerServer:

naming_client->rebind(name, messenger_obj.in());

22.6.2 Using the TAO_Naming_Server Class
When used with the TAO_Naming_Server class and threads, the Naming
Service can easily be collocated within any application. This may be desirable
for many reasons, for example

• When an embedded target system (e.g., VxWorks) does not support
processes, requiring the Naming Service to run in a separate thread.

• For performance reasons you may want the Naming Service collocated to
avoid network traffic.

• You may want the Naming Service collocated with other code that
handles graceful shutdown.

The remainder of this section shows the changes necessary to convert the
previous example to use the TAO_Naming_Server class. Full source code for
this example is in the TAO source code distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/NamingService/Naming_Server.

o c i w e b . c o m 665

2 2 . 6 T A O - S p e c i f i c N a m i n g S e r v i c e C l a s s e s

22.6.3 Example using TAO_Naming Classes
The ACE_Task_Base base class, defined in $ACE_ROOT/ace/Task.h, is
used in this example to create individual threads for running the Naming
Service and a MessengerServer (as in the previous example).

22.6.3.1 Source Code
Each class overrides the base class function svc(), which is the entry point
for both threads as they are activated. Both tasks create and initialize their own
ORB, because calling run() on the same ORB has undesirable effects. The
declaration of the Naming Service task is in the file NamingTask.h.

#include <ace/Task.h>

class NamingTask : public ACE_Task_Base
{
public:
 NamingTask (int argc, char* argv[]);
 virtual int svc();

private:
 int argc_;
 char** argv_;
};

The implementation of the Naming Service task is in the file
NamingTask.cpp.

#include "NamingTask.h"
#include <orbsvcs/Naming/Naming_Server.h>

NamingTask::NamingTask (int argc, char* argv[])
: argc_ (argc),
 argv_ (argv)
{
}

int NamingTask::svc()
{
 int status = -1;

 try {
 // Initialize orb
 CORBA::ORB_var orb = CORBA::ORB_init(argc_, argv_, "NamingORB");

 // Get reference to Root POA

666 o c i w e b . c o m

N a m i n g S e r v i c e

 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj.in());

 // Activate POA Manager
 PortableServer::POAManager_var poaManager = poa->the_POAManager();
 poaManager->activate();

 // Initialize the Naming Service
 // We are not going to look for other naming servers
 TAO_Naming_Server naming;
 if (naming.init(orb.in(),
 poa.in(),
 ACE_DEFAULT_MAP_SIZE,
 0,
 0) == 0) {
 std::cout << "The Naming Service Task is ready." << std::endl;

 // Accept requests
 orb->run();
 status = 0;
 }
 else {
 std::cerr << "Unable to initialize the Naming Service." << std::endl;
 }
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "CORBA exception: " << ex << std::endl;
 }

 return status;
}

The implementation of the Messenger server task, located in the file
MessengerTask.cpp, looks very similar to the main() function of the
Messenger Server in the previous example, so to avoid repetition, we will not
list it here.

The main() function for this example, which uses the NamingTask and
MessengerTask, is listed in the file NamingMessenger.cpp.

#include "NamingTask.h"
#include "MessengerTask.h"
#include <ace/OS.h>

int main(int argc, char* argv[])
{
 // Start the Naming Service task
 NamingTask namingService(argc, argv);

o c i w e b . c o m 667

2 2 . 7 N a m i n g S e r v i c e U t i l i t i e s

 namingService.activate();

 // Wait for it to initialize
 ACE_OS::sleep(5);

 // Start the Messenger task
 MessengerTask messenger;
 messenger.activate();

 // Wait for all tasks to complete
 namingService.thr_mgr()->wait();

 return 0;
}

22.6.3.2 Running the Example
Assuming that the MessengerClient (from the previous example) already
has been built, you now are ready to run this example. Begin by starting the
NamingMessenger binary. This will create the Naming Service thread and
then the Messenger Server thread. After the ready statements for both are
printed, run the MessengerClient to see the interaction between the
Naming Service and the MessengerServer.

22.7 Naming Service Utilities

Several utilities for managing and debugging TAO applications and the
Naming Service come with TAO. Source code for these utilities is located in
$TAO_ROOT/utils. Executables for these utilities are placed in
$ACE_ROOT/bin.
tao_nslist is useful for listing the current Naming Service bindings.
tao_nsadd and tao_nsdel are limited to the root naming context (and are
therefore of limited utility).

22.7.1 tao_nslist
By default, the tao_nslist utility produces a listing of all the elements in a
Naming Service. For example, running it on one of the examples from this
section results in the following:

$ tao_nslist
Naming Service:

668 o c i w e b . c o m

N a m i n g S e r v i c e

+ example: Naming context
| + Messenger: Object Reference
| | Protocol: IIOP
| | Endpoint: 192.168.1.101:1027

This indicates that the root naming context contains a single node, which is a
naming context bound to the name “example”. This naming context contains a
single node with the name “Messenger”, which is bound to an object reference
that supports IIOP and uses the listed endpoint. Table 22-1 lists the full set of
command line options that tao_nslist supports.

Table 22-1 tao_nslist Command Line Options

Option Description Default

--nsior
Simply prints the IOR of the root naming
context of the Naming Service and then exits.
No list of the contents is printed.

The root naming
context’s IOR is
not printed.

--ns ior IOR for locating the Naming Service.
Use the standard
name service
location algorithm.

--ior
Show the full IOR for objects that are not
naming contexts.

A summary of the
object (protocol &
endpoint) is shown.

--ctxior Show the full IOR for Naming Contexts Only the context
name is displayed.

--tree “xx”
Defines the character string used for
indicating the scope of a node in the listing. “|”

--node “xx”
Defines the character string used for
indicating nodes in the listing. “+”

--noloops Inhibits drawing of naming context loops

--name name
Produce the listing starting with the node
corresponding to the supplied name.

Start with the root
context.

--ctxsep char
Separation character between contexts. Used
when parsing --name. “/”

--kindsep char
Separation character between id and kind.
Used when parsing --name. “.”

--max Maximum levels of the tree to list. All levels are listed.

--rtt seconds
Round-trip timeout to specify for CORBA
calls.

No time-outs are
used.

o c i w e b . c o m 669

2 2 . 7 N a m i n g S e r v i c e U t i l i t i e s

22.7.2 tao_nsadd
The tao_nsadd utility is used to add a single binding relative to the root
Naming Context. Here are some sample calls:

tao_nsadd --name example --ctx
tao_nsadd --name example/level2 --ctx
tao_nsadd --name example/Messenger --ior corbaloc:iiop:tango:1234/MyServer

Table 22-2 lists the full set of command line options that tao_nsadd
supports.

22.7.3 tao_nsdel
The tao_nsdel utility is used to delete a single binding relative to the root
Naming Context. Here are some sample calls that clean up the listing we saw
in the tao_nslist section:

tao_nsdel --name example/Messenger
tao_nsdel --name example --destroy

Table 22-2 tao_nsadd Command Line Options

Option Description Default

--name name
Name (relative to the root context) that is to
be bound. Required.

--ior IOR to bound to the specified name. Either this option or
--ctx are required.

--ctx
Bind a naming context to the specified name.
If --ior is also specified, use it as the context.
If --ior is not specified, create a new context.

Either this option or
--ior are required.

--ns ior IOR for locating the Naming Service.
Use the standard
name service
location algorithm.

--rebind
Bind the name regardless of whether it is
already bound.

Binding an already
bound name results
in an exception.

--ctxsep char
Separation character between contexts. Used
when parsing --name. “/”

--kindsep char
Separation character between id and kind.
Used when parsing --name. “.”

--quiet Suppress any progress and status messages.

670 o c i w e b . c o m

N a m i n g S e r v i c e

Table 22-3 lists the full set of command line options that tao_nsdel
supports.

22.7.4 NamingViewer utility
NamingViewer is an MFC (Microsoft Foundation Classes) application for
viewing and manipulating the bindings in the Naming Service.
wxNamingViewer is similar to NamingViewer, but uses wxWindows (a
cross-platform GUI toolkit) instead of MFC.

To use NamingViewer, you must select or add a Naming Service to display
its tree as shown in Figure 22-1. Naming Services are added to your Windows
registry so they are available the next time you start the NamingViewer. The
Naming Service IOR should include the ending stringified object key
“/NameService”, for example:

corbaloc::localhost:2809/NameService

Figure 22-2 shows the naming tree and Messenger binding after running the
NamingService/Messenger example. Double clicking on an object/leaf in
the tree will open a View IOR dialog (as shown). Clicking using the right-
most mouse button on an object/leaf or context node will display a menu of

Table 22-3 tao_nsdel Command Line Options

Option Description Default

--name name
Name (relative to the root context) that is to
be deleted. Required.

--ns ior IOR for locating the Naming Service.
Use the standard
name service
location algorithm.

--ctxsep char
Separation character between contexts. Used
when parsing --name. “/”

--kindsep char
Separation character between id and kind.
Used when parsing --name. “.”

--quiet Suppress any progress and status messages.

--destroy
Destroy any name contexts that have their
binding deleted.

Naming contexts
are “orphaned”.

--rtt seconds
Round-trip timeout to specify for CORBA
calls.

No time-outs are
used.

o c i w e b . c o m 671

2 2 . 7 N a m i n g S e r v i c e U t i l i t i e s

operations for that entry. Objects/leaves may be unbound or viewed.

Operations associated with a context include: bind, bind new context,
unbind object, unbind, destroy, view reference and refresh.

Figure 22-1 Select a Naming Service

Figure 22-2 Display Name Service Entry

672 o c i w e b . c o m

N a m i n g S e r v i c e

22.8 Naming Service Command Line Options

As stated previously, the TAO Naming Service server may be run as a
stand-alone executable called tao_cosnaming, found in the path
$TAO_ROOT/orbsvcs/Naming_Service. Table 22-4 lists command-line
options for controlling the behavior of the TAO Naming Service server.

Table 22-4 tao_cosnaming Command Line Options

Option Description Default

-b

The address used for memory mapping the
Naming Service state file supplied with the -f
option. The value supplied with this option is
only used when the FT Naming Service runs
in persistent mode, i.e., -f option is present.

Platform
dependent.

-d
Provides Naming Service specific debug
information.

No diagnostics
given.

-f
persistence_file_
name

Specify the name of a file in which to store
the Naming Contexts and bindings so they
can be read if the Naming Service needs to be
restarted.

Do not store
Naming
Contexts and
bindings.

-m (0|1)

Specify whether the Naming Service should
listen for multicast requests. If -m 0 is used,
the Naming Service does not listen for
multicast requests.

Naming Service
does not listen
for multicast
requests.

-n count
Specify the number of threads to supply to
ORB::run to make a multi threaded naming
server

1, the naming
service will be
single threaded

-o ior-file-name
Specify the name of the output file for writing
the IOR of the Naming Service as a string.

Do not write the
IOR.

-p pid-file-name
Specify the name of the output file for writing
the process ID as a string.

Do not write the
process ID.

-r directory

Use redundant flat-file persistence; same as
the -u option, except that more than one
instance of the TAO Naming Service server
can be run, each using the same set of disk
files, to achieve a degree of fault tolerance (as
long as directory is accessible to both
servers).

No redundant
Naming Service
server
persistence.

-s context-size
Specify the size of the hash table to allocate
when creating Naming Contexts. 1024

-t listen-time
Specify how many seconds the server should
listen for requests before exiting.

Listen
indefinitely.

o c i w e b . c o m 673

2 2 . 8 N a m i n g S e r v i c e C o m m a n d L i n e O p t i o n s

22.8.1 Using the Naming Service Persistence Options
There are three options that provide persistence of the relationships between
names and object references: -f, -u, and -r. The -f option causes the
Naming Service to use a memory-mapped file as its storage mechanism. This
file is a copy of the internal memory used to store the naming graph. Thus, the
-s option will have some effect on the size of the single file created.

The -u and -r options both use the same flat-file storage scheme. In this
scheme, a separate file is created for each naming context in the naming graph.
All of the data for a single naming context is stored in a single file, including
both object references of bound objects and references to other naming
contexts. These files are plain text and of variable sizes. No special provisions
have been made for internationalization at this time.

The argument provided with both the -u and -r options is the name of the
directory in which the persistence files are to be created. The directory must
already exist. Two text files are initially created in this directory. The first file,
called NameService, stores the name bindings in the root naming context.
The second file, called NameService_global, stores a count of children
naming contexts created from the root naming context. The initial value of this
counter is platform dependent. For every new naming context created, the
counter in NameService_global is incremented by one and a new text file
called NameService_num is created. The value of num is the integer obtained
by decrementing by one the counter stored in NameService_global.

The main difference between the -u and -r persistence options is that the -r
option uses file locking while the -u option does not. The use of file locking

-u directory

Use a flat-file persistence implementation that
stores object reference information in a file
per context. Each context file is placed in the
directory specified.

Do not store
Naming
Contexts and
bindings.

-z time

Specify a request/reply round trip timeout
value that the Naming Service will use when
invoking an operation on a federated naming
context. On timeout, a
CosNaming::NamingContext::CannotPr
oceed exception is raised. The value of time
is expressed in seconds.

A timeout policy
is not used and
an exception is
not raised.

Table 22-4 tao_cosnaming Command Line Options

Option Description Default

674 o c i w e b . c o m

N a m i n g S e r v i c e

allows the files to be accessed safely by more than one Naming Service server
running concurrently, however it has a small impact on performance. The
flat-file persistence implementation (-u) does not acquire file locks.

The same base implementation is used for the flat-file (-u) and redundant (-r)
persistence options. This implementation makes use of a
PortableServer::ServantActivator that activates servants to read the
naming context files only when they are used. This implementation was
required for the redundant case because a naming context may have been
created in one Naming Service server and referenced from another. To make
this work, naming context references are stored as textual names rather than
stringified IORs. Each textual name corresponds to the name of the file that
stores the naming context’s data. The object reference for a naming context is
created dynamically within each Naming Service server when the naming
context is accessed.

.The flat-file storage format consists of a PERSISTENT_HEADER followed by

zero or more PERSISTENT_RECORDs as shown in Figure 22-3. The

Figure 22-3 Persistent Flat-File Format

o c i w e b . c o m 675

2 2 . 8 N a m i n g S e r v i c e C o m m a n d L i n e O p t i o n s

PERSISTENT_HEADER contains information about the context, whereas each
PERSISTENT_RECORD represents a name-to-reference binding. Table 22-5
describes the fields that make up a PERSISTENT_HEADER and a
PERSISTENT_RECORD

The redundant naming service is only fully functional on an HP Tru64 UNIX
cluster, which was the target platform for its implementation. In a Tru64
cluster, multiple nodes share a single IP address; additional facilities within
the cluster route requests to multiple redundant servers without outside
intervention. Since naming context object references contain an IP address,
the use of a single IP address for all the nodes of the cluster allows the naming
context object references to be valid no matter which machine actually
processes the request.

In the redundant naming service, the disk files become the single place where
authoritative information can be found. This requires that each node that is
running an instance of the Naming Service server have access to the same files

Table 22-5 Flat-File Persistence Fields

Field Name Description

SIZE_FIELD
An integer that represents the number of
PERSISTENT_RECORDs in a naming context.

DESTROYED_FIELD A flag set to 1 when the context is destroyed and 0 otherwise.

TYPE_FIELD

An integer that specifies what kind of reference is contained
in the REF_FIELD. A value of 0 specifies that the field
contains a reference to a naming context. A value of 1
specifies that the field contains a reference to a regular
object.

ID_LENGTH An integer that represents the length of the ID_FIELD.

ID_FIELD
A string that represents the id field of a
CosNaming::NameComponent in a binding.

KIND_LENGTH An integer that represents the length of the KIND_FIELD.

KIND_FIELD
A string that represents the kind field of a
CosNaming::NameComponent in a binding.

REF_LENGTH An integer that represents the length of the REF_FIELD.

REF_FIELD

A string that represents the object reference portion of a
binding. If the binding is to a naming context, this field will
be the name of file that stores that naming context’s data. If
the binding is to a regular object, this field will be a
stringified IOR.

676 o c i w e b . c o m

N a m i n g S e r v i c e

and that a locking mechanism must be available to protect files from
simultaneous access. The Tru64 cluster provides these facilities.

Though the redundant Naming Service implementation was targeted for the
Tru64 cluster environment, it can also be used on non-clustered platforms as
long as certain restrictions are carefully observed:

1. There must be a shared location in which to store the flat files, and a file
locking mechanism must be available. The NFS with a locking daemon
satisfies this requirement on UNIX and UNIX-like systems. The SMB and
built-in locking satisfy this requirement for Windows platforms.

2. The client must explicitly select one of the redundant Naming Service
servers to use. Thus, a given client will generally use a single Naming
Service server unless it fails. Then, the client must fail-over to a different
server. The fail-over mechanism is not inherent to the redundant Naming
Service and must be implemented within the client.

3. If a client switches to a different Naming Service server, all Naming
Context object references it is holding will no longer be valid and the
client must start over with the root Naming Context of the new Naming
Service. Clients must be careful to use Naming Context object references
only with the Naming Service server from which they were obtained.

4. CosNaming::BindingIterator object references, such as those
returned from the CosNaming::NamingContext::list() operation,
are not usable with the redundant Naming Service implementation. The
list() operation can still be used, but only bindings in the returned
CosNaming::BindingList are usable.

The performance of the Naming Service is impacted by any use of persistence.
Memory-mapped persistence (the -f option) has the smallest impact; then
non-redundant flat-file persistence (the -u option); redundant flat-file
persistence (the -r option) has the largest impact on performance.

22.8.2 Example using the Naming Service Persistence
Options
In this section, we present a simple example of using the Naming Service
persistence options. We revisit the Naming Service example presented in 22.3.
For this example, we define a new environment variable called
NAMING_DIRECTORY as follows:

NAMING_DIRECTORY=$TAO_ROOT/orbsvcs/DevGuideExamples/NamingService/Messenger
export NAMING_DIRECTORY

o c i w e b . c o m 677

2 2 . 8 N a m i n g S e r v i c e C o m m a n d L i n e O p t i o n s

Start the Naming Service as in 22.3.3.2. Specify either the -u or -r
persistence option, for example:

$ tao_cosnaming -ORBListenEndpoints iiop://tango:2809 -u $NAMING_DIRECTORY

Next, run the MessengerServer and MessengerClient as in 22.3.3.2. You
should find that the following files are created in the directory specified by
$NAMING_DIRECTORY:

NameService NameService_0 NameService_global

The contents the NameService file below indicate that the root context has
not been destroyed and that it contains a single binding. The id field of the
binding is “example” and the binding is for a naming context, the contents of
which are stored in a file named NameService_0.

1
0
0
7
example
0

13
NameService_0

Similarly, the contents of the NameService_0 file below indicate that this
naming context has not been destroyed and contains a single name binding.
The id field of the binding is "Messenger" and the binding is for a regular
object. The stringified object reference is listed as well (it may be different on
your system).

1
0
1
9
Messenger
0

118
IOR:01000001200049444c3a4d655737374a31312e3000000001000000000000007000000001
010200130000006f6369313332392e6f63697765622e6f6d

678 o c i w e b . c o m

N a m i n g S e r v i c e

Since we started the Naming Service using the -ORBListenEndpoints
option described in 17.13.43, if we later need to restart the Naming Service
server, we must restart it on the same endpoint(s) as before.

22.9 Fault Tolerant Naming Service

The Fault Tolerant Naming Service provides a dual redundant scheme for
supporting fault tolerance for the Naming Service. While it supports all of the
same interfaces as the Naming Service, it also supports replication between
two Naming Service processes. This is achieved by exporting a multi-profile
IOR which can be used by clients to access the Fault Tolerant Naming Service
through a single object reference with seamless failover between the Naming
Service processes without client intervention.

Another major feature added to the Fault Tolerant Naming Service is support
for load balancing through the use of a NamingManager interface which
extends the OMG’s PortableGroup::ObjectGroupManager
interface. The NamingManager interface supports the basic creation of
Object Groups and the assignment of a Load Balancing strategy for created
Object Groups. The ObjecGroupManager interface defines operations for
managing the membership of objects in Object Groups, as well as querying
object groups. The Load Balancing functionality for the Fault Tolerant
Naming Service is provided through a combination of binding the Object
Group to a name within the Naming Service and resolving the Object Group
from the Naming Service. An example of this is shown in Figure 22-4.

When a client then resolves a Name that is bound to an Object Group, one of
the Object Group members is returned according to the scheme supported by
the Object Group Load Balancing Strategy.

o c i w e b . c o m 679

2 2 . 9 F a u l t T o l e r a n t N a m i n g S e r v i c e

Figure 22-4An example of Naming Contexts referencing Object Groups
with member instances on different hosts

22.9.1 Command line options
Many of the command line options used for the Fault Tolerant Naming
Service are the same as those for the standard naming service shown in Table
22-4. Options specific to the Fault Tolerant Naming Service are shown in
bold.

Table 22-6 tao_ft_naming Command Line Options

Option Description Default

--primary
The service takes on the role as the
primary service

Service is
neither primary
nor backup.

--backup
The service takes on the role as the backup
service

Service is
neither primary
nor backup.

-b

The address used for memory mapping the
Naming Service state file supplied with the -f
option. The value supplied with this option is
only used when the FT Naming Service runs
in persistent mode, i.e., -f option is present.

Platform
dependent.

-d
Provides Naming Service specific debug
information.

No diagnostics
given.

680 o c i w e b . c o m

N a m i n g S e r v i c e

-f
persistence_file_
name

Specify the name of a file in which to store
the Naming Contexts and bindings so they
can be read if the Naming Service needs to be
restarted. This option is not compatible with
fault tolerant usage.

Do not store
Naming
Contexts and
bindings.

-l <Round |
Random>

Specify a global load balancing policy
overriding any per-object group policy.

Do not set a
global policy.

-m (0|1)

Specify whether the Naming Service should
listen for multicast requests. If -m 0 is used,
the Naming Service does not listen for
multicast requests.

Naming Service
does not listen
for multicast
requests.

-n count
Specify the number of threads to supply to
ORB::run to make a multi threaded naming
server

1, the naming
service will be
single threaded

-c ior-file-name
Specify the name of the output file for
writing the multi-profile IOR of the
Naming Service as a string.

Do not write the
IOR.

-o ior-file-name
Specify the name of the output file for writing
the IOR of the Naming Service as a string.

Do not write the
IOR.

-g ior-file-name
Specify the name of the output file for
writing the multi-profile IOR of the
Naming Manager as a string.

Do not write the
IOR.

-p pid-file-name
Specify the name of the output file for writing
the process ID as a string.

Do not write the
process ID.

-r directory

Specify the directory to use for redundant
flat-file persistence of naming contexts.
This is required if server has role of
primary or backup server.

Naming context
persistence will
not be used.

-v directory
Specify the directory to use for object
group flat-file persistence.

This is
required.

-s context-size
Specify the size of the hash table to allocate
when creating Naming Contexts. 1024

-t listen-time
Specify how many seconds the server should
listen for requests before exiting.

Listen
indefinitely.

Table 22-6 tao_ft_naming Command Line Options

Option Description Default

o c i w e b . c o m 681

2 2 . 9 F a u l t T o l e r a n t N a m i n g S e r v i c e

22.9.2 Persistence
When running as a fault tolerant service, the TAO FT Naming Service persists
the state of naming contexts and object groups to flat files. In this way, if the
process fails it can be restarted with its state restored to what it was before the
failure. Furthermore, backup files are created for persistence files that were
successfully written. If later a corrupt file is created (this could happen, for
example, if the server or host crashed in the middle of writing to the file), this
will be detected during the subsequent reading of the file and the backup will
be used instead.

If the specified persistence directories for naming context data and object
group data do not exist, the server will exit.

If the specified file exists, it is scanned and:

• If a field can not be properly read because the data is corrupt, an attempt
will be made to read from the backup of the file. If the backup file can be
read it will replace the primary file. Because the state of the naming
context or object group reverted to an earlier state, a log message is
generated alerting that the backup is being used.

• If the file is recognized and is ok, the state stored in the file becomes the
current state of the Naming Service.

22.9.3 Starting the FT Naming Service
In order to achieve the fault tolerance characteristics of the Fault Tolerant
Naming Service you must start a primary Naming Server and a backup
Naming Server and provide it with a common location in which the two
servers can share their replicated state for Naming Contexts and Object
Groups. To establish the dual redundant pairing between the primary in the

-z time

Specify a request/reply round trip timeout
value that the Naming Service will use when
invoking an operation on a federated naming
context. On timeout, a
CosNaming::NamingContext::CannotPr
oceed exception is raised. The value of time
is expressed in seconds.

A timeout policy
is not used and
an exception is
not raised.

Table 22-6 tao_ft_naming Command Line Options

Option Description Default

682 o c i w e b . c o m

N a m i n g S e r v i c e

backup they must be started one after the other. You can then start your
application servers and create the object groups. The final step is to supply the
multi-profile IOR to the clients so they will use the Fault Tolerant Naming
Servers seamlessly.

1) Start the primary Naming Service process. It will use the
name_service_persistence_dir to store the shared state
information for the replicated naming service processes. We assume this
directory will be an NFS mounted location that will be shared between the
primary and the backup process. The primary will write
ns_replica_primary.ior to the directory identified in the
name_service_persistence_dir which is also where all of the
persistent state will be shared by the primary and backup servers. It will also
use object_group_persistence_dir to persist the state of the object
groups. This directory does not need to be the same as the
name_service_persistence_dir.

$ $TAO_ROOT/orbsvcs/Naming_Service/tao_ft_naming \
 --primary \
 -r <name_service_persistence_dir> \
 -v <object_group_persistence_dir>

2) Start the backup Naming Service process. It must be started after the
primary has started. It reads the primary ior (ns_replica_primary.ior) from the
persistence directory to bootstrap communications with the primary. When
this file is available, the backup can be started as described below. This
process will write the multi-profile ior for the NameService to
naming_ior_filename. The fault tolerant naming service will be
available when the backup has started and has exported the
naming_ior_filename. This process will also write out the
NamingManager ior file to naming_manager_ior_filename and
this object reference provides an interface for creating and managing object
groups in support of load balancing.

$ $TAO_ROOT/orbsvcs/Naming_Service/tao_ft_naming \
 --backup \
 -r <name_service_persistence_dir> \
 -v <object_group_persistence_dir> \
 -c <naming_ior_filename> \
 -g <naming_manager_ior_filename>

If either the primary of the backup processes fail separately, they can be
restarted using the same arguments they were started with previously. This

o c i w e b . c o m 683

2 2 . 9 F a u l t T o l e r a n t N a m i n g S e r v i c e

will cause them to contact their peer replica and restore the replicated naming
service relationship. The multi-profile iors which provide the automatic
failover between primary and backup are persistent/user IORs and will not
change even if the primary or backup are shutdown and restarted. One of these
two servers must be running at all times to ensure access to the bound objects
in the namespace.

In a case where both the primary and backup are shut down, then either the
backup or primary may be restarted independently, reusing the same naming
and object group persistent state and IORs which are set up as part of the
initial startup process. If you intend to start up the primary or backup on a
different host or port, then you will need to use the restart process as described
above (by starting the primary first). If there is no change in the primary or
backup, the then the IORs can continue to be used by any of the existing
tao_ft_naming clients. Additionally, if you wish to clear the bound names
and object groups persisted by the FT Naming Service, you must clean out the
naming service and object group persistent directories that are passed to
tao_ft_naming using the -u and -v options respectively.

Under very heavy loads of 100s to 1000s of resolve requests per second, the
time required to locate the load balancing strategy bound to a specific group
becomes a substantial part of the request processing. In order to alleviate that
overhead, a global load balancing strategy may be specified, overriding the
policy supplied for individual object groups. Use the tao_ft_naming
command line option -l with argument round to select round-robin load
balancing or random to select random load balancing.

22.9.4 Start Client/Server
Start a client or server, providing it with the NameService ior written out to
the filename provided by the backup naming service process using the
argument -c naming_ior_filename. The client or server will use the
load balancing feature of the naming service invisibly, with the naming
service using the load balancing policy (either round-robin or random) to load
balancing between all of the services which are added as members to the
group inserted in the object group.

$ server -ORBInitRef NameService=file://<naming_ior_filename> \
 -o <server_a_ior_file>

$ server -ORBInitRef NameService=file://<naming_ior_filename> \

684 o c i w e b . c o m

N a m i n g S e r v i c e

 -o <server_b_ior_file>

22.9.5 Creating and Managing Object Groups
The tao_nsgroup command line utility discussed in detail in 22.9.7 can be
used to manage the object groups. A few examples are shown below.

Note You do not have to use the command line to manage object groups. The
operations can be performed programmatically as well using the
FT_Naming::NamingManager interface defined in the
FT_NamingManager.idl file in $TAO_ROOT/orbsvcs/orbsvcs.

Create an object group for servers to be load balanced:

$ $TAO_ROOT/utils/nsgroup/tao_nsgroup
 -ORBInitRef NameService=file://<naming_ior_filename> \
 -ORBInitRef NamingManager=file://<naming_manager_ior_filename> \
 group_create -group <server_group> \
 -policy round

Add members to the group:

$ $ACE_ROOT/bin/tao_nsgroup
 -ORBInitRef NameService=file://<naming_ior_filename> \
 -ORBInitRef NamingManager=file://<naming_manager_ior_filename> \
 member_add -group <server_group> \
 -location <server_a_loc> \
 -ior file://<server_a_ior_file>

$ $ACE_ROOT/bin/tao_nsgroup
 -ORBInitRef NameService=file://<naming_ior_filename> \
 -ORBInitRef NamingManager=file://<naming_manager_ior_filename> \
 member_add -group <server_group> \
 -location <server_b_loc> \
 -ior file://<server_b_ior_file>

Bind the group in the naming service:

$ $ACE_ROOT/bin/tao_nsgroup \
 -ORBInitRef NameService=file://<naming_ior_filename> \
 -ORBInitRef NamingManager=file://<naming_manager_ior_filename> \
 group_bind -group <server_group> \
 -name <compound_name>

o c i w e b . c o m 685

2 2 . 9 F a u l t T o l e r a n t N a m i n g S e r v i c e

Note It is assumed that the Fault Tolerant Naming Service processes will be
monitored and restarted if they fail in order to continue to provide a
dual-redundant pair following the intentional or unplanned loss of one of the
naming servers.

22.9.6 Limitations
The Fault Tolerant Naming Service does not provide support for
BindingIterators. With the use of redundancy between a pair of naming
servers, there is no way to guarantee that the context structure being iterated
on would remain consistent, so the user must ensure that when invoking the
list operation that a how_many value must be provided that is sufficiently
large to hold all returned bindings in a BindingList with no
BindingIterator being needed. If the how_many parameter is
insufficiently large, the FT Naming Service will throw a
CORBA::NO_IMPLEMENT exception.

Similar to the CosNaming Service, this implementation of the Naming Service
does not include any form of 'garbage collection' for orphaned naming
contexts. It is solely the responsibility of clients to clean up after themselves
and not leak server resources. All the resources, including orphaned contexts,
are released during the Naming Server shutdown.

22.9.7 Group Management Utility
A separate utility, tao_nsgroup, is provided which supports a command
line interface for managing the object groups within the Fault Tolerant
Naming Service. It accesses the tao_ft_naming service through the
NameService and NamingManager interfaces.

686 o c i w e b . c o m

N a m i n g S e r v i c e

Below is a summary of the commands and options. Further details and
examples follow.

Table 22-7 tao_ns_group command line options

Command Option Description

group_create

-group
group_name The name of the object group to add.

-policy
policy_type

The load balancing policy to apply for this
group. This may be round for round-robin
or random for random.

group_remove -group
group_name The name of the group to remove.

group_bind

-group
group_name

The object group to bind to a name in the
naming service.

-name name
The stringified name in the naming service
to bind to a object group.

group_unbind -name name
The stringified name in the naming service
to unbind.

group_list Lists the object groups available.

member_add

-group
group_name The object group to add a member to.

-location
location

An arbitrary string to identify this member
within the group.

-ior IOR The unique IOR of the member.

member_remove

-group
group_name

The object group of the member to
removed.

-location
location The identifier for the member.

member_show

-group
group_name The object group of the member to show.

-location
location The identifier for the member.

member_list -group
group_name The object group of the members to list.

o c i w e b . c o m 687

2 2 . 9 F a u l t T o l e r a n t N a m i n g S e r v i c e

Note The load balancing policy may be round-robin or random. The policy type is
required when creating groups, even though it may be overridden by the
tao_ft_naming command line selection of a global policy.

22.9.7.1 group_create

This adds the object group to the load balancing naming manager service with
the specified selection policy. On creation, an object group contains no
member objects. Returns an error if group_name is not unique.

Example:

$ $ACE_ROOT/bin/tao_nsgroup group_create -group ieee -policy round \
 -ORBInitRef NameService=file://ns.ior \
 -ORBInitRef NamingManager=file://nm.ior

22.9.7.2 group_remove

Removes the specified object group from the load balancing naming manager
service.

Example:

$ $ACE_ROOT/bin/tao_nsgroup group_remove -group ieee \
 -ORBInitRef NameService=file://ns.ior \
 -ORBInitRefNamingManager=file://nm.ior

Note If the object group is bound with group_bind, you must first unbind it with
group_unbind.

help List the commands/options available.

Table 22-7 tao_ns_group command line options

Command Option Description

688 o c i w e b . c o m

N a m i n g S e r v i c e

22.9.7.3 group_bind

Binds the specified object group to the specified stringified name in the
naming service. When clients resolve that name, they transparently obtain a
member of the specified object group from the load balancing naming
manager service.

Example:

$ $ACE_ROOT/bin/tao_nsgroup group_bind -group ieee -name iso/ieee \
 -ORBInitRef NameService=file://ns.ior \
 -ORBInitRef NamingManager=file://nm.ior

Note The iso context used in this example must be created before calling
group_bind.

22.9.7.4 group_unbind

Unbinds the specified stringified name from the naming service, but does not
remove the object group.

Example:

$ $ACE_ROOT/bin/tao_nsgroup group_unbind -name iso/ieee \
 -ORBInitRef NameService=file://ns.ior \
 -ORBInitRef NamingManager=file://nm.ior

22.9.7.5 group_list

Displays all object groups that currently exist in the load balancing naming
manager service by load balancing policy.

Example:

% $ACE_ROOT/bin/tao_nsgroup group_list \
 -ORBInitRef NameService=file://ns.ior \
 -ORBInitRef NamingManager=file://nm.ior

Round Robin Load Balancing Groups:

ieee

o c i w e b . c o m 689

2 2 . 9 F a u l t T o l e r a n t N a m i n g S e r v i c e

22.9.7.6 member_add

Adds an member object to the specified object group. After being added, the
member object is available for selection. Returns error if the ior is not unique
for the specified object group.

Example:

% $ACE_ROOT/bin/tao_nsgroup member_add -group ieee -location local \
 -ior file://mo.ior \
 -ORBInitRef NameService=file://ns.ior \
 -ORBInitRef NamingManager=file://nm.ior

22.9.7.7 member_remove

Removes the specified member object location from the specified object
group.

Example:

$ $ACE_ROOT/bin/tao_nsgroup member_remove -group ieee -location local \
 -ORBInitRef NameService=file://ns.ior \
 -ORBInitRef NamingManager=file://nm.ior

22.9.7.8 member_list

Lists the member locations of the specified object group.

Example:

$ $ACE_ROOT/bin/tao_nsgroup member_list -group ieee \
 -ORBInitRef NameService=file://ns.ior -ORBInitRef
NamingManager=file://nm.ior

local

22.9.7.9 member_show

Displays the object reference that corresponds to the specified member
location of an object group.

Example:

% $ACE_ROOT/bin/tao_nsgroup member_show -group ieee -location local \

690 o c i w e b . c o m

N a m i n g S e r v i c e

 -ORBInitRef NameService=file://ns.ior -ORBInitRef
NamingManager=file://nm.ior

IOR:010000002100000049444c3a6f6d672e6f72672f46542f4e616d696e674d616e61676572
3a312e300000000001000000000000006c000000010102000e00000031302e3230312e323030
2e363400e1841b00000014010f005253541571a65076c60a0000000000010000000100000000
02000000000000000800000001000000004f4154010000001800000001000000010001000100
0000010001050901010000000000

22.9.7.10 Troubleshooting

Q1. Why do I get an error Message “Invalid persistence directory” or “Invalid
object group persistence directory”?

A1. On starting, the error message “Invalid persistence directory” indicates
that the supplied value for the -r option does not point to a directory that can
be used to store the state of the naming contexts or object groups. Make sure
that the provided directories exist and that they are write enabled.

22.10 Using the NT Naming Service

The name is a little archaic, but the TAO CosNaming service has hooks that
allow it to be registered with the Windows Service Manager, allowing it to be
started automatically on system startup. The NT Naming Service is built using
a project that is separate from the CosNaming project although when using
MPC, is generally included in the same solution. Building the NT Naming
Service yields an executable that serves as a simple command line interface
for installing and configuring the service as well as providing the necessary
entry point required by the Windows Service Manager.

The executable for the command line interface is tao_nt_cosnaming and it
takes a variety of options as shown in Table 22-8 to manipulate the service.

Note The commands that change state, such as inserting the service or setting
runtime configuration must be run as Administrator. The easiest way to achive
that is to run a command window (cmd.exe) using the “run as Administrator”
menu option.

o c i w e b . c o m 691

2 2 . 1 0 U s i n g t h e N T N a m i n g S e r v i c e

Continuing on...

Table 22-8 tao_nt_cosnaming command line options

option description
-c args

-i n

-k

-r

-s

-t n

692 o c i w e b . c o m

N a m i n g S e r v i c e

o c i w e b . c o m 693

CHAPTER 23

Event Service

23.1 Introduction

The OMG Event Service version 1.2 specification (OMG Document
formal/04-10-02) defines a service for decoupling the suppliers of events from
consumers of those events. This decoupled approach provides a much more
appropriate communication model for many applications than the typical
request/reply semantics of CORBA object operation invocations. The Event
Service defines basic interfaces for suppliers and consumers of events and
defines the concept of an event channel to provide for decoupling consumers
from suppliers and propagating events.

This chapter discusses TAO's support for the Event Service as well as how to
use, extend, and embed the Event Service in your applications. TAO also
defines two extensions to the Event Service. The Real-Time Event Service
(see Chapter 24) extends the OMG’s specification for applications with
stringent Quality of Service requirements. The OMG Notification Service (see
Chapter 25) is a more recent specification than the Event Service, and extends
the basic Event Service functionality with features such as event filtering,
structured event types, and Quality of Service properties.

694 o c i w e b . c o m

E v e n t S e r v i c e

23.2 Overview of the Event Service

The Event Service is based on a publish and subscribe paradigm, where
suppliers publish events and consumers receive events for which they have
subscribed. An event channel provides a mechanism that decouples suppliers
from consumers. A supplier publishes events via the event channel, and a
consumer subscribes to them through the event channel. Suppliers are not
directly aware of the presence of consumers (nor other suppliers). Similarly,
consumers are not directly aware of the presence of suppliers (nor other
consumers).

Figure 23-1 shows the relationships among suppliers, consumers, and an event
channel, and illustrates typical usage of an event channel to distribute events.

The Event Service specification supports push and pull style event distribution
models. In the push model, suppliers push events to the event channel, and the
event channel pushes them to all subscribed consumers. In the pull model,
consumers pull events from the event channel, and the event channel pulls
events from suppliers. The Event Service specification makes it possible to
mix the push and pull models in different combinations, even within the same
event channel.

The Event Service specification defines two different varieties of event
channels, typed and untyped. Untyped event channels use a CORBA::Any type
to represent events. This allows suppliers to supply arbitrary event types.

Figure 23-1 Typical Event Channel Usage

o c i w e b . c o m 695

2 3 . 3 T A O ’ s E v e n t C h a n n e l I m p l e m e n t a t i o n

Typed event channels use application-defined IDL to define the event
communications and constrain the data types passed.

See Chapter 20 of Advanced CORBA Programming with C++ for an in-depth
discussion of the Event Service and the different distribution models.

23.3 TAO’s Event Channel Implementation

TAO provides support for untyped event channels via the
CosEventChannelAdmin::EventChannel interface. This implementation
supports untyped events using CORBA::Any parameters with both the push
and pull models of event delivery. See 23.4.1 for an example that uses an
untyped event channel.

TAO also provides partial support for typed event channels via the
CosTypedEventChannelAdmin::TypedEventChannel interface. This
implementation supports typed event delivery using a push model. The pull
model is not currently supported for typed event channels. See 23.4.4 for an
example that uses a typed event channel.

TAO does not support the Lightweight Event Service described in Chapter 3
of the Event Service specification.

The tao_cosevent server can be used to start both typed and untyped event
channels (see 23.5 for details). Developers can directly create or derive their
own untyped event channels using the TAO_CEC_EventChannel servant
class (see 23.4.2).

23.4 How to Use the Event Service

The examples in this chapter restrict themselves to the basic capabilities and
interfaces of the Event Service. TAO-specific steps are noted as such. Because
these examples use the Naming Service to locate the event channel, ensure
that it is running as described in Chapter 22.

23.4.1 A Basic Example
This example shows how to create an event channel, connect suppliers and
consumers to it, supply events to it, and consume events from it. It uses push
suppliers and consumers. Full source code for this example is in the TAO

696 o c i w e b . c o m

E v e n t S e r v i c e

source code distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/EventServices/OMG_Basic.

23.4.1.1 Starting the tao_cosevent Server
The tao_cosevent server that is delivered with TAO can be used with this
example. This server creates a single event channel object and binds it in the
root naming context of the Naming Service. By default, the event channel is
bound to the name “CosEventService.” The options that can be passed to
this server are described in 23.5 and 23.6. A typical invocation of the server is:

$TAO_ROOT/orbsvcs/CosEvent_Service/tao_cosevent

This assumes that we are using either multicast discovery or the
NameServiceIOR environment variable to locate the Naming Service.

23.4.1.2 Creating and Initializing a Supplier and Pushing Events
To implement a supplier, insert the following #include directives in your
source code (in EchoEventSupplierMain.cpp):

#include <orbsvcs/CosEventCommC.h>
#include <orbsvcs/CosEventChannelAdminC.h>
#include <orbsvcs/CosNamingC.h>
#include <iostream>

The supplier must first initialize the ORB, then connect to the event channel.
Since the event channel object is now bound in the Naming Service, we need
to get the root naming context and use the resolve_str() operation to
obtain a proxy for the event channel.

int main (int argc, char* argv[])
{
 try
 {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Find the Naming Service.
 CORBA::Object_var obj = orb->resolve_initial_references("NameService");
 CosNaming::NamingContextExt_var root_context =
 CosNaming::NamingContextExt::_narrow(obj.in());

 // Find the EventChannel.

o c i w e b . c o m 697

2 3 . 4 H o w t o U s e t h e E v e n t S e r v i c e

 obj = root_context->resolve_str("CosEventService");

 // Narrow the object reference to an EventChannel reference.
 CosEventChannelAdmin::EventChannel_var echoEC =
 CosEventChannelAdmin::EventChannel::_narrow(obj.in());
 if (CORBA::is_nil(echoEC.in())) {
 std::cerr << "Could not resolve EchoEventChannel." << std::endl;
 return 1;
 }

Once the event channel is located, it is used to obtain a proxy to a push
consumer. The proxy push consumer is then used to connect to the event
channel.

 // Get a SupplierAdmin object from the EventChannel.
 CosEventChannelAdmin::SupplierAdmin_var supplierAdmin =
 echoEC->for_suppliers();

 // Get a ProxyPushConsumer from the SupplierAdmin.
 CosEventChannelAdmin::ProxyPushConsumer_var consumer =
 supplierAdmin->obtain_push_consumer();

 // Connect to the ProxyPushConsumer as a PushSupplier
 // (passing a nil PushSupplier object reference to it because
 // we don't care to be notified about disconnects).
 consumer->connect_push_supplier(CosEventComm::PushSupplier::_nil());

The connect_push_supplier() operation takes a reference to a push
supplier as a parameter. The only operation defined on the push supplier
interface is disconnect_push_supplier(). It is called when the supplier
is disconnected from the event channel. Passing a null object reference, as
shown above, means the event channel does not need to notify this supplier
upon disconnection. For our simple example, we do not need to implement the
PushSupplier interface. We show how this could be done in 23.4.1.3.

We are now ready to create and publish events using the consumer proxy’s
push() operation.

 // Create an event (just a string in this case).
 CORBA::String_var eventData = CORBA::string_dup("Hello, world.");

 // Insert the event data into an any.
 CORBA::Any any;
 any <<= eventData;

 // Now push the event to the consumer

698 o c i w e b . c o m

E v e n t S e r v i c e

 consumer->push(any);
 }
 catch (...){
 return 1;
 }
}

Our example passes a simple string as the event data. However, since the
event is passed as a CORBA::Any, virtually any IDL type (including user-
defined types) can be used as event types.

23.4.1.3 Implementing the Push Supplier Interface
In our simple example, we have chosen to make the supplier a pure client of
the CosEvent service. However, we could also implement the
CosEventComm::PushSupplier interface to allow our supplier to receive
disconnect_push_supplier() callbacks from the CosEvent service. In
practice, suppliers are rarely pure clients; they are often middle-tier processes
that receive data directly from one or more “raw” data sources and publish the
data as events for further processing or display by downstream consumers.

Here is an example PushSupplier implementation class definition:

#include <orbsvcs/CosEventCommS.h> // for POA_CosEventComm::PushSupplier

class EchoEventSupplier_i : public virtual POA_CosEventComm::PushSupplier
{
 public:
 // Constructor
 EchoEventSupplier_i(CORBA::ORB_ptr orb);

 // Override operations from PushSupplier interface.
 virtual void disconnect_push_supplier();

 private:
 CORBA::ORB_var orb_;
};

Here are the implementations of the constructor and the
disconnect_push_supplier() operation:

// Constructor duplicates the ORB reference.
EchoEventSupplier_i::EchoEventSupplier_i(CORBA::ORB_ptr orb)
 : orb_(CORBA::ORB::_duplicate(orb))
{ }

o c i w e b . c o m 699

2 3 . 4 H o w t o U s e t h e E v e n t S e r v i c e

// Override the disconnect_push_supplier() operation.
void EchoEventSupplier_i::disconnect_push_supplier()
{
 // Deactivate this object.
 CORBA::Object_var obj = orb_->resolve_initial_references("POACurrent");
 PortableServer::Current_var current =
 PortableServer::Current::_narrow(obj.in());
 PortableServer::POA_var poa = current->get_POA();
 PortableServer::ObjectId_var objectId = current->get_object_id();
 poa->deactivate_object(objectId.in());
}

23.4.1.4 Implementing the Push Consumer Interface
To create a consumer, the CosEventComm::PushConsumer interface must
be implemented. The PushConsumer interface defines two operations,
push() and disconnect_push_consumer(), that you must implement.
Here is an example PushConsumer implementation (from
EchoEventConsumer_i.h) class definition:

#include <orbsvcs/CosEventCommS.h> // for POA_CosEventComm::PushConsumer

class EchoEventConsumer_i : public virtual POA_CosEventComm::PushConsumer
{
 public:
 // Constructor
 EchoEventConsumer_i(CORBA::ORB_ptr orb);

 // Override operations from PushConsumer interface.
 virtual void push(const CORBA::Any& data);

 virtual void disconnect_push_consumer();

 private:
 CORBA::ORB_var orb_;
};

Here are the implementations of the constructor, the push() operation and the
disconnect_push_consumer() operation (from
EchoEventConsumer_i.cpp):

// Constructor duplicates the ORB reference.
EchoEventConsumer_i::EchoEventConsumer_i(CORBA::ORB_ptr orb)
 : orb_(CORBA::ORB::_duplicate(orb))
{ }

// Override the push() operation.

700 o c i w e b . c o m

E v e n t S e r v i c e

void EchoEventConsumer_i::push(
 const CORBA::Any& data)
{
 // Extract event data from the Any.
 const char* eventData;
 if (data >>= eventData) {
 std::cout << "EchoEventConsumer_i::push(): Received event: "
 << eventData << std::endl;
 }
}

// Override the disconnect_push_consumer() operation.
void EchoEventConsumer_i::disconnect_push_consumer()
{
 // Deactivate this object.
 CORBA::Object_var obj = orb_->resolve_initial_references("POACurrent");
 PortableServer::Current_var current =
 PortableServer::Current::_narrow(obj.in());
 PortableServer::POA_var poa = current->get_POA();
 PortableServer::ObjectId_var objectId = current->get_object_id();
 poa->deactivate_object(objectId.in());
}

23.4.1.5 Creating the Consumer and Connecting to the Channel
To receive events, the application must now create a consumer object, connect
to the event channel, and enter the event loop. Locating the event channel is
exactly the same as on the supplier side (see
EchoEventSupplierMain.cpp):

int main (int argc, char* argv[])
{
 try
 {
 // Initialize the ORB.
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Find the Naming Service.
 CORBA::Object_var obj = orb->resolve_initial_references("NameService");
 CosNaming::NamingContextExt_var root_context =
 CosNaming::NamingContextExt::_narrow(obj.in());

 // Find the EchoEventChannel.
 obj = root_context->resolve_str("CosEventService");

 // Narrow the object reference to an EventChannel reference.
 CosEventChannelAdmin::EventChannel_var echoEC =
 CosEventChannelAdmin::EventChannel::_narrow(obj.in());
 if (CORBA::is_nil(echoEC.in())) {

o c i w e b . c o m 701

2 3 . 4 H o w t o U s e t h e E v e n t S e r v i c e

 std::cerr << "Could not narrow EchoEventChannel." << std::endl;
 return 1;
 }
 std::cout << "Found the EchoEventChannel." << std::endl;

Next, we create a consumer to receive the events:

 // Instantiate an EchoEventConsumer_i servant.
 PortableServer::Servant_var<EchoEventConsumer_i> servant =
 new EchoEventConsumer_i(orb.in());

 // Register it with the RootPOA.
 obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj.in());
 PortableServer::ObjectId_var oid = poa->activate_object(servant.in());
 CORBA::Object_var consumer_obj = poa->id_to_reference(oid.in());
 CosEventComm::PushConsumer_var consumer =
 CosEventComm::PushConsumer::_narrow(consumer_obj.in());

Now we obtain a ProxyPushSupplier and connect the consumer to the
event channel:

 // Get a ConsumerAdmin object from the EventChannel.
 CosEventChannelAdmin::ConsumerAdmin_var consumerAdmin =
 echoEC->for_consumers();

 // Get a ProxyPushSupplier from the ConsumerAdmin.
 CosEventChannelAdmin::ProxyPushSupplier_var supplier =
 consumerAdmin->obtain_push_supplier();

 // Connect to the ProxyPushSupplier, passing your PushConsumer object
 // reference to it.
 supplier->connect_push_consumer(consumer.in());

After activating the POA and starting the event loop, the consumer is now
ready to receive events.

 // Activate the POA via its POAManager
 PortableServer::POAManager_var poa_manager = poa->the_POAManager();
 poa_manager->activate();
 std::cout << "Ready to receive events..." << std::endl;

 // Enter the ORB event loop.
 orb->run();
 orb->destroy();
 }
 catch (CORBA::Exception& ex) {

702 o c i w e b . c o m

E v e n t S e r v i c e

 std::cerr << "Caught a CORBA exception: " << ex << std::endl;
 return 1;
 }
}

The push() operation of the consumer is now invoked each time a supplier
pushes an event onto this event channel.

23.4.2 Creating and Configuring Event Channel Servants
In the OMG’s Event Service specification, event channel management is left
up to the application. This means that applications must use
implementation-specific ways of creating event channels.

Note The Notification Service specification defines an Event Channel Factory
interface for creating and managing event channels. Since the Notification
Service event channels are an extension of those in the Event Service, client
code based on the Event Service specification can use channels created with
TAO’s Notification Service. See Chapter 25 for details of TAO’s Notification
Service.

The tao_cosevent server provides a simple and convenient way to create
event channels and a means for suppliers and consumers to find and connect to
these channels (via the Naming Service). This approach is sufficient for
simple examples like the one above. However, you may want to create and
manage your own event channel servants in application processes to:

• Implement multiple event channels in one process.

• Collocate the event channel with a supplier or consumer.

• Provide a different mechanism (other than simple names in the root
naming context) for locating event channels.

• Easily and efficiently control the creation and destruction of event
channels.

• Federate your event channel with other event channels.

• Customize the behavior of the event channel.

To create and manage an event channel servant that is based on the
implementation, use the TAO_CEC_EventChannel class. You can either
directly instantiate one of these objects or derive your own subclass and

o c i w e b . c o m 703

2 3 . 4 H o w t o U s e t h e E v e n t S e r v i c e

specialize its behavior. The following example shows a supplier process that
uses the TAO_CEC_EventChannel class to create its own local event channel.

23.4.2.1 Supplier/EC Collocation Example
Most of the code for this example is the same as in the previous example. Here
we show only those sections of code that differ. Full source code for this
example is in the TAO source code distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/EventServices/OMG_Supp
lierSideEC.

Any process containing event channel servants must make the following call
before calling CORBA::ORB_init():

 // Initialize the CEC Factory so we can customize the CEC
 TAO_CEC_Default_Factory::init_svcs ();

This code initializes the factory that the servant uses to configure itself (see
23.6 for details). Because this configuration happens via the service
configurator, the factory must be initialized before the service configurator is
initialized (which occurs during the ORB_init() call).

The remaining changes replace the code in the supplier that resolves the event
channel from the Naming Service and narrows its object reference.

 // Get the RootPOA
 CORBA::Object_var poa_object = orb->resolve_initial_references("RootPOA");

 PortableServer::POA_var poa =
 PortableServer::POA::_narrow (poa_object.in ());
 PortableServer::POAManager_var poa_manager = poa->the_POAManager ();
 poa_manager->activate ();

 // Create and activate the event channel servant
 TAO_CEC_EventChannel_Attributes attr(poa.in(), poa.in());
 PortableServer::Servant_var<TAO_CEC_EventChannel> ec =
 new TAO_CEC_EventChannel(attr);
 ec->activate();
 PortableServer::ObjectId_var oid = poa->activate_object(ec.in());
 CORBA::Object_var ec_obj = poa->id_to_reference(oid.in());
 CosEventChannelAdmin::EventChannel_var echoEC =
 CosEventChannelAdmin::EventChannel::_narrow(ec_obj.in());

 // Bind the EventChannel in the Naming Service.
 CosNaming::Name_var name = root_context->to_name("CosEventService");
 root_context->rebind(name.in(), echoEC.in());

704 o c i w e b . c o m

E v e n t S e r v i c e

The first block of code locates the root POA and activates it via the POA
manager. This is required because the supplier process must now become a
CORBA server.

Next, the event channel servant is constructed, initialized, and activated. The
TAO_CEC_EventChannel_Attributes class is used to initialize the event
channel. The code in this example simply tells the event channel to use the
root POA when activating new CORBA objects. In 23.4.2.2 we describe in
more detail the usage of the TAO_CEC_EventChannel_Attributes class.

Lastly, the event channel is bound to a name in the Naming Service so that
consumers can locate it.

Overall, this example executes in the same way as the previous one, with the
exception that it is slightly more efficient because of the collocation of the
event channel and supplier. An additional advantage is that an alternative
mechanism for advertising the existence and location of the event channel can
be used (e.g., writing the IOR as a string to a file, or advertising it via the
Trading Service).

23.4.2.2 Setting Attributes of the Event Channel
The event channel has a number of attributes that are set via the
TAO_CEC_EventChannel_Attributes object that is passed to the
constructor of the event channel. Table 23-1 provides a summary of the
attributes that can be set:

Table 23-1 Event Channel Attributes

Name Type Default Description

supplier_poa PortableServer::
POA_ptr None

POA used by supplier admin and
supplier proxies. This is typically
the same POA the EC uses.

consumer_poa PortableServer::
POA_ptr None

POA used by consumer admin and
consumer proxies. This is typically
the same POA the EC uses.

consumer_reconnect int 0 Enables consumer reconnections
when non-zero.

supplier_reconnect int 0 Enables supplier reconnections
when non-zero.

o c i w e b . c o m 705

2 3 . 4 H o w t o U s e t h e E v e n t S e r v i c e

In the previous example, the only attributes set are the supplier and consumer
POAs. These are set via the EventChannel_Attributes constructor as
follows:

 TAO_CEC_EventChannel_Attributes attributes (poa.in (), // Supplier POA
 poa.in ()); // Consumer POA
 TAO_CEC_EventChannel* ec = new TAO_CEC_EventChannel(attributes);

The event channel uses the supplier POA to activate SupplierAdmin,
ProxyPushSupplier, and ProxyPullSupplier servants, and the
consumer POA to activate ConsumerAdmin, ProxyPushConsumer, and
ProxyPullConsumer servants. In our case, we pass the same POA object
reference for use as both the supplier POA and the consumer POA.

All other attributes of the event channel are set using public data members of
the TAO_CEC_EventChannel_Attributes class. For example:

 TAO_CEC_EventChannel_Attributes attributes (poa.in (), poa.in ());
 attributes.disconnect_callbacks = 1;
 TAO_CEC_EventChannel* ec_impl = new TAO_CEC_EventChannel(attributes);

The disconnect_callbacks attribute controls whether the consumer and
supplier disconnect callbacks are called when the corresponding disconnect
operation is called on the proxy object. For example, if this attribute is set to
true, then when a consumer calls disconnect_push_supplier() on its
proxy, the event channel invokes disconnect_push_consumer() on the
consumer. Similar behaviors exist for pull suppliers as well as both types of
consumers. It is a matter of debate as to whether the Event Service
specification requires these callbacks to be made. These callbacks are always
called when the event channel initiates the disconnection.

The supplier_reconnect and consumer_reconnect attributes allow
suppliers and consumers to call the operations connect_push_supplier()
and connect_push_consumer() multiple times without disconnecting.

disconnect_callbacks int 0

If not zero, the event channel sends
disconnect callbacks when a
disconnect operation is called on a
proxy.

Table 23-1 Event Channel Attributes

Name Type Default Description

706 o c i w e b . c o m

E v e n t S e r v i c e

This allows you to more efficiently replace the supplier or consumer object
passed to the event channel.

The default values for these attributes are defined as preprocessor macros in
the $TAO_ROOT/orbsvcs/orbsvcs/CosEvent/CEC_Defaults.h. You
can use your own project-specific defaults by setting these macros in your
config.h file and recompiling the event service.

23.4.3 Pull Model Support
The Event Service Specification gives a great deal of latitude in the terms of
how an implementation supports the pull model. This section describes the
details of TAO’s implementation of the pull model.

When pull suppliers are connected, the event channel periodically attempts to
pull events from each pull supplier. The default period between attempted
pulls is 5 seconds. This value can be modified via a service configurator
option, see 23.6.1.5 for details.

Pushed and pulled events are immediately delivered to all push consumers and
are queued for delivery to pull consumers. The event channel maintains a
separate event queue for each pull consumer. When pull consumers attempt to
pull events, the oldest event is removed from its queue and returned. If the
queue is empty, then the call blocks until an event is available.

Note TAO’s implementation of the CosEvent service’s pull model works reliably
only when the service is using the thread-per-connection concurrency
model. See 19.3.5 for more information on how to configure this behavior.

23.4.4 Typed Event Channel Example
This example shows how a typed event channel can be used with push
consumers and suppliers. We utilize a modified version of the Messenger
interface that is used throughout this book. Full source code for this example
is in the TAO source code distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/EventServices/OMG_TypedEC.

23.4.4.1 The Messenger Interface
In order to use a typed event channel, your application must define an IDL
interface that constrains the event data that is passed through the EC. This is a

o c i w e b . c o m 707

2 3 . 4 H o w t o U s e t h e E v e n t S e r v i c e

normal IDL interface but with certain restrictions on the operations it contains.
The operations contained in the interface must not have return values and can
only contain in parameters. These are effectively the same restrictions as
those placed on oneway operations (although operations on the typed EC
interface can be oneway or synchronous).

Here is the Messenger interface with the modifications necessary to allow its
usage with a typed event channel.

interface Messenger {
 void send_message(in string user_name,
 in string subject,
 in string message);
};

23.4.4.2 Creating the Typed Event Channel
TAO’s typed event channel implementation utilizes the Interface Repository
to allow it to take a single invocation on our application interface from a
particular supplier and propagate it to multiple consumers. Therefore, we need
to start the Interface Repository server and load the interface description of
our Messenger interface into it before creating and using the typed event
channel. We use the following commands to start and populate the Interface
Repository:

export InterfaceRepositoryIOR=file://ifr.ior
$TAO_ROOT/orbsvcs/IFR_Service/tao_ifr_service -o ifr.ior &
$ACE_ROOT/bin/tao_ifr Messenger.idl

For more information about TAO’s Interface Repository see Chapter 26. Now,
using the tao_cosevent server, we can create the typed event channel.

$TAO_ROOT/orbsvcs/CosEvent_Service/tao_cosevent -t &

Just as in the previous examples, this stores the event channel object reference
in the naming service with the only difference being the -t option which means
that the event channel now implements the
CosTypedEventChannelAdmin::TypedEventChannel interface.

708 o c i w e b . c o m

E v e n t S e r v i c e

23.4.4.3 Implementing the Typed Supplier
Most of the supplier code remains very similar to the untyped supplier we saw
previously. The main differences are the use of the corresponding “typed”
interfaces in this example and the details about how typed events are
published. First, we substitute #include directives for the typed event
channel IDL. We also include the Typecode.h header, so we can later use the
TypeCode interface to get the repository ID of the Messenger interface.

#include <orbsvcs/CosTypedEventCommC.h>
#include <orbsvcs/CosTypedEventChannelAdminC.h>
#include <tao/AnyTypeCode/Typecode.h>

The first differences in the body of the program are where the event channel is
narrowed as it is now a TypedEventChannel.
 // Find the EventChannel.
 obj = root_context->resolve_str("CosEventService");

 // Downcast the object reference to a TypedEventChannel reference.
 CosTypedEventChannelAdmin::TypedEventChannel_var ec =
 CosTypedEventChannelAdmin::TypedEventChannel::_narrow(obj.in ());

Connecting to the event channel goes through the same steps as the untyped
example: get the supplier admin, obtain a proxy consumer, and connect to the
proxy consumer.

 // Get a SupplierAdmin object from the EventChannel.
 CosTypedEventChannelAdmin::TypedSupplierAdmin_var supplierAdmin =
 ec->for_suppliers();

 // Get a ProxyPushConsumer from the SupplierAdmin.
 CosTypedEventChannelAdmin::TypedProxyPushConsumer_var consumer =
 supplierAdmin->obtain_typed_push_consumer(::_tc_Messenger->id());

 // Connect to the ProxyPushConsumer as a PushSupplier
 // (passing a nil PushSupplier object reference to it because
 // we don't care to be notified about disconnects).
 consumer->connect_push_supplier(CosEventComm::PushSupplier::_nil());

One key difference above is that the obtain_typed_push_consumer()
operation takes a string parameter that specifies the IDL interface type by
passing its repository ID. We obtain the Messenger interface’s repository ID
by using the TypeCode object’s id() operation.

o c i w e b . c o m 709

2 3 . 4 H o w t o U s e t h e E v e n t S e r v i c e

In order to publish typed events, we now need to obtain an object reference
that implement’s the Messenger interface. The TypedProxyPushConsumer
interface supports a get_typed_consumer() operation that returns an
object reference that implements the type associated with that proxy.

 // Obtain the interface from the event channel
 CORBA::Object_var messenger_obj = consumer->get_typed_consumer();

 // Narrow the interface
 Messenger_var messenger = Messenger::_narrow(messenger_obj.in ());

We can now publish events to any connected consumers by simply invoking
the send_message() operation on our Messenger object reference. The
typed event channel implementation is responsible for multiplexing this
operation so that all eligible consumers receive the same request.

 // Send one event per second. (approx)
 while (1) {
 messenger->send_message("King Lizard",
 "Proclamations",
 "Hello, world");

 ACE_Time_Value event_delay(0, 1000 * EVENT_DELAY_MS);
 orb->run(event_delay);
 }

Note Because the TypedProxyPushConsumer interface is derived from the
ProxyPushConsumer interface it also implements the push() operation.
According to the Event Service specification, suppliers to typed event
channels can also publish untyped events by utilizing this operation. TAO’s
typed event channel implementation does not support this feature and any
attempt to call push() on a typed proxy push consumer results in a
NO_IMPLEMENT exception.

23.4.4.4 Implementing the Typed Consumer
Implementing the typed consumer is slightly more complicated than the
untyped consumer. We still need to implement a consumer servant and
connect it to the event channel, but now we also have to implement our
application-specific interface (Messenger in our case) and associate it with our
consumer.

710 o c i w e b . c o m

E v e n t S e r v i c e

First, let’s look at our messenger servant.

class Messenger_i : public virtual POA_Messenger {
public:
 Messenger_i (CORBA::ORB_ptr orb, int event_limit);
 virtual ~Messenger_i ();

 virtual void send_message (const char * user_name,
 const char * subject,
 const char * message);

private:
 CORBA::ORB_var orb_;
 int event_limit_;

};

The constructor takes two arguments, an ORB reference and an event limit.
Both values are stored in data members for use by send_message(), which
prints each message’s data and shuts down the ORB when the event limit is
reached.

void Messenger_i::send_message (const char * user_name,
 const char * subject,
 const char * message)
{
 std::cout << "Message from: " << user_name << std::endl;
 std::cout << "Subject: " << subject << std::endl;
 std::cout << "Message: " << message << std::endl;

 if (--event_limit_ <= 0) {
 orb_->shutdown(0);
 }
}

Next, let’s look at our typed consumer servant which we’ll connect to the
event channel and use to hold our Messenger object reference.

#include <orbsvcs/CosTypedEventCommS.h>

class Consumer_i : public virtual POA_CosTypedEventComm::TypedPushConsumer {
 public:
 Consumer_i(CORBA::ORB_ptr orb,
 CORBA::Object_ptr obj);

o c i w e b . c o m 711

2 3 . 4 H o w t o U s e t h e E v e n t S e r v i c e

 // Override operations from TypedPushConsumer interface.
 virtual CORBA::Object_ptr get_typed_consumer ();

 virtual void push(const CORBA::Any & data);

 virtual void disconnect_push_consumer();

 private:
 CORBA::ORB_var orb_;
 CORBA::Object_var object_;
};

The disconnect_push_consumer() member function is implemented as
before for untyped consumers. The push() member function is used by the
event channel to deliver any untyped events published to that channel. If we
do not wish to receive untyped events we may simply throw a NO_IMPLEMENT
exception.

void Consumer_i::push(const CORBA::Any & data) {
 throw CORBA::NO_IMPLEMENT ();
}

Note Because TAO does not support publication of untyped events via typed event
channels, this operation should never be called when using TAO’s typed event
channel implementation.

The get_typed_consumer() member function should return an object
reference to a CORBA object that implements the specific interface we are
using for this consumer. We pass the object reference as a constructor
parameter, store it in a data member, and return it from
get_typed_consumer(). By using CORBA::Object as the object reference
data type, we allow this class to be potentially used with other interface types
(besides Messenger).

Consumer_i::Consumer_i(CORBA::ORB_ptr orb, CORBA::Object_ptr obj)
 : orb_(CORBA::ORB::_duplicate(orb)), object_(CORBA::Object::_duplicate(obj))
{
}

CORBA::Object_ptr
Consumer_i::get_typed_consumer ()
{

712 o c i w e b . c o m

E v e n t S e r v i c e

 return CORBA::Object::_duplicate(object_.in());
}

23.4.4.5 Connecting the Typed Consumer
Connecting our typed consumer to the event channel is very similar to the
untyped example with the important differences being the use of “typed”
interfaces and some details of the consumer object construction. First, we see
some different headers we’ll need:

#include <orbsvcs/CosTypedEventCommC.h>
#include <orbsvcs/CosTypedEventChannelAdminC.h>
#include <tao/AnyTypeCode/Typecode.h>

After we get the event channel reference from the naming service, we can
narrow it to a TypedEventChannel, get the consumer admin reference, and
obtain a typed proxy supplier.

 obj = root_context->resolve_str("CosEventService");

 // Downcast the object reference to an TypedEventChannel reference.
 CosTypedEventChannelAdmin::TypedEventChannel_var ec =
 CosTypedEventChannelAdmin::TypedEventChannel::_narrow(obj.in());

 // Get a ConsumerAdmin object from the EventChannel.
 CosTypedEventChannelAdmin::TypedConsumerAdmin_var consumerAdmin =
 ec->for_consumers();

 // Get a ProxyPushSupplier from the ConsumerAdmin.
 CosEventChannelAdmin::ProxyPushSupplier_var supplier =
 consumerAdmin->obtain_typed_push_supplier(::_tc_Messenger->id());

We used the repository ID of the Messenger interface when obtaining the
typed proxy supplier which associates that interface type with the consumer
when we connect to that proxy. Now we are ready to create our consumer and
connect it to the event channel.

 // Get the RootPOA.
 // Activate the POA manager here before we connect our consumer.
 obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj.in());
 PortableServer::POAManager_var poa_manager = poa->the_POAManager();
 poa_manager->activate();

 // Create our Messenger_i servant and activate the CORBA object

o c i w e b . c o m 713

2 3 . 5 t a o _ c o s e v e n t C o m m a n d L i n e O p t i o n s

 PortableServer::Servant_var<Messenger_i> servant =
 new Messenger_i(orb.in(), EVENTS_TILL_SHUTDOWN);
 PortableServer::ObjectId_var oid = poa->activate_object(servant.in());
 CORBA::Object_var messenger_obj = poa->id_to_reference(oid.in());

 // Create our Consumer servant and pass it the Messenger
 // object reference. Activate the consumer CORBA object.
 PortableServer::Servant_var<Consumer_i> consumer_servant =
 new Consumer_i(orb.in(), messenger_obj.in());
 PortableServer::ObjectId_var cons_oid =
 poa->activate_object(consumer_servant.in());
 CORBA::Object_var consumer_obj = poa->id_to_reference(cons_oid.in());
 CosTypedEventComm::TypedPushConsumer_var consumer =
 CosTypedEventComm::TypedPushConsumer::_narrow(consumer_obj.in());

 // Connect to the typed proxy push supplier.
 supplier->connect_push_consumer(consumer.in());

Because the consumer contains a reference to the Messenger object, the event
channel can retrieve the Messenger object reference and call operations on it
each time a supplier publishes an event.

23.4.4.6 Mixing Types in a Typed Event Channel
The repository ID passed to the connect operations by the consumers and
suppliers acts as a key for the event channel to match clients using the same
interface. Suppliers using a particular interface only send events to consumers
that utilize that same interface. When more than one type is mixed in the event
channel, the interface type acts as a filter to ensure that only events of the
requested type are delivered to a consumer.

23.5 tao_cosevent Command Line Options

The tao_cosevent server supplies the capability to start a single event
channel in its own process. It can bind the created event channel to a supplied
name in the root naming context of the Naming Service. The Naming Service

714 o c i w e b . c o m

E v e n t S e r v i c e

must be running to use this server (unless the -x option is used). Table 23-2
describes the available command line options.

When -t is specified, the event channel object implements the
CosTypedEventChannelAdmin::TypedEventChannel interface. When -t
is not specified, the event channel object implements the
CosEventChannelAdmin::EventChannel interface.

When the destroy() operation of the event channel is called, the event
channel is destroyed and other cleanup functionality may be performed. If -d
is passed, a typed event channel also unbinds from the Naming Service and
exits the process. Untyped event channels currently do not perform these
cleanup tasks.

The -n and -r options are ignored if -x is specified.

Table 23-2 tao_cosevent Command Line Options

Option Description Default

-n COS_EC_name
Specifies the name with which to bind the
event channel (in the root naming context of
the Naming Service).

CosEventService

-o filename
Specify the name of the output file for
writing the Event Channel’s IOR as a string.

Do not write the
IOR to a file.

-p filename
Specify the name of the output file for the
process ID to be written to.

Do not write out the
process ID.

-r

Use the rebind() operation to bind the
event channel in the Naming Service. If the
name is already bound, and this flag is not
passed, then the process exits with an
AlreadyBound exception.

The bind()
operation is used.

-x
Do not use the Naming Service. This simply
creates an event channel.

Bind the EC in the
Naming Service.

-t Create a typed event channel Create an untyped
event channel

-d
Destroy flag for typed event channels.
Determines whether shutdown of a typed EC
shuts down the ORB.

Don’t shutdown the
ORB for typed ECs.

-b
Causes the event channel to send disconnect
callbacks when a disconnect operation is
called on a proxy.

Callbacks are not
called when
disconnect is called
on the proxy.

o c i w e b . c o m 715

2 3 . 6 E v e n t C h a n n e l R e s o u r c e F a c t o r y

Note If the -o option is specified without the -x option, the Event Channel object
reference is stringified and written to the specified file and bound in the
Naming Service.

23.6 Event Channel Resource Factory

The event channel resource factory is responsible for creating many strategy
objects that control the behavior of the event channel.

The behavior of the event channel is typically controlled by using the service
configurator to select the appropriate behaviors for the default factory
implementation. Applications are also free to implement their own resource
factories, but this is not commonly done. See Chapter 16 for more information
on using the service configurator.

The event channel resource factory is registered with the service configurator
using the name CEC_Factory. The default event channel resource factory is
statically registered with the service configurator, so the static directive is
used to supply initialization options to it. To change the behavior of the
default event channel factory, add a line similar to the line shown below to
your service configuration file:

static CEC_Factory "-CECDispatching mt -CECDispatchingThreads 5"

The option descriptions begin in 23.6.1.1. For these options to be effective,
you must make sure that the following function call occurs before the ORB is
initialized:

TAO_CEC_Default_Factory::init_svcs ();

This function creates a default event channel resource factory and statically
registers it. If this is not done, the service configurator is not able to find and
initialize the CEC_Factory.

The -ORBSvcConf option allows you to use file names other than svc.conf
for service configurator initialization. See 17.13.63 for more information on
this option.

The default values for many of the event channel resource factory options are
defined in $TAO_ROOT/orbsvcs/orbsvcs/CosEvent/CEC_Defaults.h

716 o c i w e b . c o m

E v e n t S e r v i c e

as preprocessor macros. You can use your own project-specific defaults by
setting these macros in your config.h file and recompiling the event service.

23.6.1 CEC_Factory Option Overview
This section provides an overview of the configuration options supported by
the default CEC_Factory. The following section provides detailed
documentation of each of the individual options.

23.6.1.1 Dispatching
When the event channel is pushing events to interested consumers, choosing
the thread used to push the event is a decision that has far-reaching affects on
the performance and behavior of the application. The event channel resource
factory allows for selection of a dispatching strategy that defines how to push
events received from suppliers to the interested consumers on the appropriate
thread. The default event channel resource factory allows for either reactive or
multithreaded dispatching strategies. In addition, when a multithreaded
dispatching strategy is selected, the number of threads to be used can be
specified. Table 23-3 shows the options related to dispatching strategies.

The reactive dispatching strategy delivers events on the same thread as they
were received (or generated). This is usually the reactor’s main thread. The mt
(multithreaded) dispatching strategy creates a pool of threads and dispatches
each event on a randomly-selected member of the pool.

23.6.1.2 Locking Options
The locking options allow the event channel resource factory to define the
lock type desired for various components in the event channel. The default

Table 23-3 Dispatching related options

Option Section Description

-CECDispatching {reactive | mt} 23.6.2.5
Supply this option to select the
dispatching strategy for supplier-
produced events.

-CECDispatchingThreads nthreads 23.6.2.6

Specify the number of threads to create
and use for the multithreaded
dispatching strategy. Defaults to one
thread.

o c i w e b . c o m 717

2 3 . 6 E v e n t C h a n n e l R e s o u r c e F a c t o r y

factory allows specification of the lock type for consumer and supplier proxies
using the options shown in Table 23-4.

These options can be set to null to increase performance if the event channel
does not access given components from multiple threads. The default values
ensure that the proxy is thread safe, but recursive locks may be required to
avoid deadlocks in certain complex systems.

23.6.1.3 Consumer and Supplier Control Options
The following group of options allows the event channel resource factory to
define how the event channel handles dangling (ill-behaved) suppliers and
consumers. Consumers and suppliers that remain connected to the event
channel when their CORBA objects are no longer accessible from the event
channel process are considered ill-behaved. Such consumers and suppliers
result when the consumer or supplier process fails to call disconnect,
terminates abnormally, or has its node disconnected from the network. The
default factory allows specification and configuration of the control policy for
consumer and supplier proxies via the options shown in Table 23-5.

Table 23-4 Locking options

Option Section Description

-CECProxyConsumerLock
{null | thread | recursive} 23.6.2.8 Specifies the lock type for the consumer

proxy object.

-CECProxySupplierLock
{null | thread | recursive} 23.6.2.11 Specifies the lock type for the supplier

proxy object.

Table 23-5 Consumer and supplier control options

Option Section Description

-CECConsumerControl
{null | reactive} 23.6.2.1 Define the policy for handling

ill-behaved consumers.

-CECSupplierControl
{null | reactive} 23.6.2.13 Define the policy for handling

ill-behaved suppliers.

-CECConsumerControlPeriod
period 23.6.2.2

Define the polling period in
microseconds of the reactive consumer
control policy.

-CECSupplierControlPeriod
period 23.6.2.14

Define the polling period in
microseconds of the reactive supplier
control policy.

718 o c i w e b . c o m

E v e n t S e r v i c e

The default control policy of null leaves consumers and suppliers connected
to the event channel even if the event channel is unable to access them. This
policy allows consumers and suppliers to continue to be connected even in the
face of intermittent communications.

The reactive control policy disconnects a consumer or supplier from the
event channel when the event channel fails to contact it. It also periodically
polls (by default every 5 seconds) each consumer and supplier to ensure its
continued connection. Failure to respond to the polling requests before a
timeout (by default 10 milliseconds) also results in disconnection. By default,
the first failure to contact a consumer or supplier results in disconnection. You
can specify a number of retries using the -CECProxyDisconnectRetries
option. The periods for the periodic polls can be set via the
-CECSupplierControlPeriod and -CECConsumerControlPeriod
options. If the polling period is set to 0, polling is completely disabled. The
round-trip timeout for the periodic polls can be set via the
-CECSupplierControlTimeout and -CECConsumerControlTimeout
options. The round-trip timeout for operations other than the periodic polls
can be set via the -CECSupplierOperationTimeout and
-CECConsumerOperationTimeout options.

23.6.1.4 Proxy Collection Options
The proxy collection options define the types of collections used to hold
consumer and supplier proxies. The default factory allows specification of the

-CECConsumerControlTimeout
timeout 23.6.2.3 Round-trip timeout in microseconds for

the consumer control ping.

-CECSupplierControlTimeout
timeout 23.6.2.15 Round-trip timeout in microseconds for

the supplier control ping.

-CECConsumerOperationTimeout
timeout 23.6.2.4

Round-trip timeout in microseconds for
the consumer operations other than the
ping.

-CECSupplierOperationTimeout
timeout 23.6.2.16

Round-trip timeout in microseconds for
the supplier operations other than the
ping.

-CECProxyDisconnectRetries n 23.6.2.9 Number of retries allowed for the
reactive control strategy.

Table 23-5 Consumer and supplier control options

Option Section Description

o c i w e b . c o m 719

2 3 . 6 E v e n t C h a n n e l R e s o u r c e F a c t o r y

collection type for consumer and supplier proxies via the options shown in
Table 23-6.

The flags passed to these collection options fall into three separate groups,
with each group specifying a different characteristic of the collection. A colon
is used as a separator between flags (e.g., mt:rb_tree:immediate).

First, the lock type used to control access to the collection can be specified.
The st flag allows specification of a null lock. The mt flag specifies a
thread-safe lock. A thread-safe lock is specified by default.

The second characteristic is the actual collection type used. The list flag
specifies that an ordered-list collection is used. The rb_tree flag specifies
that a collection using a red-black tree is used. By default, the event channel
uses an ordered-list collection.

The third characteristic specifies how the concurrent use of the collection is
controlled, specifically the case where the collection is being iterated over
while a client attempts an operation that adds or removes a member of the
collection. An example is the distribution of events to push consumers (via
iteration over the proxy push suppliers collection) while one of the consumers
is attempting to disconnect itself. The default factory provides four different
strategies for this characteristic: immediate, copy_on_read,
copy_on_write, and delayed.

The immediate flag causes each operation to block until it receives access to
the collection. In the example above, the consumer that is attempting to
disconnect blocks until the event distribution iteration completes. Note that it
is possible that the disconnect request may be processed in the same thread as
the event distribution (via a nested upcall). If this occurs, immediate access is
granted (the thread already has the lock for the collection), and the iterator
may be invalidated. It is the developer’s responsibility to ensure that the
iterator is not invalidated. Using the -CECDispatching option (see 23.6.2.5)

Table 23-6 Proxy collection options

Option Section Description

-CECProxyConsumerCollection
flags 23.6.2.7

Define the characteristics of the
collection used to store proxy
consumers in the event channel.

-CECProxySupplierCollection
flags 23.6.2.10

Define the characteristics of the
collection used to store proxy suppliers
in the event channel.

720 o c i w e b . c o m

E v e n t S e r v i c e

to establish a separate dispatching thread is the most common way to ensure
this validity. (In other words, the immediate collection update flag should
not be used with -CECDispatching reactive.)

The copy_on_read flag causes the iterators to copy the collection before
proceeding. This allows iterators to release the lock after the copy is made.
Subsequent changes to the collection can occur while iteration is ongoing
without affecting the iteration. In the above example, this means that the
consumer can disconnect without harm to the event dispatching. The main
disadvantage of this approach is the extra performance overhead incurred
when the copy of the collection is allocated and replicated.

The copy_on_write flag causes any modifiers to the collection to make
copies of the collection before proceeding. This means changes to the
collection can occur while iteration is ongoing without affecting the iteration.
In the above example, this means that the consumer can disconnect without
harm to the event dispatching. The main disadvantage of this approach is the
extra performance overhead incurred when the copy of the collection is
allocated and replicated. Note that the copy_on_write strategy makes a
copy each time the collection is changed (connect, disconnect, reconnect, or
shutdown), whereas the copy_on_read strategy makes copies each time the
collection is iterated.

The delayed flag causes changes to the collection to be queued while
iterations are ongoing. When all iterations have completed, the queued
modifications are made. The event channel attributes of busy_hwm and
max_write_delay allow bounds to be set on how many iterators access the
collection at a time and how many iterators may access it before modification
occurs. See 23.4.2.2 for details of these attributes and how to set them.

23.6.1.5 Miscellaneous Options
The options shown in Table 23-7 allow for control of the pull model behavior
and the ORB that the event channel uses.

Table 23-7 Miscellaneous options

Option Section Description

-CECReactivePullingPeriod
period 23.6.2.12

Defines the polling period in microseconds
that the reactive pulling strategy uses. The
default period is 5000000 (5 seconds).

o c i w e b . c o m 721

2 3 . 6 E v e n t C h a n n e l R e s o u r c e F a c t o r y

The reactive pulling period is the period of time between attempted pulls on
pull suppliers. Events pulled are immediately delivered to push consumers and
queued for eventual delivery to pull consumers.

The default factory requires an ORB for a variety of operations. It normally
uses the default ORB (with a null string for the ORB id). Specify an ORB id
using the -CECUseORBId option to force the default factory to use a different
ORB. Typically, this option is used to ensure that the default factory is using
the same ORB as was used to activate the event channel.

23.6.2 Event Channel Resource Factory Options
The remainder of this chapter describes the individual options interpreted by
the default event channel factory. These options are applied to the default
event channel resource factory by the service configurator as described in
23.6.

-CECUseORBId orbid 23.6.2.17 Specifies the id of the ORB that the default
factory uses.

Table 23-7 Miscellaneous options

Option Section Description

722 o c i w e b . c o m

E v e n t S e r v i c e

23.6.2.1 CECConsumerControl control_policy

Description This option specifies the policy to be used when dealing with dangling
consumers. The null control policy never disconnects ill-behaved
consumers.

The reactive policy disconnects consumers after a number of
communication failures. A communication failure is either a failure to push an
event to a consumer or the failure of the periodic ping performed on each
consumer. By default, the first communication failure results in the
disconnection of the consumer. The number of retries allowed can be set via
the -CECProxyDisconnectRetries option.

Usage Use the reactive control policy when consumers could possibly be
destroyed without disconnecting. Use the default control policy (null) when
you can guarantee that all consumers disconnect properly (or not at all), and
you do not want to incur the overhead of the reactive policy.

Impact The null consumer control strategy causes degraded throughput when
consumers are destroyed without first disconnecting. The reactive strategy
requires slightly more overhead in normal operation, may result in consumers
having to reconnect when the network quality is bad (with potential for missed
messages), and requires slightly more memory.

See Also 23.6.2.2, 23.6.2.3, 23.6.2.9, 23.6.2.4, 23.6.2.13

Example static CEC_Factory "-CECConsumerControl reactive"

Values for control_policy

null (default) Do not discard dangling consumers.

reactive Use a reactive policy to discard dangling consumers.

o c i w e b . c o m 723

2 3 . 6 E v e n t C h a n n e l R e s o u r c e F a c t o r y

23.6.2.2 CECConsumerControlPeriod period
Description Sets the period (in microseconds) that the reactive consumer control policy

uses to poll the state of the consumers. The default period is 5000000 (5
seconds). A value of zero disables consumer state polling.

Usage For event channels using the reactive consumer control policy, use this
option to control the time to wait between attempted pings on each consumer.
The reactive consumer control strategy object pings the consumer by invoking
CORBA::Object::_non_existent() on the consumer’s object reference;
this is a synchronous call. The -CECConsumerControlPeriod option is
ignored when the consumer control policy is not reactive.

Impact Shorter periods require more bandwidth and processing to validate the
existence of the consumers. Longer periods consume less of these resources.
You can disable the ping altogether by setting the period to zero.

See Also 23.6.2.1, 23.6.2.14

Example static CEC_Factory "-CECConsumerControl reactive -CECConsumerControlPeriod
1000000"

724 o c i w e b . c o m

E v e n t S e r v i c e

23.6.2.3 CECConsumerControlTimeout timeout
Description Sets the relative round-trip timeout (in microseconds) that the reactive

consumer control policy uses for polling consumers. The default timeout is
10000 (10 milliseconds).

Note The -CECConsumerControlRoundtripTimeout is an alias for the
-CECConsumerControlTimeout option.

Usage For event channels using the reactive consumer control policy, use this
option to control the time the event channel waits for a consumer to respond to
an attempted ping. The reactive consumer control strategy object pings the
consumer by invoking CORBA::Object::_non_existent() on the
consumer’s object reference; this is a synchronous call. Failure to respond
within the specified timeout period results in the event channel classifying that
ping as a communication failure for that consumer. The
-CECConsumerControlTimeout option is ignored when the consumer
control policy is not reactive.

Impact Smaller timeout values may result in more timeout failures and consumers
being disconnected more often. A larger timeout value means it takes longer
to detect and remove dead consumers.

See Also 23.6.2.5, 23.6.2.14

Example static CEC_Factory "-CECConsumerControl reactive -CECConsumerControlTimeout
50000"

o c i w e b . c o m 725

2 3 . 6 E v e n t C h a n n e l R e s o u r c e F a c t o r y

23.6.2.4 CECConsumerOperationTimeout timeout
Description Sets the relative round-trip timeout (in microseconds) that the reactive

consumer control policy uses for all operations besides the polling operation.
The default timeout is zero, which is evaluated as no timeout. The timeout for
the polling operation is covered by the -CECConsumerControlTimeout
option.

Usage For event channels using the reactive consumer control policy, use this
option to control the time the event channel waits for a consumer to respond to
all operations besides the ping. This mainly affects the push() call for push
consumers.

Failure to respond within the specified timeout period results in the event
channel classifying that request as a communication failure for that consumer.
The -CECConsumerOperationTimeout option is ignored when the
consumer control policy is not reactive.

Impact Smaller timeout values may result in more timeout failures and consumers
being disconnected more often. A larger timeout value means it takes longer
to detect and remove dead consumers.

See Also 23.6.2.1, 23.6.2.3

Example static CEC_Factory "-CECConsumerControl reactive -CECConsumerOperationTimeout
50000"

726 o c i w e b . c o m

E v e n t S e r v i c e

23.6.2.5 CECDispatching dispatching_strategy

Description This option controls the dispatching strategy that the event channel uses. The
default strategy is reactive.

Usage This strategy determines the order in which the event channel delivers events
as well as its overall throughput. The multithreaded (mt) strategy should allow
for greater performance than the reactive model. The reactive strategy is
appropriate when it is acceptable and/or desired for all events to be delivered
in the order they are received. The mt strategy is especially effective for
decoupling the suppliers from the consumers’ execution time, especially in the
collocated case. The mt strategy also reduces the maximum latency of event
deliveries.

Impact The reactive model is inappropriate when slow processing by individual
consumers can affect other users, greater throughput is desired, or the system
requires strict prioritization of events. Note that the reactive strategy
delivers events on the same thread as they were received. The ORB’s
configuration determines the receiving thread. The mt strategy may increase
the time required to dispatch an event in lightly-loaded event channels and
also require the allocation of additional resources.

See Also 19.3.5, 23.6.2.6

Example static CEC_Factory "-CECDispatching mt"

Values for dispatching_strategy

reactive (default)
The event channel delivers events to consumers on the same
thread that received them.

mt

The event channel uses separate threads to receive and deliver
events to consumers. It randomly selects a thread from a pool.
The number of threads in the pool is set via the
-CECDispatchingThreads option (the default is 1).

o c i w e b . c o m 727

2 3 . 6 E v e n t C h a n n e l R e s o u r c e F a c t o r y

23.6.2.6 CECDispatchingThreads nthreads
Description By default the multithreaded dispatching strategy creates one thread to use for

the delivery of supplier-originated events to consumers. Use this option to
specify a different number of threads to be created and used.

Usage Using the multithreaded dispatching strategy with the default of one thread
provides the user the benefit of separating the dispatching thread from the
receiving thread. This allows for a greater decoupling between suppliers and
consumers. Use of this option to specify additional dispatching threads results
in additional decoupling between consumers as well as potentially increasing
throughput.

Impact Specifying additional dispatching threads consumes additional resources.

See Also 23.6.2.5

Example static CEC_Factory "-CECDispatching mt -CECDispatchingThreads 5"

728 o c i w e b . c o m

E v e n t S e r v i c e

23.6.2.7 CECProxyConsumerCollection flags
Description This option controls the type of collection the event channel uses to hold

consumer proxies. The flags passed describe the characteristics of the desired
collection. Colons should separate the flags (e.g., mt:list). The allowed
flags are described in Table 23-8. Only one flag per type should be specified.

For a more detailed discussion of the collection types, see 23.6.1.4.

Usage Applications that guarantee that a consumer proxy collection is only accessed
from a single thread can specify the st flag to improve performance.

Event channels that connect and disconnect suppliers often, and wish to
optimize these operations (at the expense of iteration speed), should specify
the rb_tree flag.

Applications that use the immediate flag must guarantee that the thread
iterating over the proxy collection does not attempt to modify the collection,
as this invalidates the iterator. One way to insure that such a collection is not
modified is to specify a separate dispatching thread. If you wish to minimize
priority inversions between publication and supplier connections and
disconnections, use the delayed flag. Collections using the copy_on_read
flag are only applicable to systems with small numbers of consumer proxies
that require low latencies for proxy collection modifications. Collections
using the copy_on_write flag are only applicable to systems with small

Table 23-8 Collection Type Flags

Flag Type Description

mt (default)
Synchronization

Use a thread-safe lock for the collection.

st Use a null lock for the collection.

list (default)
Collection

Implement the collection using an ordered list.

rb_tree Implement the collection using a red-black tree.

immediate (default)

Iterator

Threads block until they can execute a change to
the collection.

copy_on_read
Before initiating an iteration of the collection, a
copy of the complete collection is performed.

copy_on_write
Before initiating a modification to the
collection, a copy of the complete collection is
performed.

delayed
Changes that cannot be made immediately are
queued for later execution.

o c i w e b . c o m 729

2 3 . 6 E v e n t C h a n n e l R e s o u r c e F a c t o r y

numbers of consumer proxies that require low latencies for proxy collection
iterations.

Impact The mt flag incurs additional overhead over the st flag during
connection/disconnection of suppliers and iteration over the collection.

List-based collections result in slower updates to the collection. Red-black
tree collections are slower during iteration over the collection.

Immediate update of consumer proxy collections (during connection or
disconnection of suppliers) may cause priority inversions because of the
long-lived locks involved. Copy on read collections incur dynamic allocation
and copy costs for each iteration of the proxy collection. Copy on write
collections incur dynamic allocation and copy costs for each modification to
the proxy collection. Delayed updates to collections can result in long
intervals between the requested change and its actual occurrence.

See Also 23.6.2.10

Example static CEC_Factory "-CECProxyConsumerCollection mt:delayed"

730 o c i w e b . c o m

E v e n t S e r v i c e

23.6.2.8 CECProxyConsumerLock lock_strategy

Description This option defines the type of lock to be used in synchronizing access to the
proxy consumer objects.

Usage Single-threaded applications can use the null lock to increase the efficiency
of the push consumer. Multithreaded applications may need to set the lock to
recursive in cases where operations on the proxy consumer may cause
recursive access to the proxy consumer. In all other situations, the thread
lock should be used.

Impact The null lock causes problems in applications that access the proxy from
more than one thread. The thread lock causes additional locking overhead
that may not be needed in applications that restrict proxy access to a single
thread. The recursive lock is even more expensive than the thread lock,
but is required by applications that must recursively access the lock.

See Also 23.6.2.11

Example static CEC_Factory "-CECProxyConsumerLock recursive"

Values for lock_strategy

null Do not use any locking on the proxy consumers.

thread (default) Use a thread-safe lock on the proxy consumers.

recursive Use a recursive thread-safe lock on the proxy consumers.

o c i w e b . c o m 731

2 3 . 6 E v e n t C h a n n e l R e s o u r c e F a c t o r y

23.6.2.9 CECProxyDisconnectRetries n
Description Sets the number of retries that the reactive consumer and supplier control

policies use when determining whether to disconnect clients (consumers or
suppliers). The default number of retries is zero, meaning that the first failure
results in the client being disconnected from the event channel. Each
successful communication with the client resets the retry count.

Usage For event channels using the reactive control policy, use this option to be
more tolerant of ill-behaved consumers and suppliers. This option is ignored
when the consumer and supplier control policies are not reactive.

Impact The default value of zero retries means that any failure to contact a consumer
or supplier results in their disconnection. This may be too strict for some
applications. Larger retry values mean that it takes longer for the event
channel to detect and remove ill-behaved clients. This can impact the overall
efficiency and performance of the event channel.

See Also 23.6.2.1, 23.6.2.13

Example static CEC_Factory "-CECConsumerControl reactive -CECProxyDisconnectRetries 3"

732 o c i w e b . c o m

E v e n t S e r v i c e

23.6.2.10 CECProxySupplierCollection flags
Description This option controls the type of collection the event channel uses to hold

supplier proxies. The flags passed describe the characteristics of the desired
collection. Colons should separate the flags (e.g., mt:list). The flags are
described in Table 23-9. Only one flag per type should be specified.

For a more detailed discussion of the collection types see 23.6.1.4.

Usage Applications that can guarantee that a supplier proxy collection is only
accessed from a single thread can specify the st flag to improve performance.

Event channels that connect and disconnect consumers often, and wish to
optimize these operations (at the expense of iteration speed), should specify
the rb_tree flag.

Applications that use the immediate flag must guarantee that the thread
iterating over the proxy collection does not attempt to modify the collection,
as this invalidates the iterator. One way to insure that such a collection is not
modified is to specify a separate dispatching thread. If you wish to minimize
priority inversions between publication and consumer connections and
disconnections, use the delayed flag. Collections using the copy_on_read
flag are only applicable to systems with small numbers of supplier proxies that
require low latencies for proxy collection modifications. Collections using the

Table 23-9 Collection Type Flags

Flag Type Description

mt (default)
Synchronization

Use a thread-safe lock for the collection.

st Use a null lock for the collection.

list (default)
Collection

Implement the collection using an ordered list.

rb_tree Implement the collection using a red-black tree.

immediate (default)

Iterator

Threads block until they can execute a change to
the collection.

copy_on_read
Before initiating an iteration of the collection, a
copy of the complete collection is performed.

copy_on_write
Before initiating a modification to the
collection, a copy of the complete collection is
performed.

delayed
Changes that cannot be made immediately are
queued for later execution.

o c i w e b . c o m 733

2 3 . 6 E v e n t C h a n n e l R e s o u r c e F a c t o r y

copy_on_write flag are only applicable to systems with small numbers of
supplier proxies that require low latencies for proxy collection iterations.

Impact The mt flag incurs additional overhead over the st flag during
connection/disconnection of consumers and iteration over the collection.

List-based collections result in slower updates to the collection. Red-black
tree collections are slower during iteration over the collection.

Immediate update of supplier proxy collections (during connection or
disconnection of consumers) may cause priority inversions because of the
long-lived locks involved. Copy on read collections incur dynamic allocation
and copy costs for each iteration of the proxy collection. Delayed updates to
collections can result in long intervals between the requested change and its
actual occurrence.

See Also 23.6.2.7

Example static CEC_Factory "-CECProxySupplierCollection mt:delayed"

734 o c i w e b . c o m

E v e n t S e r v i c e

23.6.2.11 CECProxySupplierLock lock_strategy

Description This option defines the type of lock to use in synchronizing access to the
proxy supplier objects.

Usage Single-threaded applications can use the null lock to increase the efficiency
of the push supplier. Multithreaded applications may need to set the lock to
recursive in cases where operations on the proxy supplier may cause
recursive access to the proxy supplier. In all other situations, the thread lock
should be used.

Impact The null lock causes problems in applications that access the proxy from
more than one thread. The thread lock causes additional locking overhead
that may not be needed in applications that restrict proxy access to a single
thread. The recursive lock is even more expensive than the thread lock,
but is required by applications that must recursively access the lock.

See Also 23.6.2.8

Example static CEC_Factory "-CECProxySupplierLock recursive"

Values for lock_strategy

null Do not use any locking on the proxy suppliers.

thread (default) Use a thread-safe lock on the proxy suppliers.

recursive Use a recursive thread-safe lock on the proxy suppliers.

o c i w e b . c o m 735

2 3 . 6 E v e n t C h a n n e l R e s o u r c e F a c t o r y

23.6.2.12 CECReactivePullingPeriod period
Description Set the period (in microseconds) the reactive pulling strategy uses to poll all

the pull suppliers for events. The default period is 5000000 (5 seconds).

Usage The reactive pulling strategy periodically attempts to pull events from each
pull supplier attached to an event channel. This option allows applications to
customize the period between attempted pulls. These periodic attempts are
made using the reactor associated with the default factory’s ORB. These pull
requests use a default timeout value of ten milliseconds. Alternate timeout
values are specified via the -CECSupplierControlTimeout option.

Impact Shorter periods incur greater bandwidth and processing demands. Longer
periods cause greater delays between the availability of events and their
eventual delivery.

See Also 23.6.2.17, 23.6.2.15

Example static CEC_Factory "-CECReactivePullingPeriod 1000000"

736 o c i w e b . c o m

E v e n t S e r v i c e

23.6.2.13 CECSupplierControl control_policy

Description This option specifies the policy used when dealing with dangling suppliers.
The null control policy never disconnects ill-behaved suppliers.

The reactive policy disconnects suppliers after a number of communication
failures. A communication failure is either the failure of the periodic ping
performed on the supplier or any other failure to correctly invoke an operation
on the supplier. By default, the first communication failure results in the
disconnection of the supplier. The number of retries allowed can be set via the
-CECProxyDisconnectRetries option.

Usage Use the reactive control policy when suppliers could possibly be destroyed
without disconnecting. Use the default control policy (null) when you can
guarantee that all suppliers disconnect properly (or not at all), and you do not
want to incur the overhead of the reactive policy.

Impact The null supplier control strategy causes degraded throughput when
suppliers are destroyed without first disconnecting. The reactive strategy
requires slightly more overhead in normal operation, may result in suppliers
having to reconnect when the network quality is bad, and requires slightly
more memory.

See Also 23.6.2.1, 23.6.2.14, 23.6.2.15, 23.6.2.9

Example static CEC_Factory "-CECSupplierControl reactive"

Values for control_policy

null (default) Do not discard dangling suppliers.

reactive Use a reactive policy to discard dangling suppliers.

o c i w e b . c o m 737

2 3 . 6 E v e n t C h a n n e l R e s o u r c e F a c t o r y

23.6.2.14 CECSupplierControlPeriod period
Description Sets the period (in microseconds) that the reactive supplier control policy uses

to poll the state of the suppliers. The default period is 5000000 (5 seconds). A
value of zero disables supplier state polling.

Usage For event channels using the reactive supplier control policy, use this
option to control the time to wait between attempted pings on each supplier.
The reactive supplier control strategy object pings the supplier by invoking
CORBA::Object::_non_existent() on the supplier’s object reference;
this is a synchronous call. The -CECSupplierControlPeriod option is
ignored when the consumer control policy is not reactive.

Impact Shorter periods require more bandwidth and processing to validate the
existence of the suppliers. Longer periods consume less of these resources.
You can disable the ping altogether by setting the period to zero.

See Also 23.6.2.2, 23.6.2.13

Example static CEC_Factory "-CECSupplierControl reactive -CECSupplierControlPeriod
1000000"

738 o c i w e b . c o m

E v e n t S e r v i c e

23.6.2.15 CECSupplierControlTimeout timeout
Description Sets the relative round-trip timeout (in microseconds) used for polling

suppliers. This timeout is used both for polling pull model suppliers and by the
reactive supplier control strategy. The default timeout is 10000 (10
milliseconds).

Note The -CECSupplierControlRoundtripTimeout is an alias for the
-CECSupplierControlTimeout option.

Usage For event channels using the reactive supplier control policy, use this
option to control the time the event channel waits for a supplier to respond to
an attempted ping. For pull suppliers, use this option to control the time the
event channel waits for each pull() call to a pull supplier. The reactive
supplier control strategy object pings the supplier by invoking
CORBA::Object::_non_existent() on the supplier’s object reference;
this is a synchronous call. Failure to respond within the specified timeout
period results in the event channel classifying that ping as a communication
failure for that supplier.

Impact Smaller timeout values may result in more timeout failures and suppliers
being disconnected more often. A larger timeout value means it takes longer
to detect and remove dead suppliers.

See Also 23.6.2.13, 23.6.2.3

Example static CEC_Factory "-CECSupplierControl reactive -CECSupplierControlTimeout
50000"

o c i w e b . c o m 739

2 3 . 6 E v e n t C h a n n e l R e s o u r c e F a c t o r y

23.6.2.16 CECSupplierOperationTimeout timeout
Description Sets the relative round-trip timeout (in microseconds) that the reactive

supplier control policy uses for all operations besides the polling operation.
The default timeout is zero, which is evaluated as no timeout. The timeout for
the polling operation is covered by the -CECSupplierControlTimeout
option.

Usage For event channels using the reactive supplier control policy, use this
option to control the time the event channel waits for a supplier to respond to
all operations besides the ping. This mainly affects the pull() call for pull
suppliers.

Failure to respond within the specified timeout period results in the event
channel classifying that request as a communication failure for that supplier.
The -CECSupplierOperationTimeout option is ignored when the supplier
control policy is not reactive.

Impact Smaller timeout values may result in more timeout failures and suppliers
being disconnected more often. A larger timeout value means it takes longer
to detect and remove dead suppliers.

See Also 23.6.2.1, 23.6.2.3

Example static CEC_Factory "-CECSupplierControl reactive -CECSonsumerOperationTimeout
50000"

740 o c i w e b . c o m

E v e n t S e r v i c e

23.6.2.17 CECUseORBId orb-id
Description Sets the name of the ORB used by the default factory implementation. The

default factory creates strategy objects that use this ORB to perform remote
invocations and to gain access to the ORB’s reactor.

Usage This option is only useful in applications that create multiple ORBs and
activate the event channel in one of them. Use it to ensure that the objects
created by the default factory use the same ORB as the event channel and
related objects.

Impact This option may cause the creation of a new ORB (and associated resources),
if the ORB with the given name has not been initialized.

Example static CEC_Factory "-CECUseORBId Orb2"

o c i w e b . c o m 741

CHAPTER 24

Real-Time Event Service

24.1 Introduction

Though the OMG Event Service defines the basic interfaces necessary for
decoupling suppliers and consumers of data, it leaves a number of important
details out, particularly in areas affecting real-time systems. The TAO
Real-Time Event Service (RTES) addresses a number of these issues by
adding support for features such as event filtering, event correlation, real-time
event dispatching/scheduling, and periodic event processing. Many
non-real-time applications also benefit from using the RTES as a fast and
predictable event distribution mechanism with additional features not included
in the OMG Event Service.

24.2 Overview of the TAO Real-Time Event Service

The TAO Real-Time Event Service’s interfaces for publishing and receiving
events remain mostly the same as in the standard OMG Event Service. The
programmer must provide additional information when creating an event
channel and when registering suppliers and consumers to allow the TAO

742 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

Real-Time Event Service to function as desired. The Real-Time Event Service
only supports the push model of operation.

Figure 24-1 shows the basic architecture of the TAO Real-Time Event
Service:

Each element of the Real-Time Event Service architecture is described below.

24.2.1 Consumer Proxies
This module implements a SupplierAdmin interface analogous to that of the
OMG Event Service. Suppliers use this interface to create objects that support

Figure 24-1 Real-Time Event Service Architecture

o c i w e b . c o m 743

2 4 . 2 O v e r v i e w o f t h e T A O R e a l - T i m e E v e n t S e r v i c e

the ProxyPushConsumer interface. Suppliers use the ProxyPushConsumer
interface to connect and disconnect from the event channel as well as publish
events via the push() operation.

24.2.2 Priority Timers
The RTES allows consumers to define timeout events that occur when a
desired duration has elapsed. These timeout events can be made dependent
upon the occurrence of other events. This module generates and manages
these timeout events.

24.2.3 Subscription and Filtering
This module handles distribution of events to the consumers. TAO adds
support for event filtering on consumers based on the source and/or type of the
event published.

24.2.4 Event Correlation
This module correlates events based on details the consumer provides. The
consumer may request to only receive particular events when some other
related event has also occurred. In this case the Event Correlation module
holds the first event and delivers them both when the second is published.

24.2.5 Dispatching Module
This module determines when to deliver events based on a variety of
information the user provides.

24.2.6 Supplier Proxies
This module implements the ConsumerAdmin interface analogous to that of
the OMG Event Service. Consumers use this interface to create objects that
support the ProxyPushSupplier interface. The ProxyPushSupplier
interface is used to connect and disconnect from the event channel. TAO
extends this interface to allow the consumer to indicate the dependencies and
other details the Real-Time Event Service needs.

24.2.7 Real-Time Event Service Libraries
The RTES functionality is split into the libraries defined in Table 24-1.
Applications that are pure clients of the RTES IDL can simply link with the

744 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

TAO_RTEvent library. Applications that are building servants based on RTES
IDL (such as consumers), need to also link with the TAO_RTEvent_Skel
library. All examples and features in this section require this library to be
linked with your application. When other libraries are required we will
explicitly state the library required. The TAO_RTEvent library contains the
code necessary to include event channels in your application.

24.3 Using the TAO Real-Time Event Service

The examples in this chapter explore some of the features that the TAO
Real-Time Event Service introduces. The Naming Service server must be
started prior to running these examples and the other processes must be
configured to use the same naming server (either via multicast, the
NameServiceIOR environment variable, or the -ORBInitRef option).

24.3.1 A Basic Example
This example is functionally the same as the basic example in Chapter 23. The
main differences are accounted for by the fact that the Real-Time Event
Service defines interfaces for the Event Channel, Supplier, Consumer, and
Admin concepts that are analogous to the OMG Event Service interfaces, but
the RTES operations take slightly different parameters than the standard event
service equivalents. Full source code for this example is in the TAO source

Table 24-1 Real-Time Event Service Libraries

Library Name Description

TAO_RTEvent
Basic RT Event Service client functionality (stub and client
code).

TAO_RTEvent_Skel
Basic RT Event Service functionality for building servers
(skeletons).

TAO_RTEvent_Serv
Basic RT Event Service server functionality (event channels,
etc.).

TAO_RTKokyuEvent
Allows integration of RTES with the Kokyu Scheduling
Framework.

TAO_RTSchedEvent
Allows integration of RTES with TAO’s original scheduling
service.

TAO_RTCORBAEvent
Allows use of the Real-Time CORBA thread pools for RTES
dispatching.

o c i w e b . c o m 745

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

code distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/EventServices/RTEC_Basic.

24.3.1.1 Starting the tao_rtevent Process
This example utilizes the tao_rtevent server that is delivered with TAO.
This server creates a single RTES event channel object and binds it in the root
naming context of the Naming Service. By default, it binds to the name
“EventService”. The options that can be passed to this server are covered in
24.4. A typical invocation of the server is:

$TAO_ROOT/orbsvcs/Event_Service/tao_rtevent

This starts an Event Channel with a local Scheduler and binds both in the root
naming context of the Naming Service. See the Scheduling Service
documentation for additional information regarding the scheduler.

24.3.1.2 The Supplier
To use the RTES, your supplier must include the header files that the IDL
compiler generated from the Real-Time Event Service’s IDL. This IDL file
defines interfaces that are very similar to those defined by the standard OMG
Event Service. To differentiate the interfaces, the module and file names of
TAO’s Real-Time Event Service are given the Rtec prefix. Listed below are
the include directives for EchoEventSupplierMain.cpp.

#include <orbsvcs/RtecEventCommC.h>
#include <orbsvcs/RtecEventChannelAdminC.h>

After initializing the ORB and resolving and narrowing the Naming Service’s
root context, this context is used to retrieve an object reference to the event
channel using the name “EventService”. This event channel reference is used
to get a supplier administration object reference that is then used to create a
consumer proxy. All of this works as in the standard OMG Event Service,
except for the Rtec prefix on the modules/namespaces in the source code.

 // Get the Event Channel using the Naming Service
 CORBA::Object_var obj = orb->resolve_initial_references("NameService");
 CosNaming::NamingContextExt_var root_context =
 CosNaming::NamingContextExt::_narrow(obj.in());
 obj = root_context->resolve_str("EventService");

746 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

 // Narrow the object reference to an EventChannel reference.
 RtecEventChannelAdmin::EventChannel_var ec =
 RtecEventChannelAdmin::EventChannel::_narrow(obj.in());
 if (CORBA::is_nil(ec.in())) {
 std::cerr << "Could not resolve Event Channel." << std::endl;
 return 1;
 }

 // Get a SupplierAdmin object from the EventChannel.
 RtecEventChannelAdmin::SupplierAdmin_var admin = ec->for_suppliers();

 // Get a ProxyPushConsumer from the SupplierAdmin.
 RtecEventChannelAdmin::ProxyPushConsumer_var consumer =
 admin->obtain_push_consumer();

Next, create the supplier servant that implements the
RtecEventComm::PushSupplier interface. Only the
disconnect_push_supplier() operation is required for this object,
although it is often given many other application-specific responsibilities.

 // Instantiate an EchoEventSupplier_i servant.
 PortableServer::Servant_var<EchoEventSupplier_i> servant =
 new EchoEventSupplier_i(orb.in());

 // Register it with the RootPOA.
 CORBA::Object_var poa_obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(poa_obj.in());
 PortableServer::ObjectId_var oid = poa->activate_object(servant.in());
 CORBA::Object_var supplier_obj = poa->id_to_reference(oid.in());
 RtecEventComm::PushSupplier_var supplier =
 RtecEventComm::PushSupplier::_narrow(supplier_obj.in());

To connect to the event channel using the Real-Time Event Service, the
supplier must provide some quality of service (QoS) information. This is
created using a QoS factory object. Information about the events that this
supplier publishes are inserted into the QoS factory, which builds up an
internal data structure that is later passed to connect_push_supplier().

 const RtecEventComm::EventSourceID MY_SOURCE_ID = ACE_ES_EVENT_SOURCE_ANY + 1;
 const RtecEventComm::EventType MY_EVENT_TYPE = ACE_ES_EVENT_UNDEFINED + 1;

 // Publish the events the supplier provides.
 ACE_SupplierQOS_Factory qos;
 qos.insert (MY_SOURCE_ID, // Source ID
 MY_EVENT_TYPE, // Event type
 0, // handle to the rt_info structure

o c i w e b . c o m 747

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

 1); // number of calls

 // Connect as a supplier of the published events.
 consumer->connect_push_supplier (supplier.in (),
 qos.get_SupplierQOS ());

When inserting the QoS data, the source identifier must be a unique non-zero
long integer for each supplier in the system. User-defined event types must
start at a number higher than the value defined by the preprocessor macro
ACE_ES_EVENT_UNDEFINED. Passing the preprocessor macro
ACE_ES_EVENT_ANY as the event type allows a supplier to publish events of
any type.

Passing zero as the handle to the real-time information (rt_info) data
structure tells the event channel to just deliver the events in the order received.
The rt_info data structure is the main mechanism for controlling the
real-time capabilities of the real-time Event Service. See the appropriate
Scheduling Service documentation for more details.

Once the supplier is connected, the event data can be created. Note that the
RTES-based interfaces publish sets of events and that these events have more
fields than the OMG Event Service’s events. Here an EventSet is created
with one event and a payload of a string stored in the any_value member:

 CORBA::String_var eventData = CORBA::string_dup("Hello, world.");

 // Create an event set for one event
 RtecEventComm::EventSet events (1);
 events.length (1);

 // Initialize event header.
 events[0].header.source = MY_SOURCE_ID;
 events[0].header.type = MY_EVENT_TYPE;

 // Initialize data fields in event.
 events[0].data.any_value <<= eventData;

Publishing the events is done using the push() operation on the proxy
consumer interface:

 consumer->push (events);

748 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.3.1.3 Implementing the Push Consumer Interface
To create a consumer, the RtecEventComm::PushConsumer IDL interface
must be implemented. There are only two operations in this interface, push()
and disconnect_push_consumer() as shown in the file
EchoEventConsumer_i.h for this example.

#include <orbsvcs/RtecEventCommS.h>

class EchoEventConsumer_i : public virtual POA_RtecEventComm::PushConsumer
{
 public:
 // Constructor
 EchoEventConsumer_i(CORBA::ORB_ptr orb);

 // Override operations from PushConsumer interface.
 virtual void push(const RtecEventComm::EventSet& events);

 virtual void disconnect_push_consumer();

 private:
 CORBA::ORB_var orb_;
};

The implementations for these operations are contained in the file
EchoEventConsumer_i.cpp. The push() operation implementation is the
only code that significantly differs from an OMG Event Service push
consumer:

// Implement the push() operation.
void EchoEventConsumer_i::push(const RtecEventComm::EventSet& events)
{
 for (u_int i = 0; i < events.length (); ++i) {
 // Extract event data from the any.
 const char* eventData;
 std::cout << "Received event,"
 << " type: " << events[i].header.type
 << " source: " << events[i].header.source;
 if (events[i].data.any_value >>= eventData) {
 std::cout << " text: " << eventData;
 }
 std::cout << std::endl;
 }
}

The first difference is that the push() operation must now process a set of
events instead of a single event. Secondly, instead of a simple CORBA::Any

o c i w e b . c o m 749

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

parameter, the Real-Time Event Service’s Event data structure has
significantly more fields. In this case, the supplier has used the any_value
field embedded in the Event’s body to pass a string to the consumer. The
consumer also extracts the type and source fields from the header portion of
the Event data structure.

24.3.1.4 Creating the Consumer and Connecting to the Channel
The consumer application accesses the event channel using the same code as
shown previously for the supplier (refer to EchoEventConsumerMain.cpp
for this example). The event channel is then used to obtain a proxy push
supplier:

 // Obtain a reference to the consumer administration object.
 RtecEventChannelAdmin::ConsumerAdmin_var admin = ec->for_consumers();

 // Obtain a reference to the push supplier proxy.
 RtecEventChannelAdmin::ProxyPushSupplier_var supplier =
 admin->obtain_push_supplier();

Now an instance of the consumer servant can be created and connected to the
event channel using QoS information similar to that seen on the supplier side.
The QoS is created using a consumer QoS factory and the only information
required is an event type and a handle to the real-time information data
structure. This example uses as the event type ACE_ES_EVENT_ANY, which is
a wildcard that accepts all event types. It passes 0 for the handle to the
real-time information, causing the event channel to deliver the events in the
order received.

 // Get the RootPOA.
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj.in());

 // Instantiate an EchoEventConsumer_i servant.
 PortableServer::Servant_var<EchoEventConsumer_i> servant =
 new EchoEventConsumer_i(orb.in());

 // Register it with the RootPOA.
 PortableServer::ObjectId_var oid = poa->activate_object(servant.in());
 CORBA::Object_var consumer_obj = poa->id_to_reference(oid.in());
 RtecEventComm::PushConsumer_var consumer =
 RtecEventComm::PushConsumer::_narrow(consumer_obj.in());

 // Connect as a consumer.

750 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

 ACE_ConsumerQOS_Factory qos;
 qos.start_disjunction_group (1);
 qos.insert_type (ACE_ES_EVENT_ANY, // Event Type
 0); // handle to the rt_info
 supplier->connect_push_consumer (consumer.in (),
 qos.get_ConsumerQOS ());

After activating the POA manager and starting the event loop the application
is ready to receive events.

 // Activate the POA via its POAManager.
 PortableServer::POAManager_var poa_manager = poa->the_POAManager();
 poa_manager->activate();

 std::cout << "EchoEventConsumerMain.cpp: Ready to receive events..."
 << std::endl;

 // Enter the ORB event loop.
 orb->run();

 // If we have reached this, we must be shutting down...
 // Disconnect the ProxyPushSupplier.
 supplier->disconnect_push_supplier();
 supplier = RtecEventChannelAdmin::ProxyPushSupplier::_nil();
 admin = RtecEventChannelAdmin::ConsumerAdmin::_nil();

 orb->destroy();

All events from the event channel are now delivered to the consumer object’s
push() operation.

24.3.2 Managing Connections
The real-time event service interfaces provide operations for consumers and
suppliers to manage their connections and control the delivery of events.

24.3.2.1 Connecting and Disconnecting Consumers
The previous example connected its consumer using the
connect_push_consumer() operation on the ProxyPushSupplier
interface:

 supplier_proxy->connect_push_consumer (consumer.in (),
 qos.get_ConsumerQOS ());

o c i w e b . c o m 751

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

Once this has executed, the consumer remains connected to the event channel
until the corresponding disconnect operation is called:

 supplier_proxy->disconnect_push_supplier ();

This disconnects the consumer from the event channel. Failure to disconnect
from the event channel before ending the process or destroying the consumer
leaves references to the consumer in the event channel. By default, the event
channel continues to attempt to push events to the consumer, but fails each
time. See 24.5.1.4 for details on how to configure the real-time event channel
so as to ensure automatic removal of such “dangling” consumer object
references.

24.3.2.2 Connecting and Disconnecting Suppliers
Suppliers are connected and disconnected using operations on the proxy push
consumer that are analogous to operations on the proxy push supplier:

 consumer_proxy->connect_push_supplier (supplier.in (),
 qos.get_SupplierQOS ());

 // Do all the publication required...

 consumer_proxy->disconnect_push_consumer ();

Failure to disconnect from the event channel leads to similar problems in the
supplier case. Instead of affecting each push though, it generally affects the
speed of connection and disconnection by consumers. See 24.5.1.4 for details
on how to configure the real-time event channel so as to ensure automatic
removal of “dangling” supplier object references.

24.3.2.3 Reconnecting Consumers and Suppliers
To change details of their connection (such as filter information or timeouts),
consumers and suppliers can invoke the appropriate connect operation even
after a connection is established. This is more efficient than explicitly
disconnecting and reconnecting. For example, consider the following:

 supplier_proxy->connect_push_consumer (consumer.in (),
 qos.get_ConsumerQOS ());

 // Process events for a while...

752 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

 supplier_proxy->connect_push_consumer (consumer.in (),
 qos2.get_ConsumerQOS ());

If we assume that qos and qos2 refer to different subscription details such as
filtering for different event types then this code changes the subscription while
remaining connected to the event channel. No events should be lost during this
change.

Note To support this feature the event channel must have the attributes
consumer_reconnect and supplier_reconnect set to true. See 24.3.6.2
for details on setting these attributes. Attempting to reconnect if these
attributes are not set to true results in the connect_*() operation throwing
an RtecEventChannelAdmin::AlreadyConnected exception.

24.3.2.4 Suspending and Resuming Consumer Connections
If a consumer wants to stop processing events for a time, it could remain
connected to the event channel and simply ignore events as they arrive.
However, this wastes network bandwidth and processor resources. A more
efficient alternative is to temporarily suspend the connection, then later
resume the connection. To suspend the consumer’s connection to the event
channel, use the suspend_connection() operation, which causes the event
channel to stop pushing events to the consumer. You can later resume the
connection and again receive events by invoking the resume_connection()
operation.

Another approach is to disconnect from the event channel and reconnect.
However, the suspend_connection() and resume_connection()
operations are more efficient because they leave the subscription in place (and
thereby avoid locking the proxy collection so it can be changed). This allows
the event channel to resume the subscription much faster than establishing a
new subscription.

 supplier_proxy->suspend_connection ();

 // Do something else for a while...

 supplier_proxy->resume_connection ();

The suspend_connection() operation sets a flag in the proxy supplier of
the event channel that blocks all publications until the

o c i w e b . c o m 753

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

resume_connection() operation is called and resets the flag. Any events
published while the connection is suspended are lost to that consumer.

There is a slight overhead involved in keeping the suspended subscriptions in
the event channel that may make it desirable to disconnect when doing so for
long periods of time. The suspend/resume mechanism is an attractive solution
for brief suspensions.

24.3.3 The Event Structure
The TAO Real-Time Event Service uses event structures that are defined in
$TAO_ROOT/orbsvcs/orbsvcs/RtecEventComm.idl in the
RtecEventComm module. Here are the basic definitions of EventSet and
Event:

 struct Event
 {
 EventHeader header;
 EventData data;
 };
 typedef sequence<Event> EventSet;

24.3.3.1 The EventHeader Structure
Table 24-2 describes the members of the EventHeader structure.

Setting the type and source members is generally sufficient for most simple
applications.

The ttl member is a counter that is decremented each time an event is passed
between individual event channels in a federation (see 24.3.8 for details).

Table 24-2 EventHeader Members

Type (typedef type) Name Description

EventType (long) type User-defined type field.

EventSourceID (long) source User-defined source id.

long ttl
Time to live count for
federations/gateways.

Time (TimeBase::TimeT) creation_time User-defined timing information.

Time (TimeBase::TimeT) ec_recv_time User-defined timing information.

Time (TimeBase::TimeT) ec_send_time User-defined timing information.

754 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

When the counter reaches zero, the event is no longer passed to additional
event channels in the federation.

Table 24-3 lists special values that are defined for EventTypes:

There are several other special values defined for internal use, all of which are
values smaller than the value of the ACE_ES_EVENT_UNDEFINED
preprocessor macro.

24.3.3.2 The EventData Structure
Table 24-4 describes the members of the EventData structure:

The choice of whether to use the any_value or the payload member in a
particular application is a design decision, based upon the type of application
and the nature of the event data. In many situations, custom marshaling and
demarshaling of the EventPayload may be more efficient than using a
CORBA::Any.

Table 24-3 EventType Special Values

Name Description

ACE_ES_EVENT_ANY Wild card value that matches all event types.

ACE_ES_EVENT_SHUTDOWN
Event type that can be used for shutdown events
from the supplier.

ACE_ES_EVENT_INTERVAL_TIMEOUT Event type for interval timeout events.

ACE_ES_EVENT_DEADLINE_TIMEOUT Event type for deadline timeout events.

ACE_ES_EVENT_UNDEFINED
This value marks the beginning of the range of
user-defined event types.

Table 24-4 EventData Members

Type (typedef type) Name Description

long pad1
Pad field, improves alignment and
performance.

EventPayload(sequence<octet>) payload
User-defined payload using a
sequence of octet. Users must
supply their own marshaling.

any any_value
User-defined payload using a
CORBA::Any type.

o c i w e b . c o m 755

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

24.3.3.3 Customizing the Event Structure
TAO provides several build options that allow removal of unneeded members
from the event structure. Table 24-5 describes these options.

To take advantage of these optimizations, the TAO_RTEvent library and any
executables using it (e.g., tao_rtevent) must be rebuilt. The flags can be set
by adding them to the platform_macros.GNU file, uncommenting the
appropriate lines in $TAO_ROOT/rules.tao.GNU, or passing them to make
via the MAKEFLAGS environment variable or the command line. See Appendix
A for more details on build flags and their use.

In addition, users can add their own members to the EventData structure in
the file $TAO_ROOT/orbsvcs/orbsvcs/RtecDefaultEventData.idl.
Once again, this requires that the TAO_RTEvent library and associated
executables be rebuilt. To interoperate using the event channel, all processes
must use the same event structure.

24.3.4 Filtering and Correlation
The TAO Real-Time Event Service gives consumers the capability to filter the
events delivered over the event channel to specific consumers. Events can be
filtered based on the event type and source id, as well as combinations of the
type and source.

The above elements can also be combined in groups with a variety of
semantics. Conjunction groups give the consumer the ability to delay the
delivery of some events until all events in the group are available. Events that
match the different elements of a conjunction group are queued until all
elements of the group have been matched. Filters can also be combined in
disjunction groups that deliver events every time any of the events in the

Table 24-5 Event Structure Build Options

Build Option Description

TAO_LACKS_EVENT_CHANNEL_ANY
Removes the any_value member
from the EventData structure.

TAO_LACKS_EVENT_CHANNEL_OCTET_SEQUENCE
Removes the payload member from
the EventData structure.

TAO_LACKS_EVENT_CHANNEL_TIMESTAMPS
Removes the ec_recv_time and
ec_send_time members from the
EventHeader structure.

756 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

group are available. Logical AND groups require events to pass all filters in
the group before they are delivered.

Conjunction, disjunction, and logical AND groups can also be nested within
one another to create more complex filters (although the event channel may be
configured so as to limit this nesting).

Negations allow individual filters (including groups) to have their logic
inverted so that only events that fail a particular filter are passed to the
consumer. The event channel architecture also supports bit-mask filters that
enable faster filtering based on bit masks.

Source code for a simple filtering example is in the TAO source code
distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/EventServices/RTEC_Filter.

24.3.4.1 Specifying and Constructing Filters
Filters are specified when connecting a consumer to the event channel via the
connect_push_consumer() operation. The previous examples use an
ACE_ConsumerQOS_Factory to construct the ConsumerQOS structure that
was then passed to connect_push_consumer().

 ACE_ConsumerQOS_Factory qos;
 qos.start_disjunction_group (1);
 qos.insert_type (ACE_ES_EVENT_ANY, // Event Type
 0); // handle to the rt_info
 supplier->connect_push_consumer (consumer.in (),
 qos.get_ConsumerQOS ());

Here is the definition of the ConsumerQOS structure in IDL:

 module RtecEventChannelAdmin {
 struct Dependency {
 RtecEventComm::Event event;
 RtecScheduler::handle_t rt_info;
 };
 typedef sequence<Dependency> DependencySet;
 struct ConsumerQOS {
 DependencySet dependencies;
 boolean is_gateway;
 };
 // Rest of the module...
 };

o c i w e b . c o m 757

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

The core of this structure is a sequence of events. Special event types are used
to specify the different filter types. In 24.3.4.13, we discuss how to build
custom filters.

When the ConsumerQOS is passed to the event channel, the event channel
uses a filter builder to construct a tree of filter objects that is used to filter
subsequent events. Each time an event is pushed, the event channel evaluates
that event using the filter tree for each consumer. The tree of filters causes
some events to be discarded (never delivered to that consumer), some to be
queued (for potential later delivery to that consumer), and some to be
immediately delivered.

The type of filter builder that the event channel uses is specified via the
-ECFiltering option (see 24.5.2.8) and determines how the ConsumerQOS
structure is translated into the filter object tree. For example, a null filter
builder ignores the ConsumerQOS structure and builds a filter tree that passes
all events. A basic filter builder supports all the basic types, but limits the
nesting of filter groups (conjunction, disjunction, logical AND) to two levels.
The prefix filter builder allows arbitrarily deep nesting, but requires additional
information in the subscription to do so.

24.3.4.2 Filtering By Event Type
In the basic RTES example in 24.3.1, the consumer uses the special event type
of ACE_ES_EVENT_ANY to accept events of all types:

 ACE_ConsumerQOS_Factory qos;
 qos.start_disjunction_group (1);
 qos.insert_type (ACE_ES_EVENT_ANY, // Event Type
 0); // handle to the rt_info
 supplier->connect_push_consumer (consumer.in (),
 qos.get_ConsumerQOS ());

By calling insert_type() with specific event types, consumers can elect to
receive only events of those particular types:

 ACE_ConsumerQOS_Factory qos;
 qos.start_disjunction_group (1);
 qos.insert_type (MY_EVENT_TYPE, // Event Type
 0); // handle to the rt_info
 supplier->connect_push_consumer (consumer.in (),
 qos.get_ConsumerQOS ());

758 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

This consumer receives all events whose type field has a value of
MY_EVENT_TYPE. All other events are not to be delivered to this consumer.

24.3.4.3 Filtering By Source ID
In the previous examples, no source IDs were specified in the QoS
information so events from all sources are delivered by default. By calling
insert_source(), the consumer can limit the delivery of events to those
originating from a particular source or sources.

 ACE_ConsumerQOS_Factory qos;
 qos.start_disjunction_group (1);
 qos.insert_source (MY_SOURCE_ID, // Source ID
 0); // handle to the rt_info
 supplier->connect_push_consumer (consumer.in (),
 qos.get_ConsumerQOS ());

The event channel now delivers to this consumer only those events whose
source id field matches MY_SOURCE_ID.

24.3.4.4 Filtering By Source ID and Event Type Combinations
The consumer QoS factory also allows filtering based on specific Source
Id/Event Type combinations via insert().

 ACE_ConsumerQOS_Factory qos;
 qos.start_disjunction_group (1);
 qos.insert (MY_SOURCE_ID, // Source ID
 MY_EVENT_TYPE, // Event Type
 0); // handle to the rt_info
 supplier->connect_push_consumer (consumer.in (),
 qos.get_ConsumerQOS ());

This causes all events of type MY_EVENT_TYPE with a source of
MY_SOURCE_ID to be delivered to this consumer. All other combinations of
event types and source identifiers are ignored.

Note When calling insert(), be sure to pass the source identifier first and the
event type second as these are easily swapped and the compiler does not
provide a warning.

o c i w e b . c o m 759

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

24.3.4.5 Bit-Mask Filters
The bit-mask value filter allows users to apply (bitwise AND) bit masks to the
source and event type fields and attempts to match the result with specified
values. Here is an example of a consumer with a bit-mask value filter:

 ACE_ConsumerQOS_Factory qos;
 qos.start_disjunction_group (1);
 qos.insert_bitmasked_value (0xFFFFFFFF, // Source mask
 0x0000FFFF, // Type mask
 0x00000020, // Source value
 0x00000000) // Type value
 supplier->connect_push_consumer (consumer.in (),
 qos.get_ConsumerQOS ());

This code results in a filter that performs a bitwise AND of the source mask
(0xFFFFFFFF) and the source id of the event and compares the result with
source value passed (0x00000020). It also does a bitwise AND of the type
mask (0x0000FFFF) and the type of the event and compares the result with
the type value passed (0x00000000). The end result is a filter that passes all
events with a source id of 32 (0x00000020) and an event type with none of
the lower 16 bits set.

24.3.4.6 Disjunction Groups
So far, the examples in this chapter have utilized a disjunction group that
contains a single filter. Invocations of insert_type(), insert_source(),
and insert() create filters of the appropriate types. Each disjunction group
can contain an unlimited number of these filters.

Disjunction groups cause the event channel to deliver an individual event
whenever any of the filters contained within the group “match” the event. To
start a disjunction group, invoke start_disjunction_group() and pass it
the number of child filters that it will contain. The number of child filters
argument can be omitted if the basic filter builder is used (see 24.3.4.10 for
details).

Here is an example of a more complex disjunction group.

 ACE_ConsumerQOS_Factory qos;
 qos.start_disjunction_group (5);
 qos.insert_type (MY_EVENT_1, // Event Type
 0); // handle to the rt_info
 qos.insert_type (MY_EVENT_2, // Event Type

760 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

 0); // handle to the rt_info
 qos.insert_source (MY_SOURCE_1, // Source ID
 0); // handle to the rt_info
 qos.insert_source (MY_SOURCE_2, // Source ID
 0); // handle to the rt_info
 qos.insert (MY_SOURCE_3, // Source ID
 MY_EVENT_3, // Event Type
 0); // handle to the rt_info
 supplier->connect_push_consumer (consumer.in (),
 qos.get_ConsumerQOS ());

This consumer receives all events of type MY_EVENT_1 and MY_EVENT_2, all
events from MY_SOURCE_1 and MY_SOURCE_2, and all events of type
MY_EVENT_3 from MY_SOURCE_3. Each of these events is delivered as it is
pushed to the event channel.

24.3.4.7 Conjunction Groups
Construction of conjunction groups is accomplished in a similar manner:

 ACE_ConsumerQOS_Factory qos;
 qos.start_conjunction_group (2);
 qos.insert_type (MY_EVENT_1, // Event Type
 0); // handle to the rt_info
 qos.insert_type (MY_EVENT_2, // Event Type
 0); // handle to the rt_info
 supplier->connect_push_consumer (consumer.in (),
 qos.get_ConsumerQOS ());

Instead of delivering each matching event as it is received, the conjunction
group causes the event channel to queue events until an event matching each
filter in the conjunction is available. At that point, the event channel delivers
all events in the group to the consumer (in the same EventSet). In the above
example, if the event channel first receives an event of type MY_EVENT_1, the
event channel will queue that event until an event of type MY_EVENT_2 is
received. At that point, the event channel will deliver both events to the
consumer via one call to the consumer’s push() operation.

This feature gives the consumer the ability to correlate related events and
process them as a group. In some applications, this may increase the
performance of the system and reduce the workload for the consumer.

The conjunction only queues one event for each corresponding filter in the
group. Any subsequent events that match that filter are discarded until the

o c i w e b . c o m 761

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

conjunction is satisfied and its events delivered. In the above example, this
means that once a MY_EVENT_1 type event is queued in the event channel, all
subsequent events of this type are discarded until a MY_EVENT_2 event is
received and the conjunction is satisfied.

24.3.4.8 Logical AND Groups
Construction of logical AND groups is done in a similar manner to disjunction
and conjunction groups:

 ACE_ConsumerQOS_Factory qos;
 qos.start_logical_and_group (2);
 // This bitmask matches events from any source with none of the high 16 bits of
 // the event type set
 qos.insert_bitmasked_value (0x00000000, // Source mask
 0xFFFF0000, // Type mask
 0x00000000, // Source value
 0x00000000); // Type value
 qos.insert_source (MY_SOURCE, // Source ID
 0); // handle to the rt_info
 supplier->connect_push_consumer (consumer.in (),
 qos.get_ConsumerQOS ());

This code causes the consumer to only receive events that pass the source and
bit-mask value filters specified (it passes all events from MY_SOURCE with
none of the high 16 bits set on the event type).

24.3.4.9 Negating the Logic of Filters
Filter logic can be inverted with the use of negations. If a given tree of filters
would normally pass one group of events and filter another, then negation of
that tree of filters would pass the events formerly filtered and filter the ones
formerly passed. Negations can only directly contain a single filter (although
that filter may be a group that contains other filters). Here is an example of a
negation filter.

 ACE_ConsumerQOS_Factory qos;
 qos.start_negation ();
 qos.insert_source (MY_SOURCE, // Source ID
 0); // handle to the rt_info
 supplier->connect_push_consumer (consumer.in (),
 qos.get_ConsumerQOS ());

This consumer receives events from any source other than MY_SOURCE.

762 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.3.4.10 Nesting Groups
The TAO Real-Time Event Service supports nesting of conjunction,
disjunction, logical AND, and negation groups to arbitrarily deep levels. The
default filter builder (basic) only supports two levels of nesting with the top
level being restricted to an implicit disjunction group. The start of one group
terminates the previous group. Here is an example:

 ACE_ConsumerQOS_Factory qos;
 qos.start_conjunction_group (2);
 qos.insert_type (MY_EVENT_1, 0);
 qos.insert_type (MY_EVENT_2, 0);
 qos.start_conjunction_group (2);
 qos.insert_type (MY_EVENT_3, 0);
 qos.insert_type (MY_EVENT_4, 0);
 supplier->connect_push_consumer (consumer.in (), qos.get_ConsumerQOS ());

This code creates two conjunction groups nested inside of the implicit
disjunction group. This consumer is delivered pairs of events (types 1 and 2
together and types 3 and 4 together) as the event channel collects the
appropriate matching events.

Because the basic filter builder assumes that the start of a subsequent group
means the end of the previous one, the arguments to the functions that start
groups can be omitted. In this case, the filter builder calculates the number of
children. However, we strongly recommend the explicit use of the arguments
to the start methods. If they are omitted and the prefix filter builder is
specified at run time (via the ECFiltering service configuration option, see
24.5.2.8), the event channel will construct groups with no children and
potentially create a filter with different semantics than those intended.

The prefix filter builder supports arbitrarily complex nesting, but requires the
arguments to the start group functions that specify the number of children.
Always specify the number of immediate children and not the children
contained in enclosed groups. Here is an example of a more complex filter
with the groups indented to show the intended structure.

 ACE_ConsumerQOS_Factory qos;
 qos.start_logical_and_group (2);
 qos.start_disjunction_group (2);
 qos.insert_source (MY_SOURCE_1, 0);
 qos.insert_source (MY_SOURCE_2, 0);
 qos.start_disjunction_group (2);
 qos.insert_type (MY_EVENT_1, 0);

o c i w e b . c o m 763

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

 qos.insert_type (MY_EVENT_2, 0);
 qos.start_logical_and_group (2);
 qos.start_negation ();
 qos.insert_source (MY_SOURCE_3, 0);
 qos.start_disjunction_group (2);
 qos.insert_type (MY_EVENT_3, 0);
 qos.insert_type (MY_EVENT_4, 0);
 supplier->connect_push_consumer (consumer.in (), qos.get_ConsumerQOS ());

Note Nesting disjunction groups does not make sense for any of the basic filter
types discussed so far as it essentially creates one large disjunction group.
The only time this structure is needed is when deadline timeouts are being
specified. An example of this is shown in 24.3.5.2.

24.3.4.11 Quick Rejection Filters Using Bit Masks
A bit-mask filter can be used to quickly reject certain events via bitwise AND
operations with source and event type bit masks. Events that have non-zero
values for the source and event type after applying the bit masks are passed to
the enclosed filter. Events that result in a value of zero for either the source or
event type are rejected. Bit-mask filters can only directly contain a single filter
(although that filter may be a group that contains other filters). Here is an
example of a consumer that uses a bit-mask filter.

 ACE_ConsumerQOS_Factory qos;
 qos.start_bitmask (0x0000000F, // Source mask
 0x0000000F); // Type mask
 qos.start_disjunction (2);
 qos.insert_source (MY_SOURCE, // Source ID
 0); // handle to the rt_info
 qos.insert_source (MY_SOURCE_2, // Source ID
 0); // handle to the rt_info
 supplier->connect_push_consumer (consumer.in (),
 qos.get_ConsumerQOS ());

This consumer quickly filters out events that have none of the lower four bits
set for the source or event type fields. Events with some of these bits set are
passed to the disjunction filter. The end result is that all events from
MY_SOURCE and MY_SOURCE_2 with an event type that has any one of the
lowest four bits set are delivered.

764 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.3.4.12 Null Filters
A null filter will match any event. This type of filter is useful in combination
with the bit-mask filter when no further action beyond the bit-mask operation
is desired. For example, the following filter group would simply accept all
events that have at least one of the four lower order bits set on the source and
event type:

 ACE_ConsumerQOS_Factory qos;
 qos.start_bitmask (0x0000000F, // Source mask
 0x0000000F); // Type mask
 qos.insert_null_terminator ();
 supplier->connect_push_consumer (consumer.in (),
 qos.get_ConsumerQOS ());

This consumer receives all events that pass the bit-mask filter.

24.3.4.13 Constructing Filters By Hand
For most applications, consumer filters will be constructed using
ACE_ConsumerQOS_Factory. However, in some cases it may be necessary
to create custom filters. One such case would arise in an application that uses
the TAO Real-Time Event Service remotely, but the application itself does not
use TAO and is therefore unable to link with the TAO libraries. In this case,
the ACE_ConsumerQOS_Factory operations would not be available to the
application.

In an application that uses the factory to construct a filter, each call to a start or
insert member function on the ACE_ConsumerQOS_Factory object causes
the addition of a dependency structure to the ConsumerQOS object that the
factory manages. This dependency structure is initialized with an
RtecEventComm::Event structure that describes the filter being added.
When get_ConsumerQOS() is called on the factory, it returns the managed
ConsumerQOS object.

Construction of custom filters that do not use the factory is shown in the
following example. This example uses the prefix filter builder. See 24.5.2.8
for how to configure this option.

 // Create the consumer qos object (describes the filter)
 RtecEventChannelAdmin::ConsumerQOS qos;
 qos.is_gateway = 0; // This is not a gateway subscription
 qos.dependencies.length (2); // set the length of the sequence

o c i w e b . c o m 765

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

 // Specify a disjunction group containing one filter
 qos.dependencies[0].event.header.type = ACE_ES_DISJUNCTION_DESIGNATOR;
 qos.dependencies[0].event.header.source = 1; // # of filters in the group
 qos.dependencies[0].rt_info = 0;

 // Specify a filter that accepts events with type of MY_TYPE_1 from any source
 qos.dependencies[1].event.header.type = MY_TYPE_1;
 qos.dependencies[1].event.header.source = ACE_ES_EVENT_SOURCE_ANY;
 qos.dependencies[1].rt_info = 0;
 supplier->connect_push_consumer (consumer.in (), qos);

A list of the special event types (e.g., ACE_ES_DISJUNCTION_DESIGNATOR)
can be found in
$TAO_ROOT/orbsvcs/orbsvcs/Event_Service_Constants.h. More
information about the structures associated with specific filter types can be
found in the code for the ACE_ConsumerQOS_Factory class in the
$TAO_ROOT/orbsvcs/orbsvcs/Event_Utilities.* files. Note that
some filters (such as bit mask and bit-mask value filters) require more than
one dependency structure.

Note Manually building filters is tricky and extremely error prone. A helpful trick is
to use the ACE_ConsumerQOS_Factory helper to construct the required
filter on a platform with TAO, print out the contents of the resulting
RtecEventChannelAdmin::ConsumerQOS structure, and use it to validate
your manually constructed filter.

24.3.5 Timeouts
The TAO Real-Time Event Service also supports the generation of timeout
events based on various consumer/supplier criteria. The basic timeouts
supported are interval timeouts and deadline timeouts. Interval timeouts
generate a timeout event every time a fixed duration has elapsed. Deadline
timeouts deliver timeout events only when certain other dependent events
have not been received in the specified duration.

Timeouts are specified using the same filter mechanism as described in the
previous section. This means they can be combined with source/event type
filters and conjunction/disjunction groups. Such combinations provide
dependencies between timeouts and source/event type filters that result in rich
timeout semantics.

766 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

Full source code for this example is in the TAO source code distribution in the
directory
$TAO_ROOT/orbsvcs/DevGuideExamples/EventServices/RTEC_Filter.

24.3.5.1 Interval Timeouts
Calling the insert_time() operation on the consumer QoS factory with an
event type of ACE_ES_EVENT_INTERVAL_TIMEOUT specifies an interval
timeout. You must also supply the interval desired in 100-nanosecond units.

 ACE_ConsumerQOS_Factory qos;
 qos.start_disjunction_group (1);
 qos.insert_time(ACE_ES_EVENT_INTERVAL_TIMEOUT,
 100000000, // 10^8 * 100 nanoseconds = 10 seconds
 0); // handle to the rt_info
 supplier->connect_push_consumer (consumer.in (), qos.get_ConsumerQOS ());

This consumer now receives events of type
ACE_ES_EVENT_INTERVAL_TIMEOUT every 10 seconds. It receives no other
events. If other events are desired as well, then additional filters can be added
to the disjunction:

 ACE_ConsumerQOS_Factory qos;
 qos.start_disjunction_group (2);
 qos.insert_type (MY_EVENT_1, 0);
 qos.insert_time(ACE_ES_EVENT_INTERVAL_TIMEOUT,
 100000000, // 10^8 * 100 nanoseconds = 10 seconds
 0); // handle to the rt_info
 supplier->connect_push_consumer (consumer.in (), qos.get_ConsumerQOS ());

This consumer now receives all events of type MY_EVENT_1 as they are sent
by the suppliers as well as interval timeout events every 10 seconds.

Placing an interval timeout in a conjunction group with other events causes the
timeout event to be delivered with the other events in the group after they have
all occurred. Consider the following example:

 ACE_ConsumerQOS_Factory qos;
 qos.start_conjunction_group (2);
 qos.insert_type (MY_EVENT_1, 0);
 qos.insert_time(ACE_ES_EVENT_INTERVAL_TIMEOUT,
 100000000, // 10^8 * 100 nanoseconds = 10 seconds
 0); // handle to the rt_info
 supplier->connect_push_consumer (consumer.in (), qos.get_ConsumerQOS ());

o c i w e b . c o m 767

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

If the timeout event occurs first, the event channel holds the timeout event
until a MY_EVENT_1 type event is received. If a MY_EVENT_1 type event
occurs first, the event channel holds the MY_EVENT_1 event until a timeout
event is received. Both events are delivered together. After one event is
queued, any subsequent events of the same type are discarded.

24.3.5.2 Deadline Timeouts
Deadline timeouts placed in a disjunction group give the developer the ability
to schedule timeouts that occur when a fixed period of time has expired
without any of the other events in the group being published. Deadline events
are also created with the insert_time() member function, but require an
event type of ACE_ES_EVENT_DEADLINE_TIMEOUT. The timeout value is
still specified in 100-nanosecond units. Here is an example that defines a
deadline timeout:

 ACE_ConsumerQOS_Factory qos;
 qos.start_disjunction_group (3);
 qos.insert_type (MY_EVENT_1, 0);
 qos.insert_type (MY_EVENT_2, 0);
 qos.insert_time(ACE_ES_EVENT_DEADLINE_TIMEOUT,
 100000000, // 10^8 * 100 nanoseconds = 10 seconds
 0); // handle to the rt_info
 supplier->connect_push_consumer (consumer.in (), qos.get_ConsumerQOS ());

In this example, an event of type ACE_ES_EVENT_DEADLINE_TIMEOUT is
received by the consumer whenever 10 seconds have elapsed without an event
of either type MY_EVENT_1 or MY_EVENT_2 having occurred. Each time an
event of one of these types occurs, it is delivered to the consumer and the
deadline timer is reset.

Placing a deadline timer in a conjunction group causes deadline timeout
events whenever all the other filters in the group have not been satisfied before
the deadline arrives. Repeating the previous example with a conjunction
results in a consumer that only receives deadline timeout events whenever 10
seconds have elapsed without both MY_EVENT_1 and MY_EVENT_2 types of
events occurring. Each time a matched pair of events is delivered to the
consumer, the timer is reset.

Deadline timeouts are the only type of filter that benefits from the existence of
nested disjunction groups. These nested groups allow the specification of

768 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

separate deadline timeout events for different groups of events. Consider the
following filter specification:

 ACE_ConsumerQOS_Factory qos;
 qos.start_disjunction_group (3);
 qos.insert_type (MY_EVENT_1, 0);
 qos.insert_type (MY_EVENT_2, 0);
 qos.insert_time(ACE_ES_EVENT_DEADLINE_TIMEOUT, 100000000, 0);
 qos.start_disjunction_group (3);
 qos.insert_type (MY_EVENT_3, 0);
 qos.insert_type (MY_EVENT_4, 0);
 qos.insert_time(ACE_ES_EVENT_DEADLINE_TIMEOUT, 50000000, 0);
 supplier->connect_push_consumer (consumer.in (), qos.get_ConsumerQOS ());

This example delivers events of all four specified types to the consumer as
well as timeout events whenever either 10 seconds elapse without events of
either type 1 or 2 occurring or 5 seconds elapse without events of either type 3
or 4 occurring. When this consumer receives a timeout, there is no way for it
to distinguish which deadline was exceeded. The only way to differentiate is
to split it into two consumers, each with its own deadline timeout.

24.3.6 Creating and Configuring Event Channel Servants
The previous examples all used event channels that were in a remote process
(the tao_rtevent server). The following section discusses the creation and
management of event channel objects from within an application.

There are two separate mechanisms for configuring event channels, each of
which provides a different set of configuration options. When creating your
own event channels, you can set their attributes to configure certain behaviors.
See 24.3.6.2 for the attributes and how to set them. You can always configure
event channels using the service configurator. See 24.5 for the service
configurator options and how to set them.

24.3.6.1 Local Event Channel Example
The following code shows the steps necessary to create and initialize a local
event channel. First the following header files need to be included:

#include <orbsvcs/Event/EC_Event_Channel.h>
#include <orbsvcs/Event/EC_Default_Factory.h>

o c i w e b . c o m 769

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

Next, the event channel’s resource factory needs to be initialized and
registered. This must occur before the ORB is initialized and is required to
allow the event channel to be configured via the service configurator (see
24.5). Failure to initialize the factory results in any event channel
configuration options in the service configurator file being ignored. Here is
the initialization call:

 TAO_EC_Default_Factory::init_svcs ();

After initializing the ORB, and activating the POA Manager, the application is
ready to create the event channel object and register it with the POA.

 // Get the POA/POA Manager and activate the POA Manager
 CORBA::Object_var object = orb->resolve_initial_references ("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow (object.in ());
 PortableServer::POAManager_var poa_manager = poa->the_POAManager ();
 poa_manager->activate ();

 // Create a local event channel and register it with the RootPOA.
 TAO_EC_Event_Channel_Attributes attributes (poa.in (), poa.in ());
 PortableServer::Servant_var<TAO_EC_Event_Channel> ec_impl =
 new TAO_EC_Event_Channel(attributes);
 ec_impl->activate ();
 PortableServer::ObjectId_var oid = poa->activate_object(ec_impl.in());
 CORBA::Object_var ec_obj = poa->id_to_reference(oid.in());
 RtecEventChannelAdmin::EventChannel_var ec =
 RtecEventChannelAdmin::EventChannel::_narrow(ec_obj.in());

The event channel is now ready to use. The only step remaining is to make the
event channel available to interested consumers and suppliers. The examples
in this section have been using the Naming Service to locate the event
channel. The event channel can be bound in the Naming Service as follows:

 const char* ecname = "MyName";
 object = orb->resolve_initial_references("NameService");
 CosNaming::NamingContextExt_var root_context =
 CosNaming::NamingContextExt::_narrow(object.in());
 CosNaming::Name_var name = root_context->to_name(ecname);
 root_context->rebind(name.in(), ec.in());

The new event channel is now bound to "MyName" in the root naming context
of the Naming Service. Other techniques (that are not shown here) of making
the event channel implementation available to consumers and suppliers
include:

770 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

• Returning the event channel object reference through an operation in the
application’s IDL interface.

• Writing the event channel’s IOR as a string to a file.

• Using persistent object references.

24.3.6.2 Setting Attributes of the Event Channel
The TAO_EC_Event_Channel_Attributes object that is passed to the
event channel constructor is used to set several event channel attributes. Table
24-6 provides a summary of the attributes that can be set:

In the example in the previous section, the only attributes set were the supplier
and consumer POAs:

 TAO_EC_Event_Channel_Attributes attributes (poa.in (), // Supplier POA
 poa.in ()); // Consumer POA
 TAO_EC_Event_Channel* ec_impl = new TAO_EC_Event_Channel(attributes);

Table 24-6 Event Channel Attributes

Name Type Default Description

supplier_poa PortableServer::
POA_ptr None

POA used by supplier admin
and supplier proxies. This is
typically the same POA the
EC uses.

consumer_poa PortableServer::
POA_ptr None

POA used by consumer
admin and consumer proxies.
This is typically the same
POA the EC uses.

consumer_reconnect int 0
Enables consumer
reconnections when non-zero.

supplier_reconnect int 0
Enables supplier
reconnections when non-zero.

disconnect_callbacks int 0

If not zero, the event channel
sends disconnect callbacks
when a disconnect operation
is called on a proxy.

scheduler CORBA::
Object_ptr nil

Scheduler that the EC should
collaborate with. The default
value causes the EC to not
use a scheduler.

o c i w e b . c o m 771

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

The event channel uses the supplier POA to activate SupplierAdmin and
ProxyPushSupplier servants, and the consumer POA to activate
ConsumerAdmin and ProxyPushConsumer servants.

All other attributes of the event channel are set using public data members of
the TAO_EC_Event_Channel_Attributes class. For example:

 TAO_EC_Event_Channel_Attributes attributes (poa.in (), poa.in ());
 attributes.supplier_reconnect = 1;
 attributes.consumer_reconnect = 1;
 TAO_EC_Event_Channel* ec_impl = new TAO_EC_Event_Channel(attributes);

The example above enables suppliers and consumers to reconnect, thereby
allowing suppliers to call connect_push_supplier() and consumers to
call connect_push_consumer() multiple times without disconnecting as
discussed in 24.3.2.3.

The disconnect_callbacks attribute controls whether the consumer and
supplier disconnect callbacks are called when the corresponding disconnect
operation is called on their proxy object. For example, if this attribute is set to
true, when a consumer calls disconnect_push_supplier() on its proxy,
the event channel invokes disconnect_push_consumer() on the
consumer. Similar behaviors exist for push suppliers.

The scheduler attribute is a reference to the scheduler that the event channel
uses. For more details, see the Scheduling Service documentation.

The default values for these attributes are defined as preprocessor macros in
$TAO_ROOT/orbsvcs/orbsvcs/Event/EC_Defaults.h. You can use
your own project-specific defaults by setting these macros in your config.h
file and recompiling the event service.

24.3.7 Observers
The TAO Real-Time Event Channel architecture defines an Observer
interface that allows for user-defined CORBA objects that are notified each
time suppliers and consumers are connected to or disconnected from an event
channel. This functionality is useful for monitoring subscriptions to aid in
efficiently federating networks of event channels as discussed in 24.3.8. By
default, the observer functionality is disabled and must be enabled using the
-ECObserver service configurator option described in 24.5.2.9.

772 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

To implement custom gateways or other advanced features, you may need to
develop your own observers. To create an observer, use the description in
$TAO_ROOT/orbsvcs/orbsvcs/RtecEventChannelAdmin.idl to
implement the Observer interface. To connect the observer, use the
append_observer() operation in the EventChannel interface. While your
observer is connected, and a consumer connects or disconnects, the event
channel calls update_consumer() with a ConsumerQOS structure that
represents the aggregate subscription information for all consumers. Likewise,
each time a supplier connects or disconnects, update_supplier() is called
with a SupplierQOS structure that holds the aggregate supplier information.
To disconnect the observer, use the remove_observer() operation of the
EventChannel interface.

Subscriptions with the is_gateway flag set to true do not have their
subscription information passed to observers. This flag is set to false by
default and can be set to true via the is_gateway data member of the
ConsumerQOS structure.

 ACE_ConsumerQOS_Factory qosFact;
 // Setup the qos...
 RtecEventChannelAdmin::ConsumerQOS qos = qosFact.get_ConsumerQOS();
 qos.is_gateway = 1;
 // Connect to the EC using the qos structure...

Gateways can be used to federate event channels (see 24.3.8).

24.3.8 Federating Event Channels
Using a single event channel in a large distributed system can often lead to
unnecessarily long delivery times and unnecessarily high levels of network
traffic. This is especially true when many of the consumers and suppliers that
are communicating are located on the same machine or possibly even in the
same process. Figure 24-2 shows such a system, where each node contains

o c i w e b . c o m 773

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

consumers and suppliers and almost all events must make two trips across the
network.

By having event channels on each node in the network (and dividing the
events published between them in some logical manner), you can avoid some
of these problems. Figure 24-3 shows a hypothetical system with such an
architecture. This configuration avoids some of the problems of the single
event channel system. However, the architect must now specify the event
channels to use for particular events and consumer and supplier processes
must now communicate with several distinct event channels. Even with an
optimal distribution of events on event channels, this configuration may
produce additional overhead and network traffic

Federating event channels avoids many of these problems. When separate
event channels are joined into a federation using one of the techniques
described in the subsequent sections, the resulting federated event channel
acts as one logical event channel. This frees you from allocating events to
event channels or interacting with more than one event channel. It also avoids
performance problems by delivering events locally, when possible. The
Real-Time Event Service provides several mechanisms for federating event
channels that differ mainly in the protocol used to transmit events between
members of the federation. Federation mechanisms exist that send the events
via CORBA messages, UDP, and IP multicast.

Figure 24-2 Single Event Channel System Architecture

774 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

These mechanisms all utilize the normal consumer and supplier interfaces to
receive events from one event channel and forward them to another. The
CORBA and multicast mechanisms make use of the event channel’s
Observer interface that allows them to automatically tailor their consumer
subscriptions based on the consumers that are connected to the event channel
they are supplying. See 24.3.7 for a full description of the Observer
interface..

To ensure that events do not infinitely loop between event channels in the
federation, the time to live (ttl) field in the event header is used as a counter.
Each time an event passes between event channels in a federation, the ttl
flag is decremented. If the ttl value reaches zero, the event is no longer
passed between event channels. Typically, you will want to set the ttl field to
1 when using federations. Events of local interest may use a value of 0.

24.3.8.1 Using the CORBA Gateway
TAO defines a generic gateway interface in the TAO_EC_Gateway class and
provides one implementation of this interface, TAO_EC_Gateway_IIOP, that
uses CORBA messages as the underlying communication mechanism. This
gateway uses the existing consumer and supplier interfaces to connect to a pair

Figure 24-3 Multiple Event Channel System Architecture

o c i w e b . c o m 775

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

of event channels (one local and one remote). It transmits the events between
the event channels by receiving them from a remote event channel as a
consumer and sending them to the local event channel as a supplier. To use the
consumer information from the local event channel for customizing its
subscription information for the remote event channel, the gateway acts as an
Observer on the local event channel. This ensures all necessary events (and
no more) are passed to it for eventual delivery to the local consumers.

Figure 24-4 shows three event channels that have been federated using
CORBA gateways.

Note Because the TAO_EC_Gateway_IIOP uses the Observer capabilities of the
event channel, the Observer functionality must be activated as discussed in
24.5.2.9.

Consumers and suppliers using the federation only connect to their local event
channel and are unaware of the federation. The local event channel handles all
events published from a local supplier to a local consumer. If any remote
consumers are interested in them (subscribe to them), they are passed through
the appropriate gateway to the corresponding remote event channel.

Figure 24-4 CORBA-Based Event Channel Federation

776 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

The following code shows how to create and use a CORBA based federation
of two event channels. Full source code for this example is in the TAO source
code distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/EventServices/RTEC_Federated.

First include the appropriate header file:

#include <orbsvcs/Event/EC_Gateway_IIOP.h>

After the local event channel has been created and a reference to the remote
event channel obtained, the gateway can be created and initialized:

 RtecEventChannelAdmin::EventChannel_var local_ec;
 RtecEventChannelAdmin::EventChannel_var remote_ec;

 // Initialize the local event channel and connect to
 // the remote event channel...

 PortableServe::Servant_var<TAO_EC_Gateway_IIOP> gateway =
 new TAO_EC_Gateway_IIOP;
 gateway->init(remote_ec.in(), // Remote EC object reference
 local_ec.in()); // Local EC object reference

The gateway object is initialized with the remote and local event channel
references.

To activate the gateway, it must be registered with the POA and attached as an
observer to the local event channel. The TAO_EC_Gateway_IIOP class
implements the RtecEventChannelAdmin::Observer interface that
allows it to be passed into the append_observer() operation.

 CORBA::Object_var poa_obj = orb->resolve_initial_references ("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow (poa_obj.in ());
 PortableServer::ObjectId_var gateway_oid =
 poa->activate_object(gateway.in());
 CORBA::Object_var gateway_obj = poa->id_to_reference(gateway_oid.in());
 RtecEventChannelAdmin::Observer_var obs =
 RtecEventChannelAdmin::Observer::_narrow(gateway_obj.in());
 RtecEventChannelAdmin::Observer_Handle local_ec_obs_handle =
 local_ec->append_observer (obs.in ());

The gateway is now observing the local event channel and each time a
consumer is added or removed it receives the full subscription information for
all consumers and updates its subscription on the remote event channel. When

o c i w e b . c o m 777

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

the remote event channel delivers events to the gateway (acting as a
consumer), it publishes them on the local event channel (acting as a supplier).

All suppliers and consumers now interact with the federated event channel by
simply using their local event channel.

To fully federate a set of N event channels using CORBA-based gateways
requires that N-1 gateways be collocated with each event channel (one for
each remote event channel).

The CORBA gateway can be configured using the IIOP Gateway Factory
object as described in 24.6.

24.3.8.2 Federating Event Channels with UDP
TAO’s Real-Time Event Service supports two separate APIs for federating
event channels using UDP. The first API has been supported by TAO for a
number of years and uses a number of low-level classes that allow you to
directly control all aspects of the federation. The second API was added to
recent versions of TAO and allows a single TAO_ECG_Mcast_Gateway
object to encapsulate all of the lower level objects of the first API. While not
fully controllable, the gateway object provides a number of configuration
options for commonly used variations. The example in this section uses the
lower-level API. For more details on the gateway class and its usage, see the
class documentation in
$TAO_ROOT/orbsvcs/orbsvcs/Event/ECG_Mcast_Gateway.h.

To federate two event channels using the low-level UDP API, the
TAO_EGP_UDP_Sender, TAO_EGP_UDP_Receiver, and TAO_ECG_UDP_EH
classes are needed. To actually federate the channels, construct sender and
receiver objects, attach each to an event channel, and connect the sender to the
remote receiver. Figure 24-5 shows three event channels that have been
federated using UDP. The sender object consumes events from its collocated
event channel and transmits each event to a specified UDP port (associated
with a remote event channel). The event handler (UDP EH) listens on a UDP
port and passes each incoming event to the receiver. The receiver acts as an
event supplier and pushes each event received onto its collocated event
channel.

The following code shows how an individual event channel can be federated
with another similarly configured event channel. Full source code for this
example is in the TAO source code distribution in the directory

778 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

$TAO_ROOT/orbsvcs/DevGuideExamples/EventServices/RTEC_MCa
st_Federated.

First, include the files where the UDP federation classes are defined:

#include <orbsvcs/Event/ECG_UDP_Sender.h>
#include <orbsvcs/Event/ECG_UDP_Receiver.h>
#include <orbsvcs/Event/ECG_UDP_Out_Endpoint.h>
#include <orbsvcs/Event/ECG_UDP_EH.h>

After the event channel is created and activated, we need to create and activate
an object that implements the RtecUDPAdmin::AddrServer interface. This
object will be used by the sender object to determine where to send each event
that the sender receives. The simple implementation used here
(SimpleAddressServer) always returns the single address that it was
passed in its constructor. That address should refer to the node and port where
a corresponding event channel’s event handler is listening.

 u_short port = 12345; // Port # of the remote EC’s event handler
 const char* address = "node2"; // The remote EC’s node
 ACE_INET_Addr send_addr (port, address);

Figure 24-5 UDP-Based Event Channel Federation

o c i w e b . c o m 779

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

 PortableServer::Servant_var<SimpleAddressServer> addr_srv_impl =
 new SimpleAddressServer(send_addr);
 PortableServer::ObjectId_var addr_srv_oid =
 poa->activate_object(addr_srv_impl.in());
 CORBA::Object_var addr_srv_obj = poa->id_to_reference(addr_srv_oid.in());
 RtecUDPAdmin::AddrServer_var addr_srv =
 RtecUDPAdmin::AddrServer::_narrow(addr_srv_obj.in());

We now construct, initialize, and connect the sender object to the event
channel as a consumer. We pass the object reference of our simple
RtecUDPAdmin::AddrServer to the sender’s init() function so it can use
it to get the address to which it should send each event it receives:

 // Create and initialize the sender object
 TAO_EC_Servant_Var<TAO_ECG_UDP_Sender> sender = TAO_ECG_UDP_Sender::create();
 TAO_ECG_UDP_Out_Endpoint endpoint;
 if (endpoint.dgram ().open (ACE_Addr::sap_any) == -1) {
 std::cerr << "Cannot open send endpoint" << std::endl;
 return 1;
 }
 // Clone endpoint so sender can take ownership
 sender->init (ec.in (), addr_srv.in (),
 new TAO_ECG_UDP_Out_Endpoint (endpoint));

 // Setup the subscription and connect to the EC
 ACE_ConsumerQOS_Factory cons_qos_fact;
 cons_qos_fact.start_disjunction_group (1);
 cons_qos_fact.insert (ACE_ES_EVENT_SOURCE_ANY, ACE_ES_EVENT_ANY, 0);
 RtecEventChannelAdmin::ConsumerQOS sub = cons_qos_fact.get_ConsumerQOS ();
 sender->open (sub);

Next, we construct, initialize, and connect the receiver object to the event
channel as a supplier. Again, we pass the object reference to our simple
RtecUDPAdmin::AddrServer to the receiver’s init() function:

 // Create and initialize the receiver
 TAO_EC_Servant_Var<TAO_ECG_UDP_Receiver> receiver =
 TAO_ECG_UDP_Receiver::create();
 receiver->init (ec.in (),
 new TAO_ECG_UDP_Out_Endpoint(endpoint),
 addr_srv.in ());

 // Setup the registration and connect to the event channel
 ACE_SupplierQOS_Factory supp_qos_fact;
 supp_qos_fact.insert (MY_SOURCE_ID, MY_EVENT_TYPE, 0, 1);
 RtecEventChannelAdmin::SupplierQOS pub = supp_qos_fact.get_SupplierQOS ();
 receiver->open (pub);

780 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

We then create and connect the UDP event handler to the reactor, and
initialize it with the address where it should listen.

 // Create the appropriate event handler and register it with the reactor
 TAO_ECG_UDP_EH* udp_eh = new TAO_ECG_UDP_EH (receiver.in());
 udp_eh->reactor (orb->orb_core ()->reactor ());
 u_short listenport = 12345; // Listen port for this EC’s event handler
 ACE_INET_Addr local_addr (listenport);
 if (udp_eh->open (local_addr) == -1) {
 std::cerr << "Cannot open EH" << std::endl;
 }

Once we enter the event loop and the other event channel is similarly
configured, this event channel then forms a federation with the other event
channel. Consumers connected to either event channel can receive events
from both. Each event pushed to an event channel is automatically sent to the
other event channel (assuming its ttl field is one).

One way to connect a third event channel to this federation is to add a second
sender object (to each existing event channel) and force it to use the address of
the new event channel. In this type of configuration, each event channel in a
federation of N event channels requires a receiver and N-1 senders.

For the sake of completeness, here is the implementation of the
SimpleAddressServer. First, the header file:

#include <orbsvcs/RtecUDPAdminS.h>

class SimpleAddressServer : public POA_RtecUDPAdmin::AddrServer
{
public:
 SimpleAddressServer (const ACE_INET_Addr& address);
 virtual void get_addr (const RtecEventComm::EventHeader& header,
 RtecUDPAdmin::UDP_Addr& address);

private:
 RtecUDPAdmin::UDP_Addr address_;
};

Next, the implementation of the constructor and the get_addr() operation:

#include "SimpleAddressServer.h"
#include <ace/INET_Addr.h>

o c i w e b . c o m 781

2 4 . 3 U s i n g t h e T A O R e a l - T i m e E v e n t S e r v i c e

SimpleAddressServer::SimpleAddressServer (const ACE_INET_Addr& address)
{
 this->address_.ipaddr = address.get_ip_address ();
 this->address_.port = address.get_port_number ();
}

void SimpleAddressServer::get_addr (
 const RtecEventComm::EventHeader&,
 RtecUDPAdmin::UDP_Addr& address)
{
 address = this->address_;
}

24.3.8.3 Federating Event Channels with IP Multicast
The UDP and multicast federation mechanisms share much of the same
infrastructure. Like UDP federations, multicast federations can be constructed
using either a TAO_ECG_Mcast_Gateway object or a set of lower level
objects that give developers direct control of the federation. Our example uses
the lower level objects of the sender, receiver, and event handler and is very
similar to that in the preceding section. For more information about using the
gateway object, see the class documentation in
$TAO_ROOT/orbsvcs/orbsvcs/Event/ECG_Mcast_Gateway.h.

Figure 24-6 Multicast-Based Event Channel Federation

782 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

Figure 24-6 shows a multicast federation of three event channels. The main
differences from the UDP example, lie in the address supplied to and returned
by the address server (that should now be a multicast address) and the type of
the event handler.

The example discussed in the previous section and found in the
$TAO_ROOT/orbsvcs/DevGuideExamples/EventServices/RTEC_Mca
st_Federated directory can also be used to form a multicast federation. The
main code difference is found in the creation and initialization of the event
handler. Note that the multicast event handler is no longer initialized with an
address. It receives the address by querying the address server (via the
receiver passed into its constructor).

 TAO_ECG_Mcast_EH* mcast_eh = new TAO_ECG_Mcast_EH (receiver.in());
 mcast_eh->reactor (orb->orb_core ()->reactor ());
 if (mcast_eh->open (ec.in()) == -1) {
 std::cerr << "Cannot open EH" << std::endl;
 }
 eh = mcast_eh;

Because of the nature of multicast, you can use this example to federate an
unlimited number of event channels (as long as they all use the same
port/address combination). This makes the multicast approach the most
scalable mechanism for federating large numbers of event channels.

Note Because the TAO_ECG_Mcast_EH uses the Observer capabilities of the EC,
the Observer functionality must be activated as discussed in 24.5.2.9.

24.3.8.4 Choosing The Appropriate Federation Mechanism
Choosing the best federation mechanism for a project involves understanding
the relative strengths (and weaknesses) of the existing mechanisms and
evaluating them with respect to a project’s unique characteristics and forces.

The multicast federation approach has several unique advantages that make it
applicable to many projects. It is the easiest federation type to set up and is
also the most scalable in terms of memory usage and network traffic. Its main
disadvantages are its use of an inherently unreliable protocol (that is often not
supported on some platforms and networks) and potential problems with
federating ECs over a complex network. It is appropriate for projects that

o c i w e b . c o m 783

2 4 . 4 t a o _ r t e v e n t C o m m a n d L i n e O p t i o n s

operate over a controlled network (that would make it fairly reliable) and need
to conserve network bandwidth.

The UDP federation is more complex than the multicast federation, and thus
does not scale as well. It requires more sender objects than the multicast
mechanism for a full federation and thus will use more memory. It may also
result in redundant network traffic. Its use of an inherently unreliable protocol
is also a disadvantage. The UDP approach is appropriate for systems that
cannot use multicast for some of the reasons cited above.

The CORBA federation uses a reliable protocol (by default it uses IIOP,
which uses TCP/IP) but forces the addition of many gateway objects as the
federation grows, like the UDP mechanism forces the addition of many
senders. Thus, it is about as complex as the UDP mechanism. It may result in
more network traffic than the UDP mechanism because of its use of a heavier
weight transport protocol. It is especially appropriate for relatively small
systems that require reliable event delivery.

24.4 tao_rtevent Command Line Options

The tao_rtevent server supplies the capability to start a single real-time
event channel in its own process. You can configure it to make use of a local
(in-process) or global scheduler. This server uses a local scheduler by default.
It binds the Event Channel to a supplied name in the root naming context of
the Naming Service. The Naming Service server must be running to use this
server. The event channel created implements the
RtecEventChannelAdmin::EventChannel interface. Table 24-7
describes the available command line options.

Table 24-7 tao_rtevent Command Line Options

Option Description Default

-n RTEC_name
Specifies the name with which to bind the
Event Channel in the root naming context
of the Naming Service.

EventService

784 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

If a local scheduler is specified, the scheduler object is registered in the
Naming Service under the root naming context with the name
"ScheduleService." If a global scheduler is requested, the process that
contains the scheduler should be started before running the event service. For
further information see the appropriate Scheduling Service documentation.

While the thread per connection dispatching strategy can be specified through
this command line (and programatically), other dispatching strategies are
controlled via the service configurator options discussed in 24.5.1.1.

24.5 Event Channel Resource Factory

The event channel resource factory is responsible for creating many strategy
objects that control the behavior of the event channel. The behavior of the

-s (global |
local | none)

Specifies a scheduler for this event channel.
If local, a scheduler object is created in
this process and used. If global, the
Naming Service locates the scheduler using
the "ScheduleService" name in the root
naming context. If none, no scheduler is
used.

none

-o filename
Specify the name of the file used for storing
the IOR of the event channel.

Do not store the
IOR in a file.

-p pid_filename
Specify the name of the file used for storing
the process ID of this server.

Do not store the
PID in a file.

-q object_id

Specify an Object ID to use for activating
the event channel. When specified, this
option also makes the event channel a
persistent CORBA object.

Event channel is a
transient CORBA
object.

-b
Specifies that this event channel should
enable bi-directional GIOP support.

Bi-directional
GIOP support is
not enabled.

-a
Use the thread per consumer dispatching
strategy.

-ECDispatching
Strategy option
determines
strategy.

-x
Do not use the Naming Service. This
simply creates an event channel.

Bind the EC in the
Naming Service.

Table 24-7 tao_rtevent Command Line Options

Option Description Default

o c i w e b . c o m 785

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

event channel is typically controlled by using the service configurator file to
select the appropriate behaviors for the default factory implementation. In
addition to the default factory implementation the RTES supplies a number of
other implementation of this factory. Some are used to enable specific features
that most applications do not use (such as real-time scheduling and
dispatching) and others are minimal implementations that constrain run-time
configuration. Optionally, the application developer could also provide a
custom implementation of the event channel resource factory containing
tailored or customized strategies. This section focuses on the options
supported by the default event channel factory and some commonly used
alternatives.

The RTES can use either of two event channel resource factories. They are
both registered with the service configurator using the name EC_Factory,
and are statically registered with the service configurator, so the static
directive is used to supply initialization options to them. The options used to
configure the two factory implementations differ slightly. These differences
are noted in the documentation for each option. If you do nothing, the RTES
uses the default event channel factory. You can select the thread per consumer
(TPC) event channel factory either by passing the -a option to the
tao_rtevent server as described in 24.4 or by explicitly calling the static
member function TAO_EC_TPC_Factory::init_svcs().

To change the behavior of the event channel factory, add a line similar to the
line shown below to your service configuration file.

static EC_Factory "-ECFiltering basic"

For this option to be effective, you must make sure that one of the following
function calls occur before the ORB is initialized (which one you use
determines which factory your application uses):

TAO_EC_Default_Factory::init_svcs (); // Initialize the default factory
TAO_EC_TPC_Factory::init_svcs(); // Initialize the TPC factory

This creates an event channel resource factory and statically registers it. If you
forget to do this, the service configurator is not able to find the EC_Factory
to initialize it.

786 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

The -ORBSvcConf option allows you to use file names other than svc.conf
for service configurator initialization. See 17.13.63 for more information on
this option.

Default values for many of the event channel resource factory’s options are
defined as preprocessor macros in
$TAO_ROOT/orbsvcs/orbsvcs/Event/EC_Defaults.h. You can use
your own project-specific defaults by setting these macros in your config.h
file and recompiling the event service.

24.5.1 EC_Factory Option Overview
This section provides an overview of the configuration options supported by
the default and TPC event channel factories. The following section provides
detailed documentation of each of the individual options.

24.5.1.1 Dispatching
When the event channel is pushing events to interested consumers, the thread
used to push the event is one decision that has far-reaching effects on the
performance and behavior of the application. The event channel resource
factory allows for selection of a dispatching strategy that defines how to push
events received from suppliers to the interested consumers on the appropriate
thread. The default event channel resource factory allows for reactive,
priority, and multithreaded dispatching strategies. In addition, when a
multithreaded dispatching strategy is selected, the number of threads to be
used can be specified. Table 24-8 shows the options related to dispatching
strategies.

Table 24-8 Dispatching related options

Option Section Description

-ECDispatching
{reactive | mt} 24.5.2.5 Supply this option to select the dispatching

strategy for supplier produced events.

-ECDispatchingThreads
nthreads 24.5.2.6

Specify the number of threads to create
and use for the multithreaded dispatching
strategy. Defaults to one thread.

-ECDispatchingThreadFlags
flags:priority 24.5.2.7

Specifies the thread flags and priority to
use for creating dispatching threads.
Affects only the multithreaded and thread
per consumer dispatching strategies.

o c i w e b . c o m 787

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

The reactive dispatching strategy delivers events on the same thread as they
were received (or generated). This is usually the reactor’s main thread. The
multithreaded dispatching strategy creates a pool of threads and distributes
each event on a randomly-selected member of the pool. The timeout strategy
is used to determine how timeout events are dispatched. This option takes only
a single value here but is extended by the non-default factories to provide
additional strategies.

Use of the thread per consumer (TPC) event channel factory forces a
dispatching strategy that creates a separate dispatching thread for each
consumer. Each event received from a supplier is placed on a queue for each
consumer that receives it. Each consumer’s dispatching thread pushes the
event to its consumer. When using the TPC factory, the -ECDispatching
option is ignored.

24.5.1.2 Feature Control
Various features of the event channel can be disabled, configured, and
replaced via the event channel resource factory. These include supplier and
consumer filtering, observers, ORB identity, and scheduler interaction. Table
24-9 shows the options related to control of these event channel features.

-ECQueueFullServiceObject
service_name 24.5.2.14

Specifies a service name that is used for
finding a service object that defines the
strategy for handling full event
dispatching queues.

-ECTimeout {reactive} 24.5.2.20 Supply this option to select the dispatching
strategy for timeout events.

Table 24-8 Dispatching related options

Option Section Description

Table 24-9 Event channel feature control options

Option Section Description

-ECFiltering
{null | basic | prefix} 24.5.2.8 Controls the type of consumer filtering

performed in the event channel.

-ECSupplierFiltering
{null | per-supplier} 24.5.2.19

Controls the supplier-side filtering in
the event channel. The null option
disables filtering and sends all events to
a global collection of consumers.
Per-supplier filtering maintains separate
consumer lists for each supplier.

788 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

The two filtering options can be disabled so as to improve efficiency in cases
where they are not being used. To allow consumers to use nested filter groups,
the -ECFiltering option must be set to prefix. The observer option needs
to be enabled when an event channel process uses gateways or has observers
attached to it.

The default factory requires an ORB for a variety of operations. It normally
uses the default ORB (with a null string for the ORB identifier). Specify an
orbid using the -ECUseORBId option to force the default factory to use a
different ORB. Typically, this option is used to ensure that the default factory
is using the same ORB as was used to activate the event channel.

24.5.1.3 Locking Options
The locking options allow the event channel resource factory to define the
lock type desired for various components in the event channel. The default

-ECSupplierFilter 24.5.2.19 Same as -ECSupplierFiltering.

-ECObserver {null | basic |
reactive} 24.5.2.9

Enables the Observer functionality.
Must be enabled to support Gateways
and the federation of event channels.

-ECScheduling {null | group} 24.5.2.15

Effects coordination between the event
channel and scheduling service to
enable building the dependency list of
consumers and suppliers.

-ECUseORBId orbid 24.5.2.22 Specifies the orbid of the ORB that the
default factory uses.

-ECConsumerValidateConnection
enabled 24.5.2.4

This option forces the event channel to
make and validate the connection to the
consumer process before fully
processing the
connect_push_consumer call.

-ECTPCDebug 24.5.2.21
Enables debugging messages when
using the thread per consumer event
channel resource factory.

Table 24-9 Event channel feature control options

Option Section Description

o c i w e b . c o m 789

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

factory allows specification of the lock type for consumer and supplier proxies
using the options shown in Table 24-10.

These options can be set to null to increase performance if the event channel
does not access the given components from multiple threads. The default
values ensure that the event channel is thread-safe, but recursive locks may be
required to avoid deadlocks in certain complex systems.

24.5.1.4 Consumer and Supplier Control Options
The following group of options allows the event channel resource factory to
define how the event channel handles dangling (ill-behaved) suppliers and
consumers. Consumers and suppliers that remain connected to the event
channel when their CORBA objects are no longer accessible from the event
channel process are considered ill-behaved. Such consumers and suppliers
result when the consumer or supplier process fails to call disconnect,
terminates abnormally, or has its node disconnected from the network. The
default factory allows specification and configuration of the control policy for
consumer and supplier proxies via the options shown in Table 24-11.

Table 24-10 Locking options

Option Section Description

-ECProxyConsumerLock
{null | thread | recursive} 24.5.2.10 Specifies the lock type for the consumer

proxy object.

-ECProxySupplierLock
{null | thread | recursive} 24.5.2.13 Specifies the lock type for the supplier

proxy object.

Table 24-11 Consumer and supplier control options

Option Section Description

-ECConsumerControl
{null | reactive} 24.5.2.1 Defines the policy for handling ill-behaved

consumers.

-ECSupplierControl
{null | reactive} 24.5.2.16 Defines the policy for handling ill-behaved

suppliers.

-ECConsumerControlPeriod
period 24.5.2.2 Defines the polling period in microseconds

for the reactive consumer control policy.

-ECSupplierControlPeriod
period 24.5.2.17 Defines the polling period in microseconds

for the reactive supplier control policy.

-ECConsumerControlTimeout
timeout 24.5.2.3

Defines the timeout in microseconds that the
reactive consumer control policy uses for
pinging consumers.

790 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

The default control policy of null leaves consumers and suppliers connected
to the event channel even if the event channel is unable to access them. This
allows consumers and suppliers to continue to be connected even in the face of
intermittent communications.

The reactive control policy disconnects a consumer or supplier from the
event channel the first time the event channel fails to deliver a request to it. It
also periodically polls (by default every 5 seconds) all consumer and supplier
proxies to ensure their continued connection. Failure to respond to the polling
request results in disconnection of the proxy. If the polling period is set to 0,
polling is completely disabled.

24.5.1.5 Proxy Collection Options
The proxy collection options define the types of collections used to hold
consumer and supplier proxies. The default factory allows specification of the
collection type for consumer and supplier proxies via the options shown in
Table 24-12.

The flags passed to these collection options fall into three separate groups,
with each group specifying a different characteristic of the collection. A colon
is used as a separator between flags (e.g., mt:rb_tree:immediate).

First, the lock type used to control access to the collection can be specified.
The st flag allows specification of a null lock. The mt flag specifies a
thread-safe lock. A thread-safe lock is specified by default.

-ECSupplierControlTimeout
timeout 24.5.2.18

Defines the timeout in microseconds that the
reactive supplier control policy uses for
pinging suppliers.

Table 24-11 Consumer and supplier control options

Option Section Description

Table 24-12 Proxy collection options

Option Section Description

-ECProxyPushConsumerCollection flags
24.5.2.1
1

Define the characteristics of the
collection used to store proxy
consumers in the event channel.

-ECProxyPushSupplierCollection flags
24.5.2.1
2

Define the characteristics of the
collection used to store proxy
suppliers in the event channel.

o c i w e b . c o m 791

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

The second characteristic is the actual collection type used. The list flag
specifies that an ordered list collection is used. The rb_tree flag specifies
that a collection using a red-black tree is used. The event channel uses an
ordered list collection by default.

The third characteristic specifies how concurrent use of the collection is
controlled, specifically the case where the collection is being iterated over
while a client is attempting an operation that adds or removes a member of the
collection. An example is concurrent distribution of events to push consumers
(via iteration over the proxy push suppliers collection) while one of the
consumers is attempting to disconnect itself. The default factory specifies four
different strategies for this characteristic: immediate, copy_on_read,
copy_on_write, and delayed.

The immediate flag causes each operation to block until it receives access to
the collection. In the example above, the consumer attempting to disconnect
blocks until the event distribution iteration completes. Note, that it is possible
that the disconnect request may be processed in the same thread as the event
distribution (via a nested upcall). If this occurs, immediate access is granted
(the thread already has the lock for the collection) and the iterator may be
invalidated. It is the developer’s responsibility to ensure that the iterator is not
invalidated. Using the -ECDispatching option (see 24.5.2.5) to establish a
separate dispatching thread is the most common method for ensuring this
validity. (In other words, the immediate collection update flag should not be
used with -ECDispatching reactive.)

The copy_on_read flag causes the iterators to copy the collection before
proceeding. This allows iterators to release the lock after the copy is made.
Subsequent changes to the collection can occur while iteration is ongoing
without affecting the iteration. In the above example, this means that the
consumer can disconnect without harm to the event dispatching. The main
disadvantage of this approach is that of the extra performance overhead
incurred when the copy of the collection is allocated and replicated.

The copy_on_write flag causes any modifiers to the collection to make
copies of the collection before proceeding. This means changes to the
collection can occur while iteration is ongoing without affecting the iteration.
In the above example, this means that the consumer can disconnect without
harm to the event dispatching. The main disadvantage of this approach is that
of the extra performance overhead incurred when the copy of the collection is
allocated and replicated. Note that the copy_on_write strategy makes a

792 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

copy each time the collection is changed (connect, disconnect, reconnect, or
shutdown) and the copy_on_read strategy makes copies each time the
collection is iterated.

The delayed flag causes changes to the collection to be queued while
iterations are ongoing. When all iterations are completed, the queued
modifications are made. The event channel attributes of busy_hwm and
max_write_delay allow bounds to be set on how many iterators access the
collection at a time and how many iterators may access it before modification
occurs. See 24.3.6.2 for details of these attributes and how to set them.

24.5.2 Event Channel Resource Factory Options
The remainder of this section describes the individual options interpreted by
the default and TPC event channel factories. These options are applied to the
default event channel resource factory by the service configurator as described
in 24.5. In addition, we briefly point out which options are affected by the use
of the two scheduling factories contained in EC_Kokyu_Factory.h and
EC_Sched_Factory.h. See these factory implementations for further details
on their use.

o c i w e b . c o m 793

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

24.5.2.1 ECConsumerControl control_policy

Description This option specifies the policy used when dealing with dangling consumers.
The null control policy never disconnects ill-behaved consumers. The reactive
policy disconnects consumers upon the first communication failure.

Usage Use the reactive control policy when consumers could possibly be destroyed
without disconnecting. Use the default control policy, null, when all
consumers are guaranteed to disconnect properly (or not at all) and you do not
want to incur the overhead of the reactive policy.

Impact A null consumer control strategy causes degraded throughput when
consumers are destroyed without first disconnecting. The reactive strategy
requires slightly more overhead in normal operation, may result in consumers
having to reconnect when the network quality is degraded, and requires
slightly more memory.

See Also 24.5.2.2, 24.5.2.16

Example static EC_Factory "-ECConsumerControl reactive"

Values for control_policy

null (default) Do not discard dangling consumers.

reactive Use a reactive policy to discard dangling consumers.

794 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.5.2.2 ECConsumerControlPeriod period
Description Sets the period (in microseconds) that the reactive consumer control policy

uses to poll the state of the consumers. The default period is 5000000 (5
seconds).

Usage For event channels using the reactive consumer control policy, use this option
to control the time to wait between attempted pings on each consumer. The
reactive consumer control strategy object pings the consumer by invoking
CORBA::Object::_non_existent() on the consumer’s object reference;
this is a synchronous call. The -ECConsumerControlPeriod option is
ignored when the consumer control policy is not reactive.

Impact Shorter periods require more bandwidth and processing to validate the
existence of the consumers. Longer periods consume less of these resources.
You can disable the ping altogether by setting the period to zero.

See Also 24.5.2.1, 24.5.2.17

Example static EC_Factory "-ECConsumerControl reactive -ECConsumerControlPeriod 1000000"

o c i w e b . c o m 795

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

24.5.2.3 ECConsumerControlTimeout timeout
Description Sets the relative round-trip timeout (in microseconds) that the reactive

consumer control policy uses for polling consumers. The default timeout is
10000 (10 milliseconds).

Usage For event channels using the reactive consumer control policy, use this
option to control the time the event channel waits for a consumer to respond to
an attempted ping. The reactive consumer control strategy object pings the
consumer by invoking CORBA::Object::_non_existent() on the
consumer’s object reference; this is a synchronous call. Failure to respond
within the specified timeout period results in the event channel classifying that
ping as a communication failure for that consumer. The
-ECConsumerControlTimeout option is ignored when the consumer
control policy is not reactive.

Impact Smaller timeout values may result in more timeout failures and consumers
being disconnected more often. A larger timeout value means it takes longer
to detect and remove dead consumers.

See Also 24.5.2.1, 24.5.2.2

Example static EC_Factory "-ECConsumerControl reactive -ECConsumerControlTimeout 50000"

796 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.5.2.4 ECConsumerValidateConnection enabled

Description Enabling this option forces the connection from the event channel to the
consumer to be completed before the connect_push_consumer() call
returns.

Usage Use this when connections are slow to establish (such as when running on a
WAN).

Impact Connecting consumers can take much longer with this option enabled.

Example static EC_Factory "-ECConsumerValidateConnection 1"

Values for enabled

0 (default)
The connection from the event channel to the consumer is
lazily made, probably when the first event is pushed.

1 The connection is established during the consumer’s
connect_push_consumer() call.

o c i w e b . c o m 797

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

24.5.2.5 ECDispatching dispatching_strategy

Description This option controls the dispatching strategy that the event channel uses. The
default strategy is reactive.

Note This option is ignored when the Thread Per Consumer (TPC) event channel
resource factory is used. The TPC factory always uses a single dispatching
thread for each consumer.

Usage This strategy determines the order in which the event channel delivers events
as well as its overall throughput. The multithreaded strategy should allow for
greater performance than the reactive model. The reactive strategy is
appropriate when it is acceptable and/or desired for all events to be delivered
in the order they are received. The multithreaded strategy is especially
effective at reducing the maximum event delivery latency and decoupling the
suppliers from the consumers’ execution time, especially in the collocated
case.

The priority and kokyu strategies help prevent priority inversions in the event
channel by delivering high priority events first. Each requires the loading of
its respective library and factory. Using either with the default factory results
in a warning message. They differ only in the scheduler that they use. The
kokyu value can also be followed by an optional policy (sched_fifo or
sched_rr) and scope (system or thread).

Values for dispatching_strategy

reactive
(default)

The reactive strategy delivers events to consumers on the same
thread that received them.

priority

The priority strategy launches a thread for each priority and
dispatches each event on the thread corresponding to its priority.
This value is only allowed when the TAO_EC_Sched_Factory
is used.

kokyu
The kokyu strategy is similar to the priority strategy but is
integrated with the kokyu scheduler. This value is only allowed
when the TAO_EC_Kokyu_Factory is used.

mt

The mt (multithreaded) strategy delivers events on separate threads
from the one that received them, by randomly selecting a thread
from a pool. The number of threads in the pool defaults to one, but
can be controlled via the -ECDispatchingThreads option.

798 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

Impact The reactive model is inappropriate when slow processing by individual
consumers can affect other users, greater throughput is desired, or the system
requires strict prioritization of events. Note that the reactive strategy delivers
events on the same thread where they are received. The ORB’s configuration
determines the receiving thread. The multithreaded strategy may increase the
time required to dispatch an event in lightly loaded event channels and also
require the allocation of additional resources.

See Also 19.3.5, 24.5.2.6

Examples static EC_Factory "-ECDispatching mt"

static EC_Factory "-ECdispatching kokyu SCHED_OTHER -ECScheduling kokyu"

o c i w e b . c o m 799

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

24.5.2.6 ECDispatchingThreads nthreads
Description By default, the multithreaded dispatching strategy creates one thread to use for

the delivery of supplier-originated events to consumers. Use this option to
specify a different number of threads to be created and used.

Usage Using the multithreaded dispatching strategy with the default of one thread
provides the user the benefit of separating the dispatching thread from the
receiving thread. This allows for a greater decoupling between suppliers and
consumers. Use this option to specify additional dispatching threads which
results in additional decoupling between consumers as well as potentially
increased throughput.

Impact Specifying additional dispatching threads consumes additional resources.

See Also 24.5.2.5

Example static EC_Factory "-ECDispatching mt -ECDispatchingThreads 5"

800 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.5.2.7 ECDispatchingThreadFlags thread_flags:priority
Description This option specifies the thread flags and priority for any dispatching threads

that are created by the multithreaded or thread per consumer dispatching
strategies. The full set of thread flags that can be passed to this option is:
 THR_CANCEL_DISABLE
 THR_CANCEL_ENABLE
 THR_CANCEL_DEFERRED
 THR_CANCEL_ASYNCHRONOUS
 THR_BOUND
 THR_NEW_LWP
 THR_DETACHED
 THR_SUSPENDED
 THR_DAEMON
 THR_JOINABLE
 THR_SCHED_FIFO
 THR_SCHED_RR
 THR_SCHED_DEFAULT
 THR_EXPLICIT_SCHED
 THR_SCOPE_SYSTEM
 THR_SCOPE_PROCESS

Multiple flags should be separated with the “|” character. The priority
specified must be an integer and should be an allowed priority for that user id,
platform, and set of thread flags.

See Also 24.5.2.5

Example static EC_Factory "-ECDispatching mt -ECDispatchingThreadFlags THR_BOUND|
THR_NEW_LWP:5"

o c i w e b . c o m 801

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

24.5.2.8 ECFiltering filter_strategy

Description This option specifies the type of filter builder that the event channel uses to
construct the filter tree for each consumer. Specifying different strategies
allows the disabling of filtering when it is not desired or the enabling of
dependency graph building by the scheduling service.

Usage Either the basic or prefix filtering strategy is usually the desired strategy. The
prefix strategy allows complex nesting of filter groups as discussed in
24.3.4.10, but requires filters to be constructed with additional prefix
information. By specifying the null filtering strategy, the event channel can be
caused to ignore the filters as specified in the subscriptions. The priority or
kokyu filtering strategies should be enabled when the system is being used to
collect dependency information. This would most likely be done in
conjunction with the -ECScheduling option.

Impact Using the null strategy may cause consumers to process more events and
result in extra network traffic. The priority strategy should only be used when
collecting dependency information as it is otherwise superfluous. The basic
strategy limits the complexity of the filters allowed and may result in the event
channel misinterpreting certain complex consumer filters.

See Also 24.5.2.15

Example static EC_Factory "-ECFiltering prefix"

Values for filter_strategy

null
Disables consumer-specified filtering. Each consumer is given a null
filter that passes all events.

basic (default)

Enables consumer-specified filtering for the event channel. Each
consumer installs filters as specified in the subscription. The basic
strategy enables all filtering types but limits the nesting of filter groups
to two levels.

prefix

Enables consumer-specified filtering for the event channel. Each
consumer installs filters as specified in the subscription. The prefix
strategy enables all filtering types with no limits on the nesting of filter
groups.

priority
Enables consumer-specified filtering for the event channel and also
collaborates with the scheduler to build the dependency graph. This
value is only allowed when the TAO_EC_Sched_Factory is used.

kokyu

Enables consumer-specified filtering for the event channel and also
collaborates with the kokyu scheduler to build the dependency graph.
This value is only allowed when the TAO_EC_Kokyu_Factory is
used.

802 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.5.2.9 ECObserver observer_strategy

Description Observers are objects that can be connected to the event channel and notified
whenever consumers and suppliers are connected and disconnected. This
option is used to enable the notification of observers.

Usage By default, the observer feature is not enabled, which should allow for more
efficient operation of the event channel. If the application defines and uses
observers, the basic strategy must be used to make them effective. When
gateway objects are utilized to federate event channels, then the basic strategy
should be used because the gateways use observers internally in their
implementation. The reactive strategy allows for unreachable observers to be
removed from the set of observers.

Impact The basic strategy may result in slightly less efficient connection and
disconnection. When the basic strategy is used with observers that are
unreachable, it continues to try to notify them of each connect and disconnect.
This can slow connects and disconnects.

The null strategy causes observers to not be notified and does not allow the
use of gateways.

Example static EC_Factory "-ECObserver basic"

Values for observer_strategy

null (default) Disables the observer feature.

basic Enables the observer feature.

reactive
A variant of the basic strategy, where observers are
automatically removed from the set of observers when the are
unreachable.

o c i w e b . c o m 803

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

24.5.2.10 ECProxyConsumerLock lock_strategy

Description This option defines the type of lock to use in synchronizing access to the
proxy consumer objects.

Usage Single threaded applications can use the null lock to increase the efficiency of
the consumer proxy. Multithreaded applications may need to set the lock to
recursive in some cases where operations on the proxy consumer may cause
recursive access to the proxy consumer. In all other situations, the thread lock
should be used.

Impact The null lock causes problems in applications that access the proxy from more
than one thread. The thread lock causes additional locking overhead that may
not be needed in applications that restrict proxy access to a single thread. The
recursive lock is even more expensive than the thread lock, but is required by
applications that must recursively access the lock.

See Also 24.5.2.13

Example static EC_Factory "-ECProxyConsumerLock recursive"

Values for lock_strategy

null Do not use any locking on the proxy consumers.

thread (default) Use a thread-safe lock on the proxy consumers.

recursive Use a recursive thread-safe lock on the proxy consumers.

804 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.5.2.11 ECProxyPushConsumerCollection flags
Description This switch controls the type of collection the event channel uses to hold

consumer proxies. The flags passed describe the characteristics of the desired
collection. Colons should separate the flags (e.g., mt:list). The allowable
flags are described in Table 24-13. Only one flag per type should be specified.

For a more detailed discussion of the collection types see 24.5.1.5.

Usage Applications that can guarantee that a consumer proxy collection is only
accessed from a single thread can specify the st flag to improve performance.

Event channels that connect and disconnect suppliers often and wish to
optimize these operations (at the expense of iteration speed), should specify
the rb_tree flag.

Applications that use the immediate flag must guarantee that the thread
iterating over the proxy collection does not attempt to modify the collection,
as this invalidates the iterator. Specifying a separate dispatching thread is one
way to accomplish this. If you wish to minimize priority inversions between
publication and supplier connections/disconnections, then use the delayed
flag. Collections using the copy_on_read flag are only applicable for
systems with small numbers of consumer proxies that require low latencies for
proxy collection modifications. Collections using the copy_on_write flag
are only applicable for systems with small numbers of consumer proxies that
require low latencies for proxy collection iterations.

Table 24-13 Collection Type Flags

Flag Type Description

mt (default)
Synchronization

Use a thread-safe lock for the collection.

st Use a null lock for the collection.

list (default)
Collection

Implement the collection using an ordered list.

rb_tree Implement the collection using a red-black tree.

copy_on_read

Iterator

Before initiating an iteration of the collection, a
copy of the complete collection is performed.

copy_on_write
Before initiating a modification to the collection,
a copy of the complete collection is performed.

delayed
Changes that cannot be made immediately are
queued for later execution.

immediate (default)
Threads block until they can execute a change to
the collection.

o c i w e b . c o m 805

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

Impact The mt flag incurs additional overhead over the st flag during
connection/disconnection of suppliers and iteration over the collection.

List-based collections result in slower updates to the collection. Red-black
tree collections are slower during iteration over the collection.

Immediate update of consumer proxy collections (during connection or
disconnection of suppliers) may cause priority inversions because of the
long-lived locks involved. Copy on read collections incur dynamic allocation
and copy costs for each iteration of the proxy collection. Copy on write
collections incur dynamic allocation and copy costs for each modification to
the proxy collection. Delayed updates to collections can result in long
intervals between the requested change and its actual occurrence.

See Also 24.5.2.12

Example static EC_Factory "-ECProxyPushConsumerCollection mt:delayed"

806 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.5.2.12 ECProxyPushSupplierCollection flags
Description This switch controls the type of collection the event channel uses to hold

supplier proxies. The flags passed describe the characteristics of the desired
collection. Colons should separate the flags (e.g., mt:list). The flags are
described in Table 24-14. Only one flag per type should be specified.

For a more detailed discussion of the collection types see 24.5.1.5.

Usage Applications that can guarantee that a supplier proxy collection is only
accessed from a single thread can specify the st flag to improve performance.

Event channels that connect and disconnect consumers often and wish to
optimize these operations (at the expense of iteration speed), should specify
the rb_tree flag.

Applications that use the immediate flag must guarantee that the thread
iterating over the proxy collection does not attempt to modify the collection,
as this invalidates the iterator. Specifying a separate dispatching thread is one
way to accomplish this. If you wish to minimize priority inversions between
publication and consumer connections/disconnections, then use the delayed
flag. Collections using the copy_on_read flag are only applicable for
systems with small numbers of supplier proxies that require low latencies for
proxy collection modifications. Collections using the copy_on_write flag
are only applicable for systems with small numbers of supplier proxies that
require low latencies for proxy collection iterations.

Table 24-14 Collection Type Flags

Flag Type Description

mt (default)
Synchronization

Use a thread-safe lock for the collection.

st Use a null lock for the collection.

list (default)
Collection

Implement the collection using an ordered list.

rb_tree Implement the collection using a red-black tree.

copy_on_read

Iterator

Before initiating an iteration of the collection, a
copy of the complete collection is performed.

copy_on_write
Before initiating a modification to the collection,
a copy of the complete collection is performed.

delayed
Changes that cannot be made immediately are
queued for later execution.

immediate (default)
Threads block until they can execute a change to
the collection.

o c i w e b . c o m 807

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

Impact The mt flag incurs additional overhead over the st flag during
connection/disconnection of consumers and iteration over the collection.

List-based collections result in slower updates to the collection. Red-black
tree collections are slower during iteration over the collection.

Immediate update of supplier proxy collections (during connection or
disconnection of consumers) may cause priority inversions because of the
long-lived locks involved. Copy on read collections incur dynamic allocation
and copy costs for each iteration of the proxy collection. Delayed updates to
collections can result in long intervals between the requested change and its
actual occurrence.

See Also 24.5.2.11

Example static EC_Factory "-ECProxyPushSupplierCollection mt:delayed"

808 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.5.2.13 ECProxySupplierLock lock_strategy

Description This option defines the type of lock to use in synchronizing access to the
proxy supplier objects.

Usage Single threaded applications can use the null lock to increase the efficiency of
the push supplier. Multithreaded applications may need to set the lock to
recursive in some cases where operations on the proxy supplier may cause
recursive access to the proxy supplier. In all other situations, the thread lock
should be used.

Impact The null lock causes problems in applications that access the proxy from more
than one thread. The thread lock causes additional locking overhead that may
not be needed in applications that restrict proxy access to a single thread. The
recursive lock is even more expensive than the thread lock, but is required by
applications that must recursively access the lock.

See Also 24.5.2.10

Example static EC_Factory "-ECProxySupplierLock recursive"

Values for lock_strategy

null Do not use any locking on the proxy suppliers.

thread (default) Use a thread-safe lock on the proxy suppliers.

recursive Use a recursive thread-safe lock on the proxy suppliers.

o c i w e b . c o m 809

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

24.5.2.14 ECQueueFullServiceObject service_name
Description This option specifies a service name that is used to find a Queue Full service

object. That service implements a strategy for what to do when a dispatching
queue is full. A dispatching queue is considered full when it reaches the high
water mark (in number of events) defined by the constant
TAO_EC_QUEUE_HWM, which has a default value of 16384.

By default, this option is set to EC_QueueFullSimpleActions which is a
statically configured service we can configure with a separate static service
configurator directive. It only takes two possible options, wait and discard.
The default wait option causes any supplier threads wanting to queue an
event onto a full dispatching queue to block and wait for the queue to fall
below the high water mark. The discard option causes the supplier thread to
discard the event being processed when it encounters a full dispatching queue.

This option only affects the multithreaded and thread per consumer
dispatching strategies.

Usage The default service and associated wait strategy can cause events to “back
up” in the event channel when the network or consumers are unable to process
events fast enough. Eventually, this back pressure can affect the supplier
processes. In this situation, you should either use the default service’s
discard strategy or provide your own service object that implements custom
strategies for handling full dispatching queues.

See Also 24.5.2.5

Example There are two basic usage scenarios related to this option. If the simple Queue
Full service object is sufficient for an application, then this option does not
actually need to be set and the simple strategy can be configured through its
own directive:

static EC_QueueFullSimpleActions "discard"

If the simple strategy is not sufficient, the application developer needs to write
their own Queue Full service class and use this option to identify it. See the
TAO_EC_Queue_Full_Service_Object class definition in
$TAO_ROOT/orbsvcs/orbsvcs/Event/EC_Dispatching_Task.h for
details. Your service needs to derive from this class and implement the
queue_full_action member function.

static EC_Factory "-ECQueueFullServiceObject MyFancyQueueFullStrategy"

810 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.5.2.15 ECScheduling scheduling_strategy

Description This scheduling strategy controls the scheduling of events for delivery and
other scheduler-related coordination. The null and group scheduling options
specify whether events should be delivered individually or as groups,
respectively. When the null scheduler is specified, events are always evaluated
and delivered one at a time, regardless of how they are packaged by the
supplier. When the group scheduler is used, events are kept in the group they
were published in by the supplier and all events from the original set that pass
a consumer’s filter are delivered as a set to that consumer.

The priority and kokyu scheduling strategies use their respective scheduling
libraries to schedule event delivery. These strategies are also used for the
purpose of building the dependency lists for use by these schedulers.

Usage The priority and kokyu strategies are used when the application is using one of
the real-time schedulers.

Impact The group strategy is more efficient when groups of events are published and
delivered together.

Example static EC_Factory "-ECScheduling group"

Values for scheduling_strategy

null (default)
Disables collaboration with the scheduling service for
dependency list collection.

group Schedule/filter events as a set when evaluating for delivery.

priority
Enables collaboration with the scheduler for the building of
the dependency list. This value is only allowed when the
TAO_EC_Sched_Factory is used.

kokyu
Enables collaboration with the kokyu scheduler for the
building of the dependency list. This value is only allowed
when the TAO_EC_Kokyu_Factory is used.

o c i w e b . c o m 811

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

24.5.2.16 ECSupplierControl control_policy

Description This option specifies the policy used when dealing with dangling suppliers.
The null control policy never disconnects ill-behaved suppliers. The reactive
policy disconnects suppliers at the first communication failure.

Usage Use the reactive control policy when suppliers may be destroyed without
disconnecting. Use the default control policy (null) when you can guarantee
that all suppliers disconnect properly (or not at all) and you do not want to
incur the overhead of the reactive policy.

Impact A null supplier control strategy causes degraded throughput when suppliers
are destroyed without first disconnecting. The reactive strategy requires
slightly more overhead in normal operation, may result in suppliers inability
to send messages to the event channel or having to reconnect when the
network quality is bad, and requires slightly more memory.

See Also 24.5.2.1, 24.5.2.17

Example static EC_Factory "-ECSupplierControl reactive"

Values for control_policy

null (default) Do not discard dangling supplier.

reactive Use a reactive policy to discard dangling supplier.

812 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.5.2.17 ECSupplierControlPeriod period
Description Set the period (in microseconds) the reactive supplier control policy uses to

poll the state of the suppliers. The default period is 5000000 (5 seconds).

Usage For event channels using the reactive supplier control policy, use this option to
control the time to wait between attempted pings on each supplier. The
reactive supplier control strategy object pings the supplier by invoking
CORBA::Object::_non_existent() on the supplier’s object reference;
this is a synchronous call. The -ECSupplierControlPeriod option is
ignored when the supplier control policy is not reactive.

Impact Shorter periods require more bandwidth and processing to validate the
existence of the suppliers. Longer periods consume less of these resources.
You can disable the ping altogether by setting the period to zero.

See Also 24.5.2.2, 24.5.2.16

Example static EC_Factory "-ECSupplierControl reactive -ECSupplierControlPeriod 1000000"

o c i w e b . c o m 813

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

24.5.2.18 ECSupplierControlTimeout timeout
Description Sets the relative round-trip timeout (in microseconds) used for polling

suppliers. This timeout is used both for polling pull model suppliers and by the
reactive supplier control strategy. The default timeout is 10000 (10
milliseconds).

Usage For event channels using the reactive supplier control policy, use this
option to control the time the event channel waits for a supplier to respond to
an attempted ping. For pull suppliers, use this option to control the time the
event channel waits for each pull() call to a pull supplier. The reactive
supplier control strategy object pings the supplier by invoking
CORBA::Object::_non_existent() on the supplier’s object reference;
this is a synchronous call. Failure to respond within the specified timeout
period results in the event channel classifying that ping as a communication
failure for that supplier.

Impact Smaller timeout values may result in more timeout failures and suppliers
being disconnected more often. A larger timeout value means it takes longer
to detect and remove dead suppliers.

See Also 24.5.2.16, 24.5.2.17

Example static EC_Factory "-ECSupplierControl reactive -ECSupplierControlTimeout 50000"

814 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.5.2.19 ECSupplierFiltering supplier_filter_strategy

Description This option controls supplier-based filtering and does not affect which
consumers receive events. It does affect the internal data structures of the
event channel that determine its memory footprint and performance.

Note This option can also be specified as -ECSupplierFilter and accepts the
same values.

Usage Generally, the per-supplier strategy produces the best performance. The null
strategy allows for less memory usage (one global list of supplier proxies in
the event channel instead of separate ones for each supplier) and may perform
essentially the same for cases where all consumers receive events from all or
nearly all of the suppliers.

Impact The per-supplier strategy consumes (relatively) large amounts of memory for
systems with high numbers of both consumers and suppliers, especially for the
case where all consumers receive events from all suppliers. It also increases
the connection and disconnection times for consumers and suppliers. The null
strategy decreases overall performance in cases where large numbers of
consumers and suppliers exist, and each consumer is only interested in the
events published by a small number of suppliers.

When suppliers don’t properly specify their event publication via the
SupplierQOS structure at connection time, the per-supplier strategy may
sometimes cause events to not be delivered to all eligible consumers.

Example static EC_Factory "-ECSupplierFiltering null"

Values for supplier_filter_strategy

null
Disables supplier-based filtering. This results in the event
channel keeping a global collection of consumers and
attempting a push to each of them.

per-supplier (default)

Enables supplier-based filtering. This results in the event
channel maintaining a (smaller) collection of interested
consumers for each supplier and only attempting a push to
this subset of consumers.

o c i w e b . c o m 815

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

24.5.2.20 ECTimeout timeout_dispatching_strategy

Description This option controls what thread is used to dispatch timeout events to the
consumers.

Usage The reactive strategy is the only one currently implemented in the default
factory. The reactive strategy uses on of ORB’s processing threads to push the
timeout events. The priority and kokyu strategies provide the ability to ensure
that high priority timeouts are delivered first by using their respective
scheduling libraries.

Impact The reactive strategy may cause priority inversions. The priority and kokyu
strategies may cause an increase in the time required to deliver a timeout event
on lightly loaded event channels. The priority and kokyu strategies may cause
the allocation of additional resources.

See Also 24.5.2.5

Example static EC_Factory "-ECTimeout reactive"

Values for timeout_dispatching_strategy

reactive (default)
The reactive strategy delivers the timeout events to
consumers on the main reactor thread.

priority
The priority strategy launches a thread for each priority and
dispatches each timeout event on the thread corresponding to
its priority. This option is not yet implemented.

kokyu
The kokyu strategy launches a thread for each priority and
dispatches each timeout event on the thread corresponding to
its priority. This option is not yet implemented.

816 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.5.2.21 ECTPCDebug
Description This option enables the printing of additional debug information when the

thread per consumer (TPC) dispatching strategy is used. It is only available
when the TPC factory is used. See 24.5 for how to specify this factory.

Usage This option is intended for use in debugging event channel issues when using
the TPC dispatching strategy.

Impact The additional debug messages slow down the event channel.

Example static EC_Factory "-ECTPCDebug"

o c i w e b . c o m 817

2 4 . 5 E v e n t C h a n n e l R e s o u r c e F a c t o r y

24.5.2.22 ECUseORBId orb-id
Description Sets the name of the ORB that the default factory implementation uses. The

default factory creates strategy objects that use this ORB to perform remote
invocations and to gain access to the ORB’s reactor.

Usage This option is only useful in applications that create multiple ORBs and
activate the event channel in one of them. Use it to ensure that the objects
created by the default factory use the same ORB as the event channel and
related objects.

Impact This option may cause the creation of a new ORB (and associated resources),
if the ORB with the given name has not been initialized.

Example static EC_Factory "-ECUseORBId Orb2"

818 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.6 The IIOP Gateway Factory

The IIOP gateway factory is responsible for creating strategy objects that
control the behavior of the CORBA gateways used for federating event
channels as described in 24.3.8.1. The behavior of the CORBA (or IIOP)
gateway is controlled by using the service configurator file to select the
appropriate behaviors for the default factory implementation.

This resource factory is registered with the service configurator using the
name EC_Gateway_IIOP_Factory. It is statically registered with the
service configurator, so the static directive is used to supply initialization
options to it. To change the behavior of the IIOP gateway factory, add a line
similar to the line shown below to your service configuration file.

static EC_Gateway_IIOP_Factory "-ECGIIOPConsumerECControl reactive"

For these options to be effective, you must make sure that the following
function call occurs in every process containing CORBA gateways before the
ORB is initialized:

 TAO_EC_Gateway_IIOP_Factory::init_svcs ();

This creates an IIOP gateway factory and statically registers it. If you forget to
do this, the service configurator is not able to find the
EC_Gateway_IIOP_Factory to initialize it.

The -ORBSvcConf option allows you to use file names other than svc.conf
for service configurator initialization. See 17.13.63 for more information on
this option.

Default values for many of the IIOP gateway factory’s options are defined as
preprocessor macros in
$TAO_ROOT/orbsvcs/orbsvcs/Event/ECG_Defaults.h. You can use
your own project-specific defaults by setting these macros in your config.h
file and recompiling the event service.

24.6.1 Option Overview
This section provides an overview of the configuration options supported by
the default EC_Gateway_IIOP_Factory. Table 24-15 presents a brief
summary of the available options for this factory followed by short

o c i w e b . c o m 819

2 4 . 6 T h e I I O P G a t e w a y F a c t o r y

descriptions of these options. The following section provides full
documentation for each option.

The consumer control policy works similarly to the control policies on the
event channel, but in the gateway’s case they determine how the downstream
or consumer event channel is treated when the gateway fails to invoke a
request on it. The control period and timeout affect the period and round-trip
timeout of the periodic pings performed by the reactive and reconnect control
policies.

Consumer proxy map and TTL (time to live) features can each be disabled for
applications that would benefit from their avoidance. Most applications
should keep the defaults. Specification of an alternate ORB ID for the factory
is beneficial when the gateway’s process is using multiple ORBs.

24.6.2 IIOP Gateway Factory Options
The remainder of this section describes the individual options interpreted by
the IIOP Gateway factory. These options are applied to the IIOP Gateway
factory by the service configurator as described in 24.6.

Table 24-15 IIOP Gateway Factory Options

Option Section Description

ECGIIOPConsumerECControl
{null | reactive | reconnect} 24.6.2.1

Define the policy for handling
consumer event channels that can’t be
communicated with.

ECGIIOPConsumerECControlPeriod
period 24.6.2.2

Define the period in microseconds of
the reactive and reconnect control
policies.

ECGIIOPConsumerECControlTimeout
timeout 24.6.2.3 Round-trip timeout in microseconds

for the consumer event channel ping.

ECGIIOPUseConsumerProxyMap
{0 | 1} 24.6.2.4

Flag that specifies whether a map of
consumer proxies should be used or a
single consumer proxy.

ECGIIOPUseORBId orbid 24.6.2.5 Specifies the id of the ORB that the
factory uses.

ECGIIOPUseTTL
{0 | 1} 24.6.2.6

Flag that specifies whether the ttl field
of the event is used to limit gateway
propagation.

820 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.6.2.1 ECGIIOPConsumerECControl control_policy

Description This option specifies the policy used by the gateway when dealing with
consumer event channels that suffer failures when the gateway pushes events
on them. The consumer event channel is the event channel that is connected as
a consumer to the gateway. The null control policy never disconnects
consumer event channels that suffer communication failures and continues to
try to push events to those channels. The reactive policy discards consumer
event channels upon their first communication failure and never reconnects
them. The reconnect control policy also disconnects consumer event channels
after their first failure, but attempts to periodically reconnect to that event
channel. Both the reactive and reconnect policies periodically poll consumer
event channels to determine if they are still available. See the
ECGIIOPConsumerECControlPeriod and
ECGIIOPConsumerECControlTimeout options for details of this polling.

Usage Use the reconnect control policy for the greatest robustness when using IIOP
gateways. Use the default control policy, null, when you can guarantee the
reliability of your event channels and you do not want to incur the overhead of
the reactive or reconnect policies.

Impact A null consumer control strategy causes degraded throughput when consumer
event channels crash unexpectedly or cannot be contacted. Since the reactive
strategy never reconnects consumer channels, it causes permanent breaks in
the federation. The reconnect strategy requires slightly more overhead in
normal operation, may result in reconnections when the network quality is
degraded, and requires slightly more memory. When using the reconnect
policy, persistent object references for event channels are required.

See Also 24.6.2.2, 24.6.2.3

Example static EC_Gateway_IIOP_Factory "-ECGIIOPConsumerECControl recconnect"

Values for control_policy

null (default)
Do not discard consumer event channels that cannot be
contacted.

reactive
Use a reactive policy to discard consumer event channels that
cannot be contacted.

reconnect
Attempts to periodically reconnect to event channels after
they cannot be contacted.

o c i w e b . c o m 821

2 4 . 6 T h e I I O P G a t e w a y F a c t o r y

24.6.2.2 ECGIIOPConsumerECControlPeriod period
Description Set the period (in microseconds) the reactive and reconnect control policies

use to poll the state of the consumer event channels. The default period is
5000000 (5 seconds).

Usage For gateways using the reactive or reconnect control policies, use this option
to specify the time to wait between attempted pings on each consumer event
channel. The reactive and reconnect control strategy objects ping the
consumer event channel by invoking CORBA::Object::_non_existent()
on the event channel’s object reference; this is a synchronous call. This option
is ignored when the control policy is null.

Impact Shorter periods require more bandwidth and processing to validate the
existence of the event channels. Longer periods consume less of these
resources. You can disable the ping altogether by setting the period to zero.

See Also 24.6.2.1, 24.6.2.3

Example static EC_Gateway_IIOP_Factory "-ECGIIOPConsumerECControl recconnect
-ECGIIOPConsumerECControlPeriod 1000000"

822 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.6.2.3 ECGIIOPConsumerECControlTimeout timeout
Description Sets the relative round-trip timeout (in microseconds) that the reactive and

reconnect control policies use for polling consumer event channels. The
default timeout is 10000 (10 milliseconds).

Usage For gateways using the reactive or reconnect control policies, use this option
to control the time the gateway waits for a consumer event channel to respond
to an attempted ping. These control strategies ping the consumer by invoking
CORBA::Object::_non_existent() on the consumer event channel’s
object reference; this is a synchronous call. Failure to respond within the
specified timeout period results in the control policy classifying that ping as a
communication failure for that consumer. This option is ignored when the
consumer control policy is null.

Impact Smaller timeout values may result in more timeout failures and consumer
event channels being disconnected more often. A larger timeout value means
it takes longer to detect and remove event channels that have crashed or
become isolated.

See Also 24.6.2.1, 24.6.2.2

Example static EC_Gateway_IIOP_Factory "-ECGIIOPConsumerECControl recconnect
-ECGIIOPConsumerECControlTimeout 50000"

o c i w e b . c o m 823

2 4 . 6 T h e I I O P G a t e w a y F a c t o r y

24.6.2.4 ECGIIOPUseConsumerProxyMap flag

Description How many consumer proxies the gateway uses on the consumer event channel
affects the performance of your federated event channel application. Using the
consumer proxy map means the gateway uses a separate consumer proxy for
each source ID and allows the consumer event channel to use supplier filtering
to improve efficiency. It also means that changes in the subscription set of the
gateway can be handled in a more incremental manner. Not using the map
means only a single consumer proxy is used and it supplies all events to the
consumer event channel.

Usage By default, the consumer proxy map is enabled; pass a value of zero to disable
it. Most applications probably want this feature enabled but some applications
with memory-usage concerns may benefit from disabling it.

Impact Using the consumer proxy map consumes additional resources in the gateway,
but should be more efficient in most applications. Disabling the consumer
proxy map consumers less resources, but usually at a performance cost.

See Also 24.5.2.19

Example static EC_Gateway_IIOP_Factory "-ECGIIOPUseConsumerProxyMap 0"

Values for flag

0 Use a single consumer proxy for all events the gateway processes.

1 (default)
Use a consumer proxy map with a separate consumer proxy for each
source ID the gateway processes.

824 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

24.6.2.5 ECGIIOPUseORBId orbid
Description Sets the name of the ORB used by the gateway factory. The factory creates

strategy objects that use this ORB to perform remote invocations and to gain
access to the ORB’s reactor.

Usage This option is only useful in applications that create multiple ORBs and
activate the gateways in one of them. Use it to ensure that the objects created
by the IIOP gateway factory use the same ORB as the event channel and
related objects. When not specified, the default ORB is used.

Impact This option may cause the creation of a new ORB (and associated resources),
if the ORB with the given name has not been initialized.

See Also 24.5.2.22

Example static EC_Gateway_IIOP_Factory "-ECGIIOPUseORBId myorb"

o c i w e b . c o m 825

2 4 . 6 T h e I I O P G a t e w a y F a c t o r y

24.6.2.6 ECGIIOPUseTTL flag

Description This option determines whether the gateway uses the ttl field of the event
header structure to limit the number of gateways that an event can pass
though. When enabled, as it is by default, the ttl field is decremented each
time an event passes through a gateway and if the ttl field is zero the gateway
does not pass the event. Passing zero to this option disables this behavior and
means all events are passed through all gateways.

Usage For normal gateway behavior, leave the ttl feature enabled. Disabling it may
make things simpler for suppliers because they no longer have to set the ttl
field which requires knowledge of the federation topology.

Impact When disabling the ttl functionality events cycle forever in topologies with
recursive loops in the federation. This option has negligible effect on
performance.

Example static EC_Gateway_IIOP_Factory "-ECGIIOPUseTTL 0"

Values for flag

0
Do not use the ttl field. All events pushed to the gateway are pushed to
the consumer event channel.

1 (default)
The ttl field of the event header structure is used to limit the number of
gateways an event can pass through.

826 o c i w e b . c o m

R e a l - T i m e E v e n t S e r v i c e

o c i w e b . c o m 827

CHAPTER 25

Notification Service

25.1 Introduction

The OMG Notification Service version 1.1 specification (OMG Document
formal/04-10-13) extends the OMG Event Service (Chapter 23) with many
improvements, including: a well-defined event structure; event filtering;
discovery of event types required or offered; configurable quality of service
properties; and an optional event type repository. The basic architectural
elements of the Event Service (consumers, suppliers, event channels, proxy
consumers and suppliers, consumer and supplier administration interfaces) are
preserved in the Notification Service specification. In fact, implementations of
the Notification Service can still support existing Event Service consumers
and suppliers without recompilation. New architectural elements (filters, event
channel and filter factories, new structured supplier and consumer interfaces)
have been added, and these newer features can be accessed using the familiar
programming model introduced in the Event Service.

TAO’s implementation of the OMG Notification Service supports a useful
subset of the specification. It supports the push-model of event
communication only; there is no support for the pull model. Certain optional

828 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

features from the specification are also unsupported, including the event type
repository and typed events. Other differences between the specification and
TAO’s implementation will be noted in the relevant sections of this chapter.

25.2 Notification Service Architecture

Figure 25-1 shows the architecture of the Notification Service.

The Notification Service is hierarchical in structure, with a single
EventChannelFactory supplying one or more EventChannel objects.
Each event channel, in turn, supplies one or more ConsumerAdmin and
SupplierAdmin objects, and each administration object supplies zero or
more consumers or suppliers. Each of these objects is assigned a unique
identifier that can be used to retrieve its object reference. Each “parent”
interface provides an operation that may be used to enumerate its “children,”
and each child provides an attribute for accessing its parent.

The primary purpose of the administration (admin) interfaces is to allow
grouping of consumers and suppliers with common filtering and quality of
service (QoS) properties. As consumers and suppliers are created, they inherit
the applicable QoS properties of their parent admin object. If you later change
the QoS properties of an admin, its children will not be updated. Filtering

Figure 25-1 Notification Service Architecture

o c i w e b . c o m 829

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

works differently. The consumers and suppliers do not inherit the parent’s
filters; instead, the admin filters are always combined with its children’s filters
using either a logical AND or a logical OR operation. Updating the filtering
constraints on an admin object has an immediate affect on the event
processing of its children.

Consumers and suppliers are derived from one of four different hierarchies.
The original Event Service interfaces can still be used to communicate
untyped events as simple CORBA anys. In addition, the Notification Service
defines three new sets of interfaces; one for use with untyped events, one for
structured events, and one for batches of events.

Regardless of the specific consumer and supplier interfaces used, the same
basic model of communication is supported. Suppliers push events to the
event channel and the event channel asynchronously pushes these events to
connected consumers. Each event may pass through filters before being
forwarded to consumers, and QoS properties may affect the processing of
events as they travel through the various elements of the Notification Service
architecture

The Notification Service supports mixing and matching of the various
consumer and supplier interfaces. For example, you can supply events as
sequences of structured events using the SequenceProxyPushSupplier
interface, and consume them as individual StructuredEvents using the
StructuredProxyPushConsumer interface. There are well-defined
translations among each of the event propagation mechanisms.

25.3 Notification Service Features

The Notification Service provides several new features, relative to the Event
Service, for event-based communications, including:

• Structured Events

• Event Filtering

• Subscriptions

• Batched Events

• Quality of Service Properties

These features are discussed in the next several subsections.

830 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.3.1 The Structured Event Type
Like the Event Service, the Notification Service defines a model for
communicating untyped events in the form of CORBA anys. Untyped events
can be used with the new filtering and QoS features, but it is far easier to use
the new CosNotification::StructuredEvent type. The structured event
type has a well-defined data structure comprising three fixed header fields, a
variable-length header portion of name-value pairs, a variable-length filterable
body portion also of name-value pairs, and a remaining body portion, or
payload, that consists of a single CORBA any.

Figure 25-2 shows the CosNotification::StructuredEvent type.

QoS settings for priority, timeout, and reliability may be specified in the
variable header portion. The variable body portion can be easily used in

Figure 25-2 CosNotification::StructuredEvent

o c i w e b . c o m 831

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

filtering constraints. The StructuredEvent is intended for use with
applications that require strongly-typed events. Users of these events are able
to map their application-specific events into a common data structure, thereby
making various optimizations possible during event processing.

The Notification Service specification defines a CosNotifyComm module that
contains StructuredPushSupplier and StructuredPushConsumer
interfaces for communicating structured events.

25.3.1.1 The Structured Event Header
The structured event’s header has two parts: a fixed header portion containing
fields to identify the event’s type and instance; and an optional list of
name-value pairs. The three fixed header fields are all strings:

• domain_name—To identify the vertical industry domain to which this
event belongs, such as telecommunications, finance, or health-care.

• type_name—To further classify the event within its domain.

• event_name—To identify a specific event instance.

Together, the domain_name and type_name fields are known as the event
type, and have special meaning for filtering and subscription processing.

The optional header portion consists of a sequence of zero or more
name-value pairs in which QoS settings can be carried. TAO supports two
well-known settings for this portion of the header:

• priority—To specify an integer priority value for the event.

• timeout—To specify a relative time after which the event will be
discarded if it has not been delivered.

Other name-value pairs in the header can be used to carry data or
application-specific header information, but you will normally use the
name-value pairs in the body portion, instead.

25.3.1.2 The Structured Event Body
The data content of an event is mapped into the event body. The structured
event body is divided into two parts:

• The filterable body portion is intended to carry the most interesting fields
of the event, upon which the consumer is most likely to base filtering

832 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

decisions. It comprises a sequence of name-value pairs, in which each
name is a string and each value is a CORBA any.

• The remaining body area is defined as a single CORBA any and is
intended to carry large blocks of data related to the event. Although this
field is considered separate from the filterable body area of the event,
there are no restrictions against additional filtering on the contents of this
data.

25.3.2 EventBatch Data Type
The Notification Service specification defines a sequence of
StructuredEvents called a CosNotification::EventBatch. Within
the CosNotifyComm module are SequencePushSupplier and
SequencePushConsumer interfaces for communicating with batched events.

The StructuredEvents in an EventBatch received from a supplier are
handled independently inside the Notification Service. There is no functional
difference between using a series of CORBA calls to send one
StructuredEvent at a time, and using a single CORBA call to send a batch
of StructuredEvents. There may, however, be a performance benefit to
sending a batch of events due to the reduced number of CORBA calls.

The QoS properties MaximumBatchSize and PacingInterval can be
applied to consumers that register to receive event batches.
MaximumBatchSize is used to specify how many individual
StructuredEvents will be queued, and PacingInterval specifies how
long StructuredEvents can be queued, before being delivered as a batch.
These and other QoS properties are discussed in detail in 25.3.5.

There is no correlation between incoming batches and outgoing batches. For
example: if a supplier pushes five events in a batch, a consumer should not
expect to receive these five events in a single batch. They may be split across
batch boundaries; intermixed with events from other consumers, etc.

25.3.3 Event Filtering
The most notable improvement the Notification Service specification
introduces over the Event Service is the introduction of event filtering. Event
filtering allows a consumer to subscribe to a precise set of events. TAO
supports the Extended Trader Constraint Language (ETCL) filtering grammar
as defined by the OMG. ETCL allows applications to create complex

o c i w e b . c o m 833

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

expressions to describe which events should be allowed to pass through an
element of the Notification Service architecture. Filters are usually applied to
admin objects, but may also be used with ProxyConsumer or
ProxySupplier objects.

Note The filters described above are known as Forwarding filters, because they are
used to determine which events should be forwarded to the next layer of the
architecture. The Notification Service specification also defines a type of
filters known as Mapping filters, which can be used to modify an event’s
properties as it passes through objects. Mapping filters are not supported in
TAO’s implementation of the Notification Service.

Besides the Extended Trader Constraint Language (ETCL), TAO’s
implementation of the Notification Service also supports the original Trader
Constraint Language (TCL) as defined by the Object Trader Service
specification. For more information on standard TCL, see Advanced CORBA
Programming with C++, 19.10. For more information on ETCL, see 2.4.2 in
the Notification Service specification.

TAO’s implementation of the Notification Service specification supports
filtering for both untyped events and structured events. Filtering with
structured events is easier than with untyped events, because you can simply
add named fields into the variable body portion of the events and define
filtering constraints using ETCL that reference the named fields.

Note Filtering of untyped events is nominally supported in TAO, but is not
recommended.

25.3.3.1 Using Event Filtering
Depending upon the characteristics of your application, you can use filters to
improve performance. For example, you could use a filter object with a
supplier to ensure that the supplier publishes only those events that match a
certain set of constraints, and to avoid populating the notification channel with
unnecessary events. Similarly, you could use a filter object with a consumer to
inform the notification channel of the types of events the consumer wants to
receive and thereby avoid burdening the consumer with having to process
unwanted events. In both cases, filtering can also help prevent unnecessary

834 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

network bandwidth consumption because unwanted events will not be sent at
all. Keep in mind, however, that event filtering imposes a computational
burden on the processes in which the notification channel itself is operating,
over and above its normal responsibilities of receiving and dispatching events.

Filter objects are used to filter events based on a set of constraints provided by
the application developer. Filter objects can be attached to an administration
object or to individual proxy objects. When a filter object is attached to an
administration object, event receiving and forwarding by all the associated
proxies is affected. When a change is made to a filter object that is attached to
an administration object, all the associated proxies are affected by the change.
If you want to control the filtering behavior of each proxy individually, you
can attach a filter to each proxy. In this way, the filter affects only the event
receiving and forwarding behavior of that individual proxy.

Filters are first-class CORBA objects. Filter objects can be collocated with the
notification channel process itself or they can be distributed in their own
address spaces. The event channel provides a factory interface to create filter
objects, and filters created with this factory reside in the same address space as
the notification channel itself. You could also create filter objects separately
from the event channel and attach them, by object reference. However,
filtering via remote filter objects may introduce a significant performance
penalty since each filter’s match() operation would be invoked in a
distributed fashion.

25.3.3.2 The Inter-Group Filter Operator

Note that each proxy can have two sets of filter objects associated with it,
those that are associated with its managing administration object and those
that are associated with that proxy itself. The InterFilterGroupOperator
flag can be used to control whether each proxy created by the administration
object will perform a logical AND or a logical OR on the results of the two filter
sets in making its event receiving and forwarding decisions. If no filters are
attached to an object, the default behavior is to pass all events.

The inter-group filter operator for TAO’s default consumer and supplier
admin objects is the OR operator. A common error is to use the default
consumer admin (by calling event channels default_consumer_admin
attribute), apply no filters to the admin, and apply filters to the supplier proxy.
Because the admin object has no filters, it passes all objects. Because the

o c i w e b . c o m 835

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

inter-group filter operator is OR, the supplier proxy passes all events to the
consumer, regardless of the supplier proxy’s filters.

One way to avoid this behavior is to always create your own admin objects
using new_for_consumers() and specifying the AND filter operator. You
can also force the default admin objects to apply the AND filter operator by
using the -DefaultConsumerAdminFilterOp (see 25.7.3.4) and
-DefaultSupplierAdminFilterOp (see 25.7.3.5) service configurator
options.

Note The Notification Service Specification does not define which filter operator
should be used for the default admins. If your application is dependent on this,
it may affect its portability to other Notification Service implementations.

25.3.4 Offers and Subscriptions
Offers and subscriptions provide a mechanism to allow consumers to be
notified whenever the set of offered event types changes, and for suppliers to
be notified whenever the set of event types required by consumers changes.
By using these offer and subscription notifications, applications can create
adaptive suppliers and consumers that can change their filtering constraints
dynamically to adapt to changes in the types of events actually being used in
the system. Unlike filters, which work automatically, it is up to the application
developer to make use of offer and subscription information in consumer and
supplier implementations.

Note The Notification Service specification (section 2.6.5) defines a mechanism that
ties filtering to offer- and subscription-change notifications, but this feature is
not supported in TAO.

25.3.4.1 Offer Changes
A supplier uses the offer_change() operation to specify the event types it
offers to the notification channel. The information passed via the
offer_change() operation is used by the notification channel to aggregate a
list of all the event types that its connected suppliers offer. For example, if
three suppliers all offer event type “A”, then the channel only needs to notify
the consumers of a change if all three suppliers stop supporting that event
type. If a supplier decides to add a new event type or to remove an existing

836 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

event type from its offer, it can use the offer_change() operation again to
inform the notification channel of the change in the types of events it supplies.

The offer_change() operation can be invoked on the proxy consumer
object or on the supplier administration object. Invoking offer_change()
on the proxy consumer affects only the offer for that particular supplier.
Invoking the operation on the supplier administration object, on the other
hand, means the change in event types being offered will be shared by all the
proxy consumer objects that were created by that SupplierAdmin object.

The notification channel invokes offer_change() on the consumer
whenever a supplier changes its offered set of events and this causes the
channel’s set of offered events to change.

25.3.4.2 Subscription Changes
Similarly, a consumer uses the subscription_change() operation to
inform the notification channel of the event types it is interested in receiving.
The notification channel uses this information to aggregate a list of all the
event types its connected consumers require. For example, if three consumers
all want event type “A”, then the channel only needs to notify the suppliers of
a change if all three consumers stop wanting that event type. If the consumer
is later required to receive a new event type, or to stop receiving a particular
event type, it can use the subscription_change() operation again to
inform the notification channel of the change in the types of events it requires.

The subscription_change() operation can be invoked on the consumer
administration object or on the proxy supplier object. Invoking it on the proxy
supplier affects only the subscription for that particular consumer, whereas
invoking it on the consumer administration object means the change in event
types being subscribed to will be shared by all the proxy supplier objects that
were created by that ConsumerAdmin object.

The notification channel invokes subscription_change() on the supplier
whenever a consumer changes its subscribed set of events and this causes the
channel’s set of subscribed events to change.

25.3.4.3 Obtaining Offered and Subscribed Event Types

A supplier can discover the set of event types the consumers of an event
channel require by invoking the obtain_subscription_types()
operation on its proxy consumer. Similarly, a consumer can discover the set of

o c i w e b . c o m 837

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

event types suppliers of the channel offer by invoking the
obtain_offered_types() operation on its proxy supplier.

Once connected to the notification channel, consumers and suppliers are
updated with offer and subscription information via the offer_change()
and subscription_change() operations, respectively.

Note These updates can be disabled via the -NoUpdates service configurator
option described in 25.7.3.13.

Using these operations, you can create suppliers that are able to respond to the
needs of consumers by producing events the consumers require and to stop
producing events that are no longer required by any consumers of the
notification channel. Likewise, you can create consumers that are able to
dynamically change their subscriptions to start receiving new event types
added by suppliers or to discontinue their interest in event types that are no
longer produced by the suppliers.

25.3.5 QoS Support
Another major feature of the Notification Service that is not found in the
Event Service is the inclusion of interfaces to control QoS characteristics of
the event delivery. These interfaces include the ability to get and set QoS
properties at the event channel, admin, proxy, and event levels.

Note that the Notification Service style of asynchronous event communication
does not provide a one-button QoS setting to solve all QoS-related problems.
Since there is no direct communication between suppliers and consumers of
events, it is not possible to set QoS at just one place such that it covers the
entire event communication pathway. Instead, QoS properties must be set at
all three conceptual points through which an event can be transmitted—from
the supplier to the event channel, within the event channel itself, and from the
event channel to the consumer. These three points must be used together to
achieve correct quality of service end-to-end.

In addition, many of the following properties also require application of a
proper threading model in order for the QoS properties to have their full
effect. See 25.7.1 for a discussion of the threading model and related run-time
configuration options.

838 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.3.5.1 Supported QoS Properties
TAO’s implementation of the Notification Service supports a subset of the
QoS properties defined by the specification as well as some TAO-specific
properties. The following specification-defined properties are not supported:

• StartTime

• StopTime

• StartTimeSupported

• StopTimeSupported

Note TAO does not support use of the validate_qos() and
validate_event_qos() operations, and it does not always raise the
UnsupportedQoS and UnsupportedAdmin exceptions where applicable.

The name of each property defined by the specification is contained in a string
constant in $TAO_ROOT/orbsvcs/orbsvcs/CosNotification.idl.
Each property also has a specific IDL type for its value and it’s your
responsibility to put the correct type of value in each property’s any. The
above file also contains constant values that predefine values for certain
properties. TAO-specific property details are similarly defined in
$TAO_ROOT/orbsvcs/orbsvcs/NotifyExt.idl. The following sections
describe TAO’s supported QoS properties along with the associated IDL data
type and any predefined values.

25.3.5.2 Notification QoS Properties
The following specification-defined QoS properties are established using the
set_qos() operation and accessed using the get_qos() operation.

Timeout
This property is only supported on a per-event basis. If an event has not been
delivered by the specified relative time, then it will be discarded. The data
type of this property is TimeBase::TimeT, which is a typedef to an unsigned
long long with units of 100s of nanoseconds (10E-7 seconds).

o c i w e b . c o m 839

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

Priority
This property is only supported on a per-event basis, and is used to control the
order of the events delivered to the consumers. The default value is 0; any
integer in the range -32767 to 32767 is valid. The data type is a short.
Constants exist for LowestPriority, HighestPriority, and
DefaultPriority.

OrderPolicy
This property is used by a proxy to arrange the events in its dispatch queue.
When events are delivered as published, and not queued, it has no effect. This
property only applies to structured events, either individually or within
sequences. The following constants define the only valid values which can be
assigned to the OrderPolicy property.

• AnyOrder: According to the specification, events can be delivered in any
implementation-specific order. In TAO’s implementation this is
equivalent to FifoOrder. This is the default value for this policy.

• FifoOrder: Events are delivered in the order of their arrival.

• PriorityOrder: Events are ordered based on their priority, the highest
priority events being delivered first.

• DeadlineOrder: Events are ordered based on their expiration timeouts,
the events with the shortest timeouts being delivered first.

DiscardPolicy
This property defines the order in which the events are discarded by a proxy or
the event channel when their internal buffers overflow. This property applies
on a per-channel basis only if it is set on a channel that also has the
RejectNewEvents admin property set to false. The following constants
define the only valid values which can be assigned to the DiscardPolicy
property.

• AnyOrder: According to the specification, events can be discarded in any
implementation-specific order. In TAO’s implementation this is
equivalent to FifoOrder. This is the default value for this policy.

• FifoOrder: Events are discarded in the order of their arrival.

• LifoOrder: Events are discarded in the inverted order of their arrival.

840 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

• PriorityOrder: Events are discarded based on their priority, the lowest
priority events being discarded first.

• DeadlineOrder: Events are discarded based on their expiration times,
the events with the earliest deadline being discarded first.

MaxEventsPerConsumer
This property defines a bound to the maximum number of events the channel
will queue on behalf of a given consumer. This property can only be set on
proxy suppliers and has a default value of zero, which means that no
maximum will be enforced. The data type for this property is long.

When setting this property to non-zero values, it should always be larger than
the MaxQueueLength property value of its channel. Setting it to equal or
larger values can result in some consumers being starved.

MaximumBatchSize
This property defines the maximum number of events that will be delivered
within each sequence of events. It applies only to sequence proxy suppliers,
and defaults to zero, which means that no maximum will be enforced. The
data type for this property is long.

PacingInterval
This property defines the maximum period of time the channel will collect
individual events into a sequence before delivering the sequence to the
consumer. The time starts when a new event arrives for an idle consumer. This
property applies only to sequence proxy suppliers, and defaults to zero, which
means that no timeout will be enforced. If the number of events received
within a given PacingInterval equals or exceeds MaximumBatchSize, the
consumer will receive a sequence of events whose length equals
MaximumBatchSize. The data type of this property is TimeBase::TimeT,
which is a typedef to an unsigned long long with units of 100s of nanoseconds
(10E-7 seconds).

ConnectionReliability
This property can be set to either Persistent or BestEffort. If it is set to
Persistent for an EventChannel the Notification Service saves the
admins, proxy suppliers, and proxy consumers created in that channel in
persistent storage. When the Notification Service starts up, it reloads this

o c i w e b . c o m 841

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

connection information from persistent storage and uses it to reestablish the
connections that were active when it last ran.

Setting ConnectionReliabilty to Persistent is only valid when Topology
Persistence is configured for the Notification Service as described in 25.7.4.

EventReliability
This property can be set for a channel or for individual events. It can be set to
either BestEffort or Persistent. When it is set to Persistent for a
channel, events delivered through that channel will be delivered reliably, even
if the Notification Service or a consumer fails and must be restarted.

Events delivered through a reliable channel are delivered reliably unless the
EventReliability property for the event is explicitly set to BestEffort.

An unreliable channel is one for which the EventReliability property is
not specified, or explicitly set to BestEffort. The EventReliability
property for an event delivered through an unreliable channel is ignored.

Event reliability is only available when Event Persistence is configured for the
Notification Service as described in 25.7.5.

The EventReliability property should be set to Persistent only when
the ConnectionReliability property is also set to Persistent. This is
not checked by the current implementation of the TAO Notification Service,
but a check may be added in the future.

25.3.5.3 Notification Administration Properties
The following specification-defined QoS properties apply only to an
EventChannel. They are established using the set_admin() operation and
accessed using the get_admin() operation.

Note The set_qos() operation is used to set most properties, but these additional
QoS properties are supported only by the EventChannel interface and use
the set_admin() operation, instead. This distinction is important, because
setting an admin property using set_qos() will appear to work, but will
have no effect.

842 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

MaxQueueLength
This property specifies the maximum number of events the notification event
channel will queue internally before it starts discarding events. The events will
be discarded according to the DiscardPolicy QoS parameter or
RejectNewEvents property. The data type for this property is long.

MaxConsumers
This property defines the maximum number of consumers that can be
connected to the notification event channel at a time. If this number is
exceeded, then an IMP_LIMIT exception is raised. You must be careful to
correctly disconnect consumers when using this property to avoid reaching the
limit due to inactive consumers remaining attached to the channel. The data
type for this property is long.

MaxSuppliers
This property defines the maximum number of suppliers that can be connected
to the notification event channel at a time. If this number is exceeded, then an
IMP_LIMIT exception is raised. You must be careful to correctly disconnect
suppliers when using this property to avoid reaching the limit due to inactive
suppliers remaining attached to the channel. The data type for this property is
long.

Note TAO’s Notification Service implementation differs from the specification in
that it raises the CORBA::IMP_LIMIT exception instead of the
CosNotifyChannelAdmin::AdminLimitExceeded exception in the cases
described above.

RejectNewEvents
This property specifies how the event channel should handle events when the
number of events exceeds the value associated with the MaxQueueLength
property. When RejectNewEvents is set to true, any attempt to push new
events to the channel will result in the IMP_LIMIT CORBA system exception
being raised. When this property is set to false, any attempt to push new events
to the channel will result in a queued event being discarded according to the
value of the DiscardPolicy property. The data type for this property is
boolean.

o c i w e b . c o m 843

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

25.3.5.4 TAO-Specific RT CORBA Properties
The following TAO-specific RT CORBA QoS properties are established
using the set_qos() operation and accessed using the get_qos() operation.
Both of the properties defined here define the allocation of threading resources
for proxies. Supplier proxies use these threading resources to dispatch events
to consumers. Consumer proxies use them to process incoming events. The
threading architecture of the notification channel and related configuration
options are discussed in more detail in 25.7.1. Please note that the usage and
behavior of these options is dependent on the Real-Time Notification features
described in 25.3.8 and are affected by whether the associated library is
loaded.

ThreadPool
This property defines a thread pool that a proxy allocates and uses for
processing events. It can be set on channel or admin objects, but mainly
affects the proxies created under those objects. Setting this property for a
consumer proxy overrides the default number of threads defined by the
-SourceThreads option and setting it for a supplier proxy overrides the
default number of threads defined by the -DispatchingThreads option.
The data type of this property is a structure named ThreadPoolParams
which is defined in $TAO_ROOT/orbsvcs/orbsvcs/NotifyExt.idl.
When used without the RT Notification library, all of the fields of this
structure are ignored except static_threads which is an integer value used
as the number of threads to allocate for that proxy’s thread pool. When used
with the RT Notification library, all of the fields are used to initialize an RT
CORBA thread pool and other RT CORBA policies for the POA used to
activate the proxy object. See 25.3.8 for further details on using this property
with the RT CORBA features.

ThreadPoolLanes
This property defines a thread pool with lanes that a proxy allocates and uses
for processing events. It can be set on channel or admin objects, but mainly
affects the proxies created under those objects. Setting this property for a
consumer proxy overrides the default number of threads defined by the
-SourceThreads option and setting it for a supplier proxy overrides the
default number of threads defined by the -DispatchingThreads option.
The data type of this property is a structure named ThreadPoolLanesParam
which is defined in $TAO_ROOT/orbsvcs/orbsvcs/NotifyExt.idl. This

844 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

property requires the loading of the RT Notification library and results in an
exception when used without this library. When used with the RT Notification
library, the fields are used to initialize an RT CORBA thread pool with lanes
and other RT CORBA policies for the POA used to activate the proxy object.
See 25.3.8 for further details on using this property with the RT CORBA
features.

Note When the Notification Service creates threads for a thread pool, it specifies a
default priority as part of the thread creation parameters. On HP-UX version
10 and later, the process owner must be a member of a group that has the
RTSCHED privilege in order to specify a priority for a new thread. Without this
privilege, the thread creation operation will return an error (EPERM). Other
operating systems do not exhibit this behavior.

On HP-UX, you can add the RTSCHED privilege to all members of a group
with the setprivgrp(1M) command. You must be super-user to execute this
command.

For example, for a group named “corbausers”, the command would be
entered as follows:

setprivgrp corbausers RTSCHED

The user that starts the Notification Service should be a member of this group.

By default, the effects of the setprivgrp command are lost after a reboot.
See <http://www.faqs.org/faqs/hp/hpux-faq/> for information on
how to ensure the privilege group changes become permanent.

25.3.5.5 Other TAO-Specific Properties

BlockingPolicy
Use this property to set a blocking timeout for use when the notification
channel’s queue is full. The default behavior, when this property is not
specified, is to discard an event when the queue is full (based on the values of
RejectNewEvents and DiscardPolicy). When this property is used, the
channel blocks for the specified timeout while waiting for the queue to have
space for the event. If the timeout expires an event is discarded as in the
default case. The data type of this property is TimeBase::TimeT, which is a

o c i w e b . c o m 845

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

typedef to an unsigned long long with units of 100s of nanoseconds (10E-7
seconds).

You must use multithreaded dispatching when you specify this option
(specified via -DispatchingThreads). In addition, to avoid deadlocks when
using this property, be sure to configure the ORB so that dispatching threads
do not process incoming events. Here is a suitable service configurator file for
a notification channel process that uses the BlockingPolicy property:

static Client_Strategy_Factory "-ORBWaitStrategy rw -ORBTransportMuxStrategy
exclusive -ORBConnectStrategy blocked"
static Resource_Factory "-ORBFlushingStrategy blocking"
static Notify_Default_Event_Manager_Objects_Factory "-DispatchingThreads 1"

25.3.5.6 Accessing and Modifying QoS Properties
The QoS properties mentioned above can be set at the following levels: event
channel, admin objects, proxy objects and structured event. If a property is set
at more than one level, the property value set at the lower level applies. It is
your responsibility to apply these policies in a meaningful way considering the
asynchronous nature of event communication.

Table 25-1 indicates the levels at which each property can be set.

Table 25-1 Levels at Which Setting Each QoS Property is Supported

Property Event Proxy Admin
Channel
(QoS)

Channel
(Admin)

BlockingPolicy x x x

ConnectionReliability x x x

DiscardPolicy x x x

EventReliability x x

MaxConsumers x

MaxEventsPerConsumer x

MaximumBatchSize x

MaxQueueLength x

MaxSuppliers x

OrderPolicy x x x

PacingInterval x

Priority x

846 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

The following code fragment shows how to set the OrderPolicy and
DiscardPolicy properties:

CosNotification::QoSProperties qos(2);
qos.length(2);

qos[0].name = CORBA::string_dup (CosNotification::OrderPolicy);
qos[0].value <<= CosNotification::FifoOrder;

qos[1].name = CORBA::string_dup (CosNotification::DiscardPolicy);
qos[1].value <<= CosNotification::LifoOrder;

// qos_admin can be any object whose interface derives from
// CosNotification::QoSAdmin, including EventChannel, ConsumerAdmin,
// SupplierAdmin, ProxyConsumer, ProxySupplier, etc.
qos_admin->set_qos(qos);

Setting QoS in a Structured Event Header
As mentioned previously, you can also insert QoS properties into the variable
header fields of a StructuredEvent, as follows:

CosNotification::StructuredEvent event;

// Populate the event’s fixed header fields.
CosNotification::FixedHeader& fh = event.header.fixed_header;
fh.event_type.domain_name = CORBA::string_dup("Messenger");
fh.event_type.type_name = CORBA::string_dup("message");
fh.event_name = CORBA::string_dup("a_message");

//Populate the event’s variable header fields with the qos properties.
CosNotification::OptionalHeaderFields& vh = event.header.variable_header;
vh.length(1);
vh[0].name = CORBA::string_dup(CosNotification::Timeout);
// TimeT is in 10ths of a microsecond (100 nanoseconds).
const TimeT one_minute = (TimeBase::TimeT)(60 * 1000 * 1000 * 10);
vh[0].value <<= one_minute;

RejectNewEvents x

ThreadPool x x

ThreadPoolLanes x x

Timeout x

Table 25-1 Levels at Which Setting Each QoS Property is Supported

Property Event Proxy Admin
Channel
(QoS)

Channel
(Admin)

o c i w e b . c o m 847

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

25.3.5.7 Negotiating QoS and Conflict Resolution
TAO’s implementation of the Notification Service does not support the
validate_qos() and validate_event_qos() operations, and it does not
always raise UnsupportedQoS exceptions when expected, you are advised to
ensure QoS properties are valid before they are set.

get_qos() Operation
This operation returns the current QoS properties that are set on a given
object, including properties that were set by default. The returned properties
may even include invalid properties that are ignored by the Notification
Service. You can invoke the get_qos() operation as follows:

QoSProperties_var props = qos_admin->get_qos();

25.3.5.8 QoS-Related Exceptions

UnsupportedQoS Exception
Some operations described above may raise this exception if parameters
passed to it are QoS properties that are not supported. The exception contains
a sequence of erroneous QoS properties and their value ranges. Each included
property has an associated error. Table 25-2 describes possible values for the
UnsupportedQoS error codes. It is taken from the Notification Service
specification.

Table 25-2 UnsupportedQoS Error Codes

Error Code Meaning

UNSUPPORTED_PROPERTY
This property is not supported by this implementation
for this type of target object.

UNAVAILABLE_PROPERTY
This property cannot be set at (to any value) in the
current context (i.e., in the context of other QoS
properties).

UNSUPPORTED_VALUE
The value requested for this property is not supported
by this implementation for this type of target object. A
range of values which would be supported is returned.

UNAVAILABLE_VALUE
The value requested for this property is not supported
in the current context. A range of values which would
be supported is returned.

848 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

BAD_QOS System Exception
This exception is raised during transmission of a structured event from a
supplier to the notification event channel when the QoS properties indicated in
the header of the event cannot be satisfied by the channel.

25.3.6 Connection Reliability
Normally when the Notification Service starts executing, it creates an Event
Channel Factory. Based on command line options it may also create an Event
Channel. After that it waits for clients (consumers and suppliers) to create and
initialize event channels, admins, proxies, filters, etc. required to deliver
events. The collection of all of these objects created inside the notification
service is called the notification service topology.

If connection reliability is configured for the Notification Service it will save
this topology information, including information about the connections to
clients, in persistent storage. When it restarts, it can reload this information,
reestablish the connections to the clients (if they are still available), and be
ready to deliver events without the need for the clients to reconfigure the
topology.

To enable connection reliability, several things must happen:

• Topology persistence must be configured via the Service Configurator.
For more details on configuring topology persistence, see 25.7.4.

• Client reconnection to the Notification Service must be enabled. For
details see 25.7.3.2.

• The ConnectionReliability QoS property must be set to
Persistent for those portions of the topology that should be saved.

BAD_PROPERTY
This property name is unrecognized. The
implementation knows nothing about it.

BAD_TYPE
The type supplied for the value of this property is
incorrect.

BAD_VALUE
An illegal value is supplied for this property. A range
of values which would be supported is returned.

Table 25-2 UnsupportedQoS Error Codes

Error Code Meaning

o c i w e b . c o m 849

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

• The clients must be written to take advantage of the ability to reconnect to
existing objects in the Notification Service. Among other things this may
involve registering with the Notification Service’s reconnection registry.
See 25.3.6.1 for details.

Each portion of the topology inherits the ConnectionReliability property
from its parent so setting ConnectionReliability to Persistent for an
event channel automatically makes all admins and proxies contained in that
channel reliable.

ConnectionReliability may be disabled at the Admin or Proxy level by
specifying the ConnectionReliability property as BestEffort for the
object that should not be saved. The converse, enabling
ConnectionReliability for an Admin in a non-reliable EventChannel
or a Proxy in a non-reliable Admin, is not possible. Unless the parent is saved,
the child object cannot be saved.

TAO’s implementation of the Notification Service is designed to allow the
persistent topology to be reloaded on another computer, even if it has a
different architecture or operating system.

Here is a sample svc.conf file from a TAO connection reliability tests
($TAO_ROOT/orbsvcs/tests/Notify/Reconnecting/ns_mt_topo.conf):

static TAO_CosNotify_Service "-DispatchingThreads 2 -SourceThreads 2
-AllowReconnect"
dynamic Topology_Factory Service_Object*
TAO_CosNotification_Persist:_make_TAO_Notify_XML_Topology_Factory() "-base_path
./reconnect_test"

The -AllowReconnect option on the TAO_CosNotify_Service is
required for connection reliability. The -base_path option on the Topology
Factory tells the topology persistence code where to load the topology from
when starting and where to save the topology as it changes.

25.3.6.1 The Reconnection Registry
Specifying Connection Reliability and configuring persistent topology support
provides a basic level of connection reliability. Clients that desire a greater
ability to recover their connection after a Notification Service restart can
register to receive notification of the restart using a new, TAO-specific feature
called the Reconnection Registry.

850 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

The EventChannelFactory in TAO implements the following IDL
interface:

module NotifyExt
{
 /**
 * \brief An interface that handles registration of suppliers and consumers.
 *
 * This registry should be implemented by an EventChannelFactory and
 * will call the appropriate reconnect methods for all ReconnectionCallback
 * objects registered with it.
 */
 interface ReconnectionRegistry
 {
 typedef long ReconnectionID;
 ReconnectionID register_callback(in ReconnectionCallback reconection);

 void unregister_callback (in ReconnectionID id);

 /// Check to see if the ReconnectionRegistry is alive
 boolean is_alive ();
 };
}

Clients that wish to use the Reconnection Registry must implement the
following interface:

module NotifyExt
{
 /**
 * \brief An interface which gets registered with a ReconnectionRegistry.
 *
 * A supplier or consumer must implement this interface in order to
 * allow the Notification Service to attempt to reconnect to it after
 * a failure. The supplier or consumer must register its instance of
 * this interface with the ReconnectionRegistry.
 */
 interface ReconnectionCallback
 {
 /// Perform operations to reconnect to the Notification Service
 /// after a failure.
 void reconnect (in Object new_connection);

 /// Check to see if the ReconnectionCallback is alive
 boolean is_alive ();
 };
}

o c i w e b . c o m 851

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

Clients should narrow the reference the EventChannelFactory to a
NotifyExt::ReconnectionRegistry and then call the
register_callback() operation. After doing so, they will receive a call to
their reconnect() operation when the Notification Service has restarted and
is ready for use.

25.3.7 Event Reliability
The default behavior of the notification service is to provide best-effort
delivery of events. If anything goes wrong delivering an event to a particular
consumer, events for that consumer are silently discarded to keep the overall
system operating. This behavior can be changed to provide reliable event
delivery by configuring event persistence in the Service Configurator (see
25.7.5) and specifying the Persistent setting for the EventReliability
QoS property as necessary.

For event reliability to work, persistent EventReliability must be set at
the EventChannel level. It may be disabled on a per-event basis by
specifying BestEffort for the EventReliability property of a given
event. This works for Structured or Sequence events, but not for Any events
which have no property settings.

Notice that it is not possible to enable EventReliability for an event
unless it is being sent through a reliable EventChannel. Any attempt to do so
is silently ignored.

Event reliability also depends on connection reliability (see 25.3.6). If event
persistence is configured, but topology persistence is not, the Notification
Service will not start.

TAO’s implementation of the Notification Service is designed to allow the
persistent event information to be reloaded on another computer, even if it has
a different architecture or operating system.

Here is a sample svc.conf file from a TAO event reliability test
($TAO_ROOT/orbsvcs/tests/Notify/Reconnecting/ns_mt_both.conf):

static TAO_CosNotify_Service "-DispatchingThreads 2 -SourceThreads 2
-AllowReconnect"
#
dynamic Topology_Factory Service_Object*
TAO_CosNotification_Persist:_make_TAO_Notify_XML_Topology_Factory() "-base_path
./reconnect_test"

852 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

dynamic Event_Persistence Service_Object*
TAO_CosNotification_Serv:_make_TAO_Notify_Standard_Event_Persistence()
"-file_path ./event_persist.db"

The TAO_CosNotify_Service and Topology Factory configurations are
identical to the example show in the Connection Reliability section. The Event
Persistence service object’s -file_path option is used to specify the
directory where events will be persisted.

25.3.7.1 The Impact of Using Event Reliability
Setting event reliability for an event causes the event and information about its
delivery to be written to an event persistence file. When the notification
service is restarted, it first reloads topology information from the topology
persistence file and uses this to recreate the internal structures that support
event delivery (Channels, Admins, Proxies, and other objects). It then reads
any undelivered events from the event persistence file and reactivates them for
delivery to the appropriate consumers. As soon as the consumers reconnect to
the notification service, they begin to receive the events that were in route at
the time the notification service stopped running.

A supplier that pushes a reliable event to the notification service will not
receive a response to the push() invocation until the event has been safely
stored in the event persistence file.

Reliable events that are being delivered to a consumer that becomes
unavailable are held until the connection is reestablished to the consumer or
the consumer is restarted (on the same, or a different computer).

25.3.8 Real-Time CORBA Support
Applications utilizing the Real-Time CORBA features described in Chapter 8
encounter several challenges when they wish to use the Notification Service.
In general, the service needs to honor their quality of service requirements as
events pass through the notification channel. TAO supports these applications
by bundling a set of related features in the TAO_RT_Notification library.
These features include:

• New QoS properties to support

- RT CORBA thread pool usage in the notification channel

- Specifying the RT CORBA priority model of the notification
channel

o c i w e b . c o m 853

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

• Optimized event processing

• Optimized collocation between proxies

25.3.8.1 Enabling RT CORBA Support
In order to use the RT Notification features you need to load the
TAO_RT_Notification library and then specify your configuration via the
ThreadPool and/or ThreadPoolLanes properties. Typically, the library is
loaded via a dynamic service configurator directive such as this:

dynamic TAO_Notify_Service Service_Object *
TAO_RT_Notification:_make_TAO_RT_Notify_Service () ""

This factory is derived from the normal CosNotify_Service factory and
takes all the same options as described in 25.7.1 (although not all are
necessary or applicable when using the RT_Notify_Service factory).

25.3.8.2 Thread Pool Property
The ThreadPool property contains a ThreadPoolParams structure as its
data element. Here is the relevant IDL:

module NotifyExt
{
 typedef short Priority;
 const Priority minPriority = 0;
 const Priority maxPriority = 32767;

 enum PriorityModel
 {
 CLIENT_PROPAGATED,
 SERVER_DECLARED
 };
 struct ThreadPoolParams
 {
 PriorityModel priority_model;
 Priority server_priority;

 unsigned long stacksize;
 unsigned long static_threads;
 unsigned long dynamic_threads;
 Priority default_priority;
 boolean allow_request_buffering;
 unsigned long max_buffered_requests;
 unsigned long max_request_buffer_size;

854 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

 };
};

The members of this structure are used to create two POA policies for a new
POA that is used to activate enclosed objects. The PriorityModelPolicy
uses the priority_model and server_priority members to define the
RT CORBA priority model that the POA uses (server-declared or
client-propagated). The remaining members are used to construct a thread
pool and ThreadpoolPolicy for that POA. Additional details on these POA
policies and their usage is available in 8.3.7 and 8.3.8.

When this property is applied on an event channel, the event channel uses this
POA (and its thread pool) for all enclosed admin and proxy objects. When
applied to an admin object, the admin object uses the POA (and its thread
pool) for all enclosed proxy objects.

25.3.8.3 Thread Pool Lanes Property
The ThreadPoolLanes property contains a ThreadPoolLanesParams
structure as its data element. Here is the relevant IDL:

module NotifyExt
{
 struct ThreadPoolLane
 {
 PriorityModel priority_model;
 Priority server_priority;

 Priority lane_priority;
 unsigned long static_threads;
 unsigned long dynamic_threads;
 };

 typedef sequence <ThreadPoolLane> ThreadPoolLanes_List;

 struct ThreadPoolLanesParams
 {
 PriorityModel priority_model;
 Priority server_priority;

 unsigned long stacksize;
 ThreadPoolLanes_List lanes;
 boolean allow_borrowing;
 boolean allow_request_buffering;
 unsigned long max_buffered_requests;
 unsigned long max_request_buffer_size;

o c i w e b . c o m 855

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

 };
};

Most of this is identical to the ThreadPool property with the exception that
we are now specifying a thread pool with multiple lanes in place of a
monolithic thread pool. Each lane runs at a specific priority and processes
events of that priority. Refer to 8.3.7 for details about thread pools with lanes.

25.3.9 Monitoring and Control of the Notification Service
TAO’s Notification Service supports a separate Monitoring and Control
Interface that goes beyond the standard OMG-defined interfaces to give
remote applications the ability to query and track the state and progress of
existing notification channels. In addition to monitoring, the interface also
allows applications to control certain aspects of the notification channel. This
includes the ability to remove and destroy event channels, consumer admin
objects, supplier admin objects, consumer proxies, and supplier proxies.
Applications can also remotely shut down an entire notification channel
factory (and all of it notification channels).

25.3.9.1 TAO Monitoring Types

Monitoring and Control support in the TAO Notification Service is based
upon ORB-level monitoring and control capabilities defined at the TAO level.
Applications using these capabilities with the Notification Service also need to
link with the TAO_Monitor library.
This library defines a statistic as a particular data element that is being
monitored at run-time. Each statistics is identified by a unique name within its
monitoring interface. The basic monitoring data types are defined in
$TAO_ROOT/tao/Monitor/Monitor_Types.pidl. When retrieving a
statistic by name, the basic data type returned is a structure named
Monitor::Data:

module Monitor
{
 enum DataType { DATA_NUMERIC, DATA_TEXT };
 union UData switch (DataType) {
 case DATA_NUMERIC: Numeric num;
 case DATA_TEXT: NameList list;
 };
 struct Data
 {

856 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

 Name itemname;
 UData data_union;
 };
 typedef sequence<Data> DataList;
};

This data type contains the name of the statistic and information about either a
numeric or text statistic. The text statistic returns a sequence of string values
for that statistic. The numeric statistic returns a history of values as well as
some cumulative statistical measures since it was last cleared. The DataList
type is used when multiple statistics are retrieved at once. Here are the
relevant IDL definitions for the text-based statistics:

module Monitor
{
 typedef string Name;
 typedef CORBA::StringSeq NameList;
};

Here are the relevant IDL definitions for the numeric-based statistics:

module Monitor
{
 struct DataValue
 {
 /// The number of samples currently taken into account
 TimeBase::TimeT timestamp;
 double value;
 };
 typedef sequence<DataValue> DataValueList;
 struct Numeric
 {
 DataValueList dlist;
 unsigned long count;
 double average;
 double sum_of_squares;
 double minimum;
 double maximum;
 };
};

The TAO Monitor library also defines some filtering and constraint types
related to statistics, but the TAO Notification Service interfaces do not use
these.

o c i w e b . c o m 857

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

25.3.9.2 TAO Notification Monitoring and Control Interface

The Notification Service’s Monitoring and Control interface is named
CosNotification::NotificationServiceMonitorControl and is
defined in NotificationServiceMC.idl in the directory
$TAO_ROOT/orbsvcs/orbsvcs/Notify/MonitorControl/.
Applications using this interface should link with the
TAO_CosNotification_MC library or inherit from the notification_mc
MPC base project. The MPC base project also has the advantage of
automatically linking in the TAO Monitoring library.
Here are the statistics-related operations from the
NotificationServiceMonitorControl interface:

module CosNotification
{
 interface NotificationServiceMonitorControl
 {
 exception InvalidName { Monitor::NameList names; };

 Monitor::NameList get_statistic_names ();

 Monitor::Data get_statistic (in string name)
 raises (InvalidName);

 Monitor::DataList get_statistics (in Monitor::NameList names)
 raises (InvalidName);

 Monitor::DataList get_and_clear_statistics (in Monitor::NameList names)
 raises (InvalidName);

 void clear_statistics (in Monitor::NameList names)
 raises (InvalidName);

The get_statistics_names() operation retrieves the list of statistic
names currently supported by this interface. This list grows and shrinks as
entities (such as event channels) are created and destroyed. 25.3.9.3 discusses
the set of statistics currently supported by this interface. The remaining
operations above take either a single statistic name or a sequence of statistic
names as a parameter. Passing a statistic name that is not currently supported
results in the CosNotification::InvalidName exception. The
clear_statistics() and get_and_clear_statistics() operations
remove any statistics history for the specified statistics.

858 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

The remaining operations in this interface allow applications to shutdown
event channels, remove consumer and supplier admin objects, remove
consumers and suppliers, and shutdown the entire notification channel factory.

 // Control commands begin here
 void shutdown_event_channel (in string name)
 raises (InvalidName);

 void remove_consumer (in string name)
 raises (InvalidName);

 void remove_supplier (in string name)
 raises (InvalidName);

 void remove_consumeradmin (in string name)
 raises (InvalidName);

 void remove_supplieradmin (in string name)
 raises (InvalidName);

 oneway void shutdown ();
 };
};

The operations above are passes names as parameter to identify the particular
entity to operate upon. By default, these names are stringified versions of the
normal Notification Service identifiers (ChannelID, ProxyID, AdminID).
Users can also explicitly name these entities using the TAO-specific
mechanism as described in 25.3.9.4.

25.3.9.3 Supported Statistics

The statistics names supported by the Notification Service are organized
hierarchically, like Unix directories. At the top of this hierarchy is the
notification channel factory. You can retrieve the full list of notification
channel factories supported by the monitoring interface by using the
FactoryNames statistic. This is a text statistic and returns a set of factory
names. These names each serve as the prefix for statistic names related to that
factory. For example, assuming a factory name of
NotifyEventChannelFactory, the creation time of that factory can be
retrieved with the NotifyEventChannelFactory/CreationTime statistic
name. Assuming an event channel named EC1 is in this factory, the statistic
name of NotifyEventChannelFactory/EC1/SupplierCount can be

o c i w e b . c o m 859

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

used to get the count of suppliers in that event channel. When you call
get_statistics_names() the full set of statistics supported are returned,
without regard to this hierarchy.

The following tables define the available statistics for the different entities
within the Notification Service. Table 25-3 describes the statistics associated
with the event channel factory. For the purposes of these statistics, activity is
determined by the number of consumers and suppliers in a notification
channel. A channel with no consumers and no suppliers is considered inactive.
A channel with at lease one consumer or supplier is considered active.

Table 25-4 describes the statistics associated with each event channel.

Table 25-3 Event Channel Factory Statistics

Statistic Type Description

ActiveEventChannelCount Numeric The number of active event channels
currently in the event channel factory.

InactiveEventChannelCount Numeric The number of inactive event channels
currently in the event channel factory.

ActiveEventChannelNames Text The names of all active event channels
currently in the event channel factory.

InactiveEventChannelNames Text The names of all inactive event channels
currently in the event channel factory.

CreationTime Numeric Creation time (in POSIX time) of the event
channel factory.

Table 25-4 Event Channel Statistics

Statistic Type Description

CreationTime Numeric Creation time (in POSIX time) of the event
channel.

ConsumerCount Numeric The number of consumers connected to this
event channel.

SupplierCount Numeric The number of suppliers connected to this event
channel.

ConsumerNames Text The names of consumers connected to this event
channel.

SupplierNames Text The names of suppliers connected to this event
channel.

TimedoutConsumerNames Text The names of any consumers timed out of this
event channel.

860 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.3.9.4 Using the Extended Interfaces to Name Entities

When the monitor and control interface is used with the existing Notification
Service code, all reporting is done using the normal Notification Service
identifiers (ChannelID, ProxyID, AdminID). This functionality works to
distinguish particular entities, like one event channel, from another. It does not
help an application reliably relate specific reported statistics between
execution runs or to application-level entities. In order to do this, we need to
assign names to the different entities and not depend on the arbitrary system
assigned identifiers.

Because the standard OMG-defined interfaces do not support the naming of
entities, TAO’s Notification Service offers extended interfaces that allow this
capability. These interfaces are defined in
$TAO_ROOT/orbsvcs/orbsvcs/Notify/MonitorControlExt/Notify
MonitoringExt.idl:

module NotifyMonitoringExt
{

ConsumerAdminCount Numeric The number of consumer admin objects
connected to this event channel.

SupplierAdminCount Numeric The number of supplier admin objects connected
to this event channel.

ConsumerAdminNames Text The names of consumer admin objects connected
to this event channel.

SupplierAdminNames Text The names of supplier admin objects connected
to this event channel.

QueueSize Numeric The cummulative size of the event channel’s
queues in bytes.

QueueElementCount Numeric The total number of events currently in the event
channel’s queues.

OldestEvent Numeric
The time stamp (in POSIX time) of the oldest
event in the event channel’s queues. Reports a
value of zero if the queues are empty.

SlowestConsumers Text
Returns a list of consumer names that are
connected to the consumer admin with the largest
queue size.

Table 25-4 Event Channel Statistics

Statistic Type Description

o c i w e b . c o m 861

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

 exception NameAlreadyUsed {};
 exception NameMapError {};

 interface SupplierAdmin: NotifyExt::SupplierAdmin
 {
 CosNotifyChannelAdmin::ProxyConsumer
 obtain_named_notification_push_consumer (
 in CosNotifyChannelAdmin::ClientType ctype,
 out CosNotifyChannelAdmin::ProxyID proxy_id,
 in string name)
 raises (CosNotifyChannelAdmin::AdminLimitExceeded,
 NameAlreadyUsed,
 NameMapError);
 };

 interface ConsumerAdmin: NotifyExt::ConsumerAdmin
 {
 CosNotifyChannelAdmin::ProxySupplier
 obtain_named_notification_push_supplier (
 in CosNotifyChannelAdmin::ClientType ctype,
 out CosNotifyChannelAdmin::ProxyID proxy_id,
 in string name)
 raises (CosNotifyChannelAdmin::AdminLimitExceeded,
 NameAlreadyUsed,
 NameMapError);
 };

 interface EventChannel: CosNotifyChannelAdmin::EventChannel
 {
 CosNotifyChannelAdmin::ConsumerAdmin
 named_new_for_consumers(
 in CosNotifyChannelAdmin::InterFilterGroupOperator op,
 out CosNotifyChannelAdmin::AdminID id,
 in string name)
 raises (NameAlreadyUsed,
 NameMapError);

 CosNotifyChannelAdmin::SupplierAdmin
 named_new_for_suppliers(
 in CosNotifyChannelAdmin::InterFilterGroupOperator op,
 out CosNotifyChannelAdmin::AdminID id,
 in string name)
 raises (NameAlreadyUsed,
 NameMapError);
 };

 interface EventChannelFactory: NotifyExt::EventChannelFactory
 {
 CosNotifyChannelAdmin::EventChannel

862 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

 create_named_channel (
 in CosNotification::QoSProperties initial_qos,
 in CosNotification::AdminProperties initial_admin,
 out CosNotifyChannelAdmin::ChannelID id,
 in string name)
 raises(CosNotification::UnsupportedQoS,
 CosNotification::UnsupportedAdmin,
 NameAlreadyUsed,
 NameMapError);
 };
};

The NotifyMonitoringExt module defines extended versions of the event
channel factory, event channel, consumer admin, and supplier admin
interfaces that allow the user to name entities as they are created. Each is
directly derived from the existing Notification interfaces defined in the
NotifyExt module and indirectly derived from the standard Notification
Service interfaces. They add new operations for creating entities that differ
from the existing operations only by the addition of a name to the parameter
list. For example, instead of creating event channels with the
create_channel() operation in the
CosNotifyChannelAdmin::EventChannelFactory interface, you can
use the create_named_channel() operation in the
NotifyMonitoringExt::EventChannelFactory. Any channels
subsequently created always have their statistics reported with the assigned
name instead of the system-generated ChannelID value.

To use the interface extensions, first, narrow the entity objects you are using to
the extended interface types (in place of the Notification Service standard
interfaces). Then, you are ready to use the “named” interfaces. For example, to
create a named event channel:

#include "orbsvcs/Notify/MonitorControlExt/NotifyMonitoringExtC.h"

 // Get the event channel factory object from somewhere and then
 // narrow to the extended interface.
 CORBA::Object_var obj = ...;
 NotifyMonitoringExt::EventChannelFactory_var notify_ext_factory =
 NotifyMonitoringExt::EventChannelFactory::_narrow (obj.in());

 CosNotifyChannelAdmin::ChannelID id;
 CosNotification::QoSProperties qos;
 CosNotification::AdminProperties admin_prop;
 CosNotifyChannelAdmin::EventChannel_var ec =
 notify_ext_factory->create_named_channel(qos, admin_prop, id, "MyEC";

o c i w e b . c o m 863

2 5 . 3 N o t i f i c a t i o n S e r v i c e F e a t u r e s

25.3.9.5 Initializing and Connecting to the Monitoring Interface

Because the Monitoring and Control capabilities of the event channel are not
enabled in the basic Notification Service libraries, this functionality needs to
be enabled through use of dynamically loaded factories in a service
configurator file. Here is an example service configurator file:

dynamic TAO_MonitorAndControl Service_Object *
TAO_CosNotification_MC:_make_TAO_MonitorAndControl () "-o mc.ior -ORBArg
-ORBInitRefNameService=file://ns.ior"

dynamic TAO_MC_Notify_Service Service_Object *
TAO_CosNotification_MC_Ext:_make_TAO_MC_Notify_Service () ""

The TAO_MonitorAndControl factory enables the monitoring and control
functionality in the notification server. This service creates its own ORB and
uses it for the monitoring and control CORBA objects. Table 25-5 shows the
configuration options that this factory takes.

The TAO_MC_Notify_Service factory enables the extended notification
interfaces discussed in 25.3.9.4. It does not take any configuration options.

Listed below is an example that starts the tao_cosnotification server
with this configuration. Note that we have configured both the event channel
factory and monitor and control objects to use the same Naming Service.

$TAO_ROOT/orbsvcs/Notify_Service/tao_cosnotification -ORBSvcConf mc.conf \
 -ORBInitRefNameService=file://ns.ior

Table 25-5 TAO_MonitorAndControl Service Options

Option Description Default

-o file
Specifies a file to write the Monitor
and Control object’s IOR to.

Do not write the IOR to a
file.

-ORBArg opts
Specifies ORB-initialization options
to pass to the monitor and control
ORB when it is created.

ORB is created with the
default configuration.

-NoNameSvc
Do not register the Monitor and
Control object with the Naming
Service.

Monitor and Control object
is registered under the name
“TAO_MonitorAndControl”

864 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.4 Using the Notification Service

We now look at an example that illustrates the use of Notification Service
features. A basic example using structured events is introduced in 25.4.2. In
25.4.3, we discuss how consumer and supplier connections can be managed.
We extend the basic example in 25.4.4 by adding offer publication to the
supplier and event type subscription to the consumer. Filtering is added to the
supplier and consumer in 25.4.5. In 25.4.6, we add QoS properties to the
example. In 25.4.7, we show how to transmit batched events. Finally, in
25.4.8, we show how you can collocate a notification event channel in the
same address space as a supplier. For the sake of clarity, error checking in
these examples has been kept to a minimum. Full source code for these
examples is in the TAO source code distribution in subdirectories under
$TAO_ROOT/orbsvcs/DevGuideExamples/NotifyService/.

25.4.1 Building Notification Service Applications
Table 25-6 lists the set of libraries containing TAO’s Notification Service
implementation.

Most processes that use TAO’s Notification Service must link with the
TAO_CosNotification and TAO_CosNotification_Skel libraries.
Processes that do not implement any notification-related servants (such as
some push suppliers) may be able to only link the TAO_CosNotification

Table 25-6 TAO Notification Service Libraries

Library Description

TAO_CosNotification Client-side IDL-generated C++ code (stubs)

TAO_CosNotification_Skel Server-side IDL-generated C++ code (skeletons)

TAO_CosNotification_Serv
Notification Service server implementation
(required for processes that contain notification
channels)

TAO_CosNotification_Persist

Persistence-related features (required for
notification channel server processes that set
ConnectionReliability and/or
EventReliability to Persist)

TAO_RT_Notification
Features related to Real-Time CORBA (required
for notification channel server processes that use
RT CORBA with the Notification Service)

o c i w e b . c o m 865

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

library. Processes that contain event channel factories and event channels
must also link TAO_CosNotification_Serv. These processes must also
link either TAO_CosNotification_Persist or TAO_RT_Notification if
they use the persistence or real-time features, respectively.

MPC projects for processes that use the Notification Service can simply
inherit from the notify_skel base project. MPC projects for notification
channel servers can simply inherit from the notify_serv base project. For
example, here is the mpc file for the Notification Service example in
$TAO_ROOT/orbsvcs/DevGuideExamples/Notification/Messenger
(discussed in the next section):

project(*Server): namingexe, portableserver, notification_skel {
 requires += exceptions
 Source_Files {
 StructuredEventSupplier_i.cpp
 MessengerServer.cpp
 Messenger_i.cpp
 }
}

project(*Client): namingexe, notification {
 requires += exceptions
 Source_Files {
 MessengerC.cpp
 MessengerClient.cpp
 }
}

project(*Consumer): namingexe, portableserver, notification_skel {
 requires += exceptions
 IDL_Files {
 }
 Source_Files {
 MessengerConsumer.cpp
 StructuredEventConsumer_i.cpp
 }
}

For more information on MPC, see Chapter 4.

25.4.2 A Basic Example
Our example extends the Messenger example discussed in Chapter 3 to use the
Notification Service. Suppose, for example, that the MessengerServer is to
publish the messages it receives so that other interested consumers can receive

866 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

them. One way to do this is for the MessengerServer to become a client of
another set of CORBA objects that are interested in receiving the messages
sent to it. In this scenario, the MessengerServer obtains an object reference
for each interested object, then invokes an operation on each object to forward
each message it receives. However, this approach is inflexible and inefficient
because:

• The MessengerServer must know about all objects that are interested in
receiving the messages a priori, thereby making it difficult to dynamically
add or remove them at run time.

• The MessengerServer must spend processing time forwarding the
messages to these interested objects.

The asynchronous style of event communication used by the Notification
Service addresses these issues. It allows suppliers to send messages (events) to
consumers that are interested in receiving them, yet neither the consumers nor
the suppliers need to know about one another. Moreover, it allows
applications to dynamically add or remove suppliers and consumers without
impacting other objects in the system. Finally, it transfers responsibility for
dispatching events to consumers from suppliers to the notification channel
rather than imposing this processing overhead on the suppliers themselves.

We now modify our MessengerServer example to send an event to
consumers via a notification channel each time it receives a message from a
client so that other objects interested in receiving this event can subscribe to
the notification channel and receive it. Full source code for this example is in
the TAO source code distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/NotifyService/Messenger/.

25.4.2.1 Starting the tao_cosnotification Server
This example uses the tao_cosnotification and tao_cosnaming servers
in TAO. By default, the tao_cosnotification server creates a single
notification channel factory object and binds it in the root naming context of
the Naming Service to the name NotifyEventChannelFactory. The
notification channel factory is used to create notification channels. The
Naming Service and Notification Service servers must be started in the
following order before running this example:

$TAO_ROOT/orbsvcs/Naming_Service/tao_cosnaming
$TAO_ROOT/orbsvcs/Notify_Service/tao_cosnotification

o c i w e b . c o m 867

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

Command line options for the tao_cosnotification server are covered in
25.6.

25.4.2.2 Implementing the Structured Push Supplier Interface
The CosNotifyComm::StructuredPushSupplier IDL interface is
implemented by our supplier class StructuredEventSupplier_i. The
StructuredPushSupplier interface contains the following two operations:

• disconnect_structured_push_supplier() allows the notification
channel to inform the supplier that it has been disconnected from the
channel. Typically, this is called when the channel is destroyed.

• subscription_change() allows the notification channel to inform the
supplier of changes to the event types its connected consumers are
interested in receiving.

#include <orbsvcs/CosNotifyCommS.h>

class StructuredEventSupplier_i :
 public virtual POA_CosNotifyComm::StructuredPushSupplier
{
 public:
 // Constructor
 StructuredEventSupplier_i(CORBA::ORB_ptr orb);

 // Override operations from StructuredPushSupplier interface.
 virtual void disconnect_structured_push_supplier () ;
 virtual void subscription_change (
 const CosNotification::EventTypeSeq& events_added,
 const CosNotification::EventTypeSeq& events_removed);
 private:
 CORBA::ORB_var orb_;
};

The StructuredEventSupplier_i constructor simply duplicates the ORB
reference passed to it and stores it in its data member.

StructuredEventSupplier_i::StructuredEventSupplier_i(CORBA::ORB_ptr orb)
 : orb_(CORBA::ORB::_duplicate(orb)) { }

The disconnect_structured_push_supplier() operation is called
when the supplier is being disconnected from the notification channel. Our
implementation deactivates the supplier object.

868 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

void StructuredEventSupplier_i::disconnect_structured_push_supplier ()
 {
 CORBA::Object_var obj = orb_->resolve_initial_references ("POACurrent");
 PortableServer::Current_var current =
 PortableServer::Current::_narrow (obj.in());
 PortableServer::POA_var poa = current->get_POA ();
 PortableServer::ObjectId_var objectId = current->get_object_id ();
 poa->deactivate_object (objectId.in());
}

The subscription_change() operation is called by the supplier’s
consumer proxy object to inform the supplier of changes to the subscription
information by the notification channel’s consumers. Its implementation does
nothing for now, but will be expanded later when we address offers and
subscriptions.

void StructuredEventSupplier_i::subscription_change (
 const CosNotification::EventTypeSeq&,
 const CosNotification::EventTypeSeq&)
{
 // More to come...
}

25.4.2.3 Developing the Structured Event Supplier
Next, we modify the implementation of our MessengerServer so that it can
behave as a supplier of structured events. Each time it receives a message, it
will create a new structured event and populate it with information from the
message, then push this event to the notification channel via its consumer
proxy.

First, we initialize the ORB and obtain and activate the RootPOA as usual:.

#include "Messenger_i.h"
#include <iostream>
#include <fstream>

int main(int argc, char* argv[])
{
 try {
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj.in());
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();

o c i w e b . c o m 869

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

Next, we create a Messenger_i servant and activate it in the RootPOA. We
then export its object reference as a string and wait for client requests:

 PortableServer::Servant_var<Messenger_i> messenger_servant =
 new Messenger_i(orb.in());
 PortableServer::ObjectId_var oid =
 poa->activate_object(messenger_servant.in());
 CORBA::Object_var messenger_obj = poa->id_to_reference(oid.in());
 CORBA::String_var str = orb->object_to_string(messenger_obj.in());
 std::ofstream iorFile("Messenger.ior");
 iorFile << str.in() << std::endl;
 iorFile.close();
 std::cout << "IOR written to file Messenger.ior" << std::endl;
 orb->run();

 orb->destroy();
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "Caught a CORBA exception: " << ex << std::endl;
 return 1;
 }
 return 0;
}

We now turn our attention to the Messenger_i class that implements the
Messenger interface. Our class now acts as an event supplier. We have added
an additional #include directive to access the Notification Service channel
administration definitions. We have also added new fields, one to hold the
object reference of our structured proxy push consumer, and another to hold
an ORB reference.

#include "MessengerS.h"
#include <orbsvcs/CosNotifyChannelAdminC.h>

class Messenger_i : public virtual POA_Messenger
{
 public:
 // Constructor and destructor.
 Messenger_i (CORBA::ORB_ptr orb);
 virtual ~Messenger_i ();

 // Override operations from the Messenger interface.
 CORBA::Boolean send_message (
 const char* user_name,
 const char* subject,
 char*& message);

870 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

 private:
 CosNotifyChannelAdmin::StructuredProxyPushConsumer_var
 structured_proxy_consumer_;
 CORBA::ORB_var orb_;
};

Our modified implementation of the Messenger_i class follows:

#include "StructuredEventSupplier_i.h"
#include "Messenger_i.h"
#include <orbsvcs/CosNotifyChannelAdminC.h>
#include <orbsvcs/CosNotifyCommC.h>
#include <orbsvcs/CosNamingC.h>

In the constructor, we now initialize the ORB. We then use the Naming
Service to access the Notification Service’s notification channel factory:

Messenger_i::Messenger_i (CORBA::ORB_ptr orb)
 : orb_(CORBA::ORB::_duplicate(orb))
{
 try {
 CORBA::Object_var naming_obj =
 orb_->resolve_initial_references ("NameService");
 CosNaming::NamingContext_var naming_context =
 CosNaming::NamingContext::_narrow(naming_obj.in());

When we started the tao_cosnotification server, it bound the notify
channel factory in the root naming context of the Naming Service to the name
“NotifyEventChannelFactory.” We resolve the factory using this name:

 CosNaming::Name name;
 name.length(1);
 name[0].id = CORBA::string_dup("NotifyEventChannelFactory");
 CORBA::Object_var obj = naming_context->resolve(name);

 CosNotifyChannelAdmin::EventChannelFactory_var notify_factory =
 CosNotifyChannelAdmin::EventChannelFactory::_narrow(obj.in());
 if (CORBA::is_nil(notify_factory.in())) {
 std::cerr << "Unable to find notify factory" << std::endl;
 }

We use the notification channel factory to create a new notification channel.
The create_channel() operation takes the following parameters as input:

• The initial QoS values for the channel.

o c i w e b . c o m 871

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

• The initial administrative property values. This is a sequence of
name/value pairs, where each name is a string and each value is a
CORBA::Any.

• The ChannelID as an out parameter. The ChannelID identifies the
notification channel within the context of the notification event channel
factory.

 CosNotifyChannelAdmin::ChannelID id;
 CosNotification::QoSProperties initial_qos;
 CosNotification::AdminProperties initial_admin;

 CosNotifyChannelAdmin::EventChannel_var notify_channel =
 notify_factory->create_channel (initial_qos,
 initial_admin,
 id);
 if (CORBA::is_nil(notify_channel.in())) {
 std::cerr << "Unable to create notification channel" << std::endl;
 }

There are several ways to provide access to this notification channel. For this
example, we bind it in the root naming context of the Naming Service to the
name “MessengerChannel”:

 name[0].id = CORBA::string_dup("MessengerChannel");
 naming_context->rebind(name, notify_channel.in());

Alternatively, the supplier can export ChannelID, which could then be used
by consumers to get a reference to the notification channel using the
get_event_channel() operation of the notification channel factory.

The Notification Service allows any number of SupplierAdmin objects to be
associated with a notification channel. Normally each SupplierAdmin object
is responsible for creating and managing proxy consumers with a common set
of QoS property settings and filter objects. These proxy consumer objects are
used by their suppliers to push events onto the notification channel. The
new_for_suppliers() operation is used to obtain a SupplierAdmin
object. This operation takes the following parameters:

• InterFilterGroupOperator, which can be either AND_OP or OR_OP.
For more information on this parameter, see 25.3.3.2.

• AdminID, an out parameter that identifies the SupplierAdmin object.

872 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

 CosNotifyChannelAdmin::InterFilterGroupOperator ifgop =
 CosNotifyChannelAdmin::AND_OP;
 CosNotifyChannelAdmin::AdminID adminid;
 CosNotifyChannelAdmin::SupplierAdmin_var supplier_admin =
 notify_channel->new_for_suppliers (ifgop, adminid);
 if (CORBA::is_nil (supplier_admin.in())) {
 std::cerr << "Unable to access supplier admin" << std::endl;
 }

Note The above code creates a new supplier admin each time it is run. In
applications with long running notification channels, this can lead to an
accumulation of supplier admins and degraded performance. In a production
application, you would want to either call destroy() on the admin when you
are done with it or use get_supplieradmin() or
get_all_supplier_admins() on the event channel to check for an
existing admin object.

For the push supplier to push events onto the notification channel, we must
obtain a proxy push consumer object reference. We get a reference to a proxy
push consumer object from the SupplierAdmin object by using the
obtain_notification_push_consumer() operation. This operation
takes two parameters:

• ClientType identifies the type of events our supplier will produce,
which can be ANY_EVENT, STRUCTURED_EVENT, or SEQUENCE_EVENT.

• ProxyID is an out parameter that identifies the proxy object.

In our example, the supplier is producing structured events, so we specify
ClientType to be STRUCTURED_EVENT. Note that the return type of the
obtain_notification_push_consumer() operation is
CosNotifyChannelAdmin::ProxyConsumer. We must narrow it to
CosNotifyChannelAdmin::StructuredProxyPushConsumer since our
supplier will be producing structured events. The supplier will use this proxy
consumer to push structured events to the notification channel:

 CosNotifyChannelAdmin::ProxyID proxy_id;
 CosNotifyChannelAdmin::ProxyConsumer_var proxy_consumer =
 supplier_admin->obtain_notification_push_consumer(
 CosNotifyChannelAdmin::STRUCTURED_EVENT,
 proxy_id);

 structured_proxy_consumer_ =

o c i w e b . c o m 873

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

 CosNotifyChannelAdmin::StructuredProxyPushConsumer::_narrow(
 proxy_consumer.in());
 if (CORBA::is_nil(structured_proxy_consumer_.in())) {
 std::cerr << "Unable to obtain structured proxy push consumer" << std::endl;
 }

We now create an instance of our StructuredEventSupplier_i push
supplier servant class. We activate the supplier servant in the RootPOA of our
new ORB:

PortableServer::Servant_var<StructuredEventSupplier_i> supplier_servant =
 new StructuredEventSupplier_i(orb_.in());
CORBA::Object_var poa_obj = orb_->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow(poa_obj.in());
PortableServer::POAManager_var mgr = poa->the_POAManager();
mgr->activate();
PortableServer::ObjectId_var objectId =
 poa->activate_object(supplier_servant.in());

Using the connect_structured_push_supplier() operation, we now
connect our supplier to the consumer proxy object. This operation takes an
object reference to the supplier as a parameter:

 CORBA::Object_var supplier_obj = poa->id_to_reference(objectId.in());
 CosNotifyComm::StructuredPushSupplier_var supplier =
 CosNotifyComm::StructuredPushSupplier::_narrow(supplier_obj.in());
 structured_proxy_consumer_->
 connect_structured_push_supplier(supplier.in());
 }
 catch (CORBA::Exception& ex) {
 std::cerr << ex << std::endl;
 }
}

Next, we extend the implementation of our Messenger’s send_message()
operation. In addition to printing information about the message, we create a
new structured event and populate it with the contents of the message. The
contents of the structured event are shown in 25.3.1. For this example, the
event type domain is OCI_TAO and the event type name is examples. We
invoke the push_structured_event() operation of the structured push
consumer proxy object to push the event to the notification channel:

CORBA::Boolean Messenger_i::send_message (
 const char* user_name,
 const char* subject,

874 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

 char*& message)
{
 std::cerr << "Message from: " << user_name << std::endl;
 std::cerr << "Subject: " << subject << std::endl;
 std::cerr << "Message: " << message << std::endl;

 // Create a structured event.
 CosNotification::StructuredEvent event;

 // Populate the event’s fixed header fields.
 event.header.fixed_header.event_type.domain_name =
 CORBA::string_dup("OCI_TAO");
 event.header.fixed_header.event_type.type_name =
 CORBA::string_dup("examples");
 event.header.fixed_header.event_name =
 CORBA::string_dup("myevent");

 // Populate the event’s filterable body fields.
 event.filterable_data.length (3);
 event.filterable_data[0].name = CORBA::string_dup("Message from:");
 event.filterable_data[0].value <<= (const char *)user_name;
 event.filterable_data[1].name = CORBA::string_dup("Subject:");
 event.filterable_data[1].value <<= (const char *)subject;
 event.filterable_data[2].name = CORBA::string_dup("Message:");
 event.filterable_data[2].value <<= (const char *)message;

 // Push the event to the notification channel.
 structured_proxy_consumer_->push_structured_event(event);
 return true;
}

This simple example omits two elements that may be necessary in production
applications. Both are related to process shutdown and any cleanup which
would occur if shutdown() was called on the ORB.

• We have left no way to disconnect from the proxy push consumer. This
means our proxy consumer will likely live in the event channel forever
after our process exits. In a production application, you should be sure to
call disconnect_structured_push_consumer() on the
StructuredProxyPushConsumer to allow the event channel to destroy
this unused object.

• We “leak” the servant object. The solution here is that we should use
reference-counted servants, so the POA automatically deletes any servants
when the POA is deleted.

o c i w e b . c o m 875

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

25.4.2.4 Implementing the Structured Push Consumer Interface
The CosNotifyComm::StructuredPushConsumer IDL interface is
implemented by the class StructuredEventConsumer_i. The three
operations in the StructuredPushConsumer interface are as follows:

• push_structured_event() delivers structured events from the
notification channel to the consumer.

• disconnect_structured_push_consumer() called when the
notification channel disconnects the structured push consumer from its
associated proxy supplier.

• offer_change() allows the notification channel to inform the consumer
of changes to the event types its connected suppliers intend to produce.

#include <orbsvcs/CosNotifyCommS.h>

class StructuredEventConsumer_i :
 public virtual POA_CosNotifyComm::StructuredPushConsumer
{
 public:
 // Constructor.
 StructuredEventConsumer_i(CORBA::ORB_ptr orb);

 // Override operations from StructuredPushConsumer interface.
 virtual void push_structured_event(
 const CosNotification::StructuredEvent& event);
 virtual void disconnect_structured_push_consumer();
 virtual void offer_change (
 const CosNotification::EventTypeSeq& events_added,
 const CosNotification::EventTypeSeq& events_removed);
 private:
 CORBA::ORB_var orb_;
};

The StructuredEventConsumer_i constructor simply duplicates the ORB
reference passed to it and stores it in its data member:

StructuredEventConsumer_i::StructuredEventConsumer_i(CORBA::ORB_ptr orb)
 : orb_(CORBA::ORB::_duplicate(orb)) { }

The push_structured_event() operation is called for each event that
matches the consumer’s subscription information. Our implementation simply
extracts and prints each element from the filterable body fields of the
structured event:

876 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

void StructuredEventConsumer_i::push_structured_event(
 const CosNotification::StructuredEvent& event)
{
 const char* value;
 for (int i=0; i<event.filterable_data.length(); ++i) {
 if (event.filterable_data[i].value >>= value) {
 std::cout << event.filterable_data[i].name << "\t" << value << std::endl;
 }
 }
}

The disconnect_structured_push_consumer() operation is called
when the consumer is being disconnected from the notification channel. Our
implementation deactivates the consumer object from its POA:

void StructuredEventConsumer_i::disconnect_structured_push_consumer()
{
 CORBA::Object_var obj = orb_->resolve_initial_references ("POACurrent");
 PortableServer::Current_var current =
 PortableServer::Current::_narrow (obj.in());
 PortableServer::POA_var poa = current->get_POA ();
 PortableServer::ObjectId_var objectId = current->get_object_id ();
 poa->deactivate_object (objectId.in());
}

The offer_change() operation is called by the consumer’s supplier proxy
object to inform the consumer of changes in the event types offered by the
suppliers of the notification channel. Its implementation does nothing for now,
but it will be expanded later when we address offers and subscriptions.

void StructuredEventConsumer_i::offer_change(
 const CosNotification::EventTypeSeq&,
 const CosNotification::EventTypeSeq&)
{
 // More to come...
}

25.4.2.5 Developing the Structured Event Consumer
Next, we create a MessengerConsumer application to find the notification
channel created by the supplier, create an instance of our structured push
consumer implementation class, connect the consumer to the channel, and
process events:

o c i w e b . c o m 877

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

#include "StructuredEventConsumer_i.h"
#include <orbsvcs/CosNotifyChannelAdminC.h>
#include <orbsvcs/CosNotifyCommC.h>
#include <orbsvcs/CosNamingC.h>

int main(int argc, char* argv[])
{
 try
 {
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var naming_obj =
 orb->resolve_initial_references ("NameService");
 if (CORBA::is_nil(naming_obj.in())) {
 std::cerr << "Unable to find Naming Service" << std::endl;
 return 1;
 }
 CosNaming::NamingContext_var naming_context =
 CosNaming::NamingContext::_narrow(naming_obj.in());

When the supplier created the notification channel, it bound it in the Naming
Service’s root naming context to the name MessengerChannel. We now
resolve the notification channel from the Naming Service:

 CosNaming::Name name;
 name.length (1);
 name[0].id = CORBA::string_dup("MessengerChannel");
 CORBA::Object_var notify_channel_obj = naming_context->resolve(name);
 CosNotifyChannelAdmin::EventChannel_var notify_channel =
 CosNotifyChannelAdmin::EventChannel::_narrow(notify_channel_obj.in());
 if (CORBA::is_nil (notify_channel.in())) {
 std::cerr << "Unable to find the notification channel" << std::endl;
 return 1;
 }

Alternatively, we could use the get_event_channel() operation on the
notification channel factory to look up the notification channel using the
CosNotifyChannelAdmin::ChannelID returned when the supplier created
the channel.

Any number of ConsumerAdmin administration objects are allowed to be
associated with a notification channel. Normally each ConsumerAdmin object
is responsible for creating and managing proxy suppliers with a common set
of QoS property settings and filter objects. These proxy supplier objects push
events to their consumers. A ConsumerAdmin object is obtained using the
new_for_consumers() operation. This operation takes the following
parameters:

878 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

• InterFilterGroupOperator, which can be either AND_OP, or OR_OP.
For more information on this parameter, see 25.3.3.2.

• AdminID, an out parameter that identifies the ConsumerAdmin object.

 CosNotifyChannelAdmin::AdminID adminid;
 CosNotifyChannelAdmin::InterFilterGroupOperator ifgop =
 CosNotifyChannelAdmin::AND_OP;
 CosNotifyChannelAdmin::ConsumerAdmin_var consumer_admin =
 notify_channel->new_for_consumers (ifgop, adminid);
 if (CORBA::is_nil (consumer_admin.in())) {
 std::cerr << "Unable to access consumer admin" << std::endl;
 }

Note The above code creates a new consumer admin each time it is run. In
applications with long running notification channels, this can lead to an
accumulation of consumer admins and degraded performance. In a
production application, you would want to either call destroy() on the
admin when you are done with it or use get_consumeradmin() or
get_all_consumer_admins() on the event channel to check for an
existing admin object.

For the push consumer to connect to the notification channel and begin
receiving events, we must obtain a proxy push supplier object reference. We
get a reference to a proxy push supplier from the ConsumerAdmin object
using the obtain_notification_push_supplier() operation. This
operation takes two parameters:

• ClientType identifies the type of events our consumer wishes to receive,
which can be ANY_EVENT, STRUCTURED_EVENT, or SEQUENCE_EVENT.

• ProxyID is an out parameter that identifies the proxy object.

In our example, the consumer is receiving structured events, so we specify
ClientType to be STRUCTURED_EVENT. Note that the return type of the
obtain_notification_push_supplier() operation is defined as
CosNotifyChannelAdmin::ProxySupplier. We must narrow it to
CosNotifyChannelAdmin::StructuredProxyPushSupplier since our
consumer will be receiving structured events. The consumer will connect to
this proxy supplier to begin receiving structured events from the notification
channel:

o c i w e b . c o m 879

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

 CosNotifyChannelAdmin::ProxyID proxy_id;
 CosNotifyChannelAdmin::ProxySupplier_var proxy_supplier =
 consumer_admin->obtain_notification_push_supplier(
 CosNotifyChannelAdmin::STRUCTURED_EVENT,
 proxy_id);
 CosNotifyChannelAdmin::StructuredProxyPushSupplier_var
 structured_proxy_supplier =
 CosNotifyChannelAdmin::StructuredProxyPushSupplier::_narrow(
 proxy_supplier.in());
 if (CORBA::is_nil (structured_proxy_supplier.in())) {
 std::cerr << "Unable to obtain structured proxy push supplier" << std::endl;
 return 1;
 }

We now create an instance of our StructuredEventConsumer_i push
consumer servant class. We then activate the servant in the RootPOA and
obtain its object reference. We then connect our consumer to the proxy push
supplier using the connect_structured_push_consumer() operation.
This operation takes an object reference to the consumer as a parameter:

 PortableServer::Servant_var<StructuredEventConsumer_i> consumer_servant =
 new StructuredEventConsumer_i(orb.in());
 CORBA::Object_var poa_obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(poa_obj.in());
 PortableServer::ObjectId_var oid =
 poa->activate_object(consumer_servant.in());
 CORBA::Object_var consumer_obj = poa->id_to_reference(oid.in());
 CosNotifyComm::StructuredPushConsumer_var consumer =
 CosNotifyComm::StructuredPushConsumer::_narrow(consumer_obj.in());
 structured_proxy_supplier->connect_structured_push_consumer(consumer.in());

We also add information about the event types the consumer is interested in
receiving to the proxy push supplier using the subscription_change()
operation. We add the structured events identified by the domain name
“OCI_TAO” and type name “examples”, and remove all other event types
from the subscription:

 CosNotification::EventTypeSeq added;
 CosNotification::EventTypeSeq removed;
 added.length(1);
 removed.length(1);

 added[0].domain_name = CORBA::string_dup("OCI_TAO");
 added[0].type_name = CORBA::string_dup("examples");

 removed[0].domain_name = CORBA::string_dup("*");

880 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

 removed[0].type_name = CORBA::string_dup("*");

 structured_proxy_supplier->subscription_change(added, removed);

Note the use of the wildcard character “*” (an asterisk) in the domain and type
name fields in the sequence of event types to be removed. This indicates a
match with all event types in all domains. Therefore, all event types are
removed except for the event type that was added. As before, we could also
use “%ALL” with the same meaning.

Next, we activate the POA and enter the ORB event loop so we can receive
events:

 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();
 orb->run();
 } catch (CORBA::Exception& ex) {
 std::cerr << ex << std::endl;
 return 1;
 }
 return 0;
}

When an event is pushed to the notification channel, the operation
push_structured_event() will be invoked on our consumer. This
consumer process is assumed to run indefinitely and does not bother to call
disconnect_structured_push_supplier() on its proxy. Real
applications should ensure that the disconnect operation is called before the
orb is shut down and the process exits. Failure to do so results in “leaking” the
proxy object in the notification channel server.

25.4.3 Managing Connections
This section briefly describes how consumers and suppliers can manage their
connections to the Notification Service.

25.4.3.1 Connecting and Disconnecting Consumers
Our example used the connect_structured_push_consumer() operation
to connect to its structured proxy push supplier:

structured_proxy_supplier->connect_structured_push_consumer (consumer.in());

o c i w e b . c o m 881

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

The consumer remains connected to the notification channel until the
corresponding disconnect_structured_push_supplier() operation is
invoked:

structured_proxy_supplier->disconnect_structured_push_supplier ();

This disconnects the consumer from the notification channel and causes the
structured proxy push supplier to be destroyed.

25.4.3.2 Connecting and Disconnecting Suppliers
Suppliers are connected and disconnected using analogous operations on the
structured proxy push consumer object:

 structured_proxy_consumer->connect_structured_push_supplier (supplier.in ());

 // Do all the publication required...

 structured_proxy_consumer->disconnect_structured_push_consumer ();

TAO’s Notification Service cleans up resources associated with the supplier
when disconnect is called. Failure to call disconnect causes these resource to
be leaked.

25.4.3.3 Suspending and Resuming Consumer Connections
Consumers that want to stop receiving events for a period of time can use the
suspend_connection() operation. Events published by a supplier while
the consumer has suspended the connection will be held in a queue until the
consumer invokes the resume_connection() operation. The
resume_connection() operation will cause any queued events to be
delivered to the consumer as delivery returns to normal.

Using these operations is more efficient than alternative approaches. One
alternative is to just stay connected to the notification channel and ignore the
events as they are pushed to the consumer. Suspending is much more efficient
because the supplier stops pushing events to that consumer and events that are
sent to a suspended connection are not lost.

Another approach is to disconnect from the event channel, then later reconnect
to the same channel. Events that are waiting to be delivered to the consumer,
when the consumer disconnects, and events that are sent to the channel after

882 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

the disconnection, will never be delivered to this consumer. When the
consumer reconnects to the channel it will begin receiving new events sent to
that channel.

A framework for the use of these operations is as follows:

 structured_proxy_supplier->suspend_connection ();

 // Do something else for a while...

 structured_proxy_supplier->resume_connection ();

25.4.3.4 Destroying the Notification Channel
Notification channels consume resources within the process in which they are
created. You can invoke the destroy() operation to destroy a notification
channel and release its resources when it is no longer needed.

notify_channel->destroy ();

When a notification channel is destroyed, all currently connected consumers
and suppliers are notified via their respective disconnect operations. This
allows consumers and suppliers to clean up any resource they may be holding.

25.4.4 Using Offers and Subscriptions
In this section, we show how to add offers and subscriptions to our simple
example. Full source code for this example is in the TAO source code
distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/NotifyService/OfferSub
scriptions/.

25.4.4.1 Adding Publication of Offers to the Supplier
The collection of event types a supplier produces is called an offer. A supplier
can inform consumers of the notification channel about the types of events it
will be producing by invoking the offer_change() operation. Later, it can
invoke the offer_change() operation again to add or remove event types
from its offer. The notification channel aggregates the offers of all its
suppliers so consumers can be informed of what types of events are currently
published via the channel. The offer_change() operation can be invoked
on the supplier’s consumer proxy object or on its SupplierAdmin object.

o c i w e b . c o m 883

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

Here, we show how to add publication of offers to the consumer proxy object.
The offer_change() operation takes two parameters:

• A sequence of event types the supplier will add to its offer (i.e., the event
types it will start supplying).

• A sequence of event types the supplier will remove from its offer (i.e., the
event types it will no longer supply).

The type of these parameters is CosNotification::EventTypeSeq. Each
event type in the sequence is a structure containing two strings:

• The domain_name identifies the vertical industry domain in which the
event is defined (e.g., telecommunications, finance, health-care).

• The type_name categorizes the event within the industry domain.

In the following example, we use the offer_change() operation to add the
structured event type identified by domain name OCI_TAO and type name
examples to our supplier’s offer, and to remove all other event types from the
offer:

 // Add one event type to the offer.
 CosNotification::EventTypeSeq events_added;
 events_added.length (1);
 events_added[0].domain_name = CORBA::string_dup ("OCI_TAO");
 events_added[0].type_name = CORBA::string_dup ("examples");

 // Remove all other event types from the offer.
 CosNotification::EventTypeSeq events_to_be_removed;
 events_removed.length (1);
 events_removed[0].domain_name = CORBA::string_dup ("*");
 events_removed[0].type_name = CORBA::string_dup ("*");

 // Change the offer.
 structured_proxy_consumer->offer_change (events_added, events_removed);

Invoking the offer_change() operation on the supplier’s consumer proxy
object, as in the above example, affects only that supplier’s offer. Its offer will
be aggregated with the offers of all the other suppliers of the notification
channel and published as the offer of events for the channel as a whole.

On the other hand, invoking the offer_change() operation on the supplier
administration object, as in the following example, affects the publication of
offers from all the suppliers that share the supplier administration object:

884 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

 // Change the offer.
 supplier_admin->offer_change (events_added, events_removed);

Note that this does not necessarily change the actual types of events the
suppliers can produce and push onto the channel. Suppliers can still produce
any event type whether or not the event type is published in the notification
channel’s offer. The offer_change() operation only affects the aggregate
of the event types published for the channel (and therefore visible to
consumers via the obtain_offered_types() operation).

25.4.4.2 Adding Subscriptions to the Consumer
The collection of event types in which a consumer is interested is called a
subscription. A consumer can inform notification channel suppliers about the
types of events it requires by invoking the subscription_change()
operation. Later, it can invoke the subscription_change() operation
again to add new event types or remove event types from its subscription. The
notification channel aggregates the subscriptions of all its consumers so
suppliers can be informed of what types of events consumers of the channel
require. The subscription_change() operation can be invoked on the
consumer’s supplier proxy object or on its ConsumerAdmin object.

Here, we show how to add a subscription to the notification event consumer.
The subscription_change() operation takes two parameters:

• A sequence of event types the consumer will add to its subscription (i.e.,
the event types it wants to start receiving).

• A sequence of event types the consumer will remove from its subscription
(i.e., the event types it no longer wishes to receive).

The type of these parameters is CosNotification::EventTypeSeq,
described in 25.4.4.1.

In the following example, we use the subscription_change() operation to
add the structured event type identified by domain name OCI_TAO and type
name examples to our consumer’s subscription, and to remove all other event
types from the subscription:

 // Add one event type to the subscription.
 CosNotification::EventTypeSeq events_added;
 events_added.length (1);
 events_added[0].domain_name = CORBA::string_dup ("OCI_TAO");
 events_added[0].type_name = CORBA::string_dup ("examples");

o c i w e b . c o m 885

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

 // Remove all other event types from the subscription.
 CosNotification::EventTypeSeq events_removed;
 events_removed.length (1);
 events_removed[0].domain_name = CORBA::string_dup ("*");
 events_removed[0].type_name = CORBA::string_dup ("*");

 // Change the subscription
 structured_proxy_supplier->subscription_change (
 events_added, events_removed);

Invoking the subscription_change() operation on the consumer’s
supplier proxy object, as in the above example, affects only that consumer’s
subscription. Its subscription will be aggregated with the subscription of all
other consumers of the notification channel and published as the subscription
of events for the channel as a whole.

On the other hand, invoking the subscription_change() operation on the
consumer administration object, as in the following example, affects the
publication of subscriptions from all the consumers that share the consumer
administration object:

 // Change the subscription.
 consumer_admin->subscription_change(events_added, events_removed);

Note that this does not necessarily change the actual types of events the
consumers can receive from the channel. Consumers can still receive any
event type (that passes all filters) whether or not the event type is in the
notification channel’s aggregate subscription. However, you may choose to
implement the operation subscription_change() in your suppliers such
that they stop producing events that are no longer required by any consumers
of the channel, as indicated in the aggregate of all the consumers’
subscriptions. In that case, the subscription_change() operation may in
fact change the actual types of events the consumers will receive.

For example, our structured event supplier class might implement the
subscription_change() operation as follows to determine if we should
continue to produce events for the messages our MessengerServer receives.
(Assume that the field produce_message_events_ is a boolean flag
indicating whether or not message events are to be produced. For brevity, we
are not checking the “%ALL” wildcard.)

void StructuredEventSupplier_i::subscription_change (

886 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

 const CosNotification::EventTypeSeq& events_added,
 const CosNotification::EventTypeSeq& events_removed)
{
 // Check if we are to produce "examples" events.

 // Check the list of removed event types.
 int i;
 for (i=0; i<events_removed.length(); ++i) {
 if (!strcmp(events_removed[i].domain_name, "OCI_TAO") &&
 !strcmp(events_removed[i].type_name, "examples")) {
 produce_message_events_ = false;
 }
 else if (!strcmp(events_removed[i].domain_name, "*") &&
 !strcmp(events_removed[i].type_name, "*")) {
 produce_message_events_ = false;
 }
 }

 // Check the list of added event types.
 for (i=0; i<events_added.length(); ++i) {
 if (!strcmp(events_added[i].domain_name, "OCI_TAO") &&
 !strcmp(events_added[i].type_name, "examples")) {
 produce_message_events_ = true;
 }
 else if (!strcmp(events_added[i].domain_name, "*") &&
 !strcmp(events_added[i].type_name, "*")) {
 produce_message_events_ = true;
 }
 }
}

We could then modify the Messenger servant’s send_message() operation
from 25.4.2.3 to check the produce_message_events_ flag before
producing an event.

CORBA::Boolean Messenger_i::send_message (
 const char* user_name,
 const char* subject,
 char*& message
)
{
 std::cerr << "Message from: " << user_name << std::endl;
 std::cerr << "Subject: " << subject << std::endl;
 std::cerr << "Message: " << message << std::endl;

 if (produce_message_events_ == true) {
 // Create and send a structured event as before...
 }
 return true;

o c i w e b . c o m 887

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

}

25.4.4.3 Obtaining Offer and Subscription Information
Suppliers invoke the obtain_subscription_types() operation on the
proxy consumer to get the list of event types the consumers connected to the
notification channel require. Consumers invoke obtain_offered_types()
on the proxy supplier to get a list of event types the suppliers connected to the
notification channel produce. Each of these operations takes an input
parameter of type CosNotifyChannelAdmin::ObtainInfoMode that
controls what information is returned from the operation as well as whether
subsequent automatic updates of subscription information (via the supplier
operation subscription_change()) or offer information (via the consumer
operation offer_change()) are enabled or disabled.

Here is a portion of the IDL definitions within the
CosNotifyChannelAdmin module showing the definitions of these
operations and the ObtainInfoMode type:

module CosNotifyChannelAdmin
{
 enum ObtainInfoMode {
 ALL_NOW_UPDATES_OFF,
 ALL_NOW_UPDATES_ON,
 NONE_NOW_UPDATES_OFF,
 NONE_NOW_UPDATES_ON
 };

 interface ProxyConsumer :
 CosNotification::QoSAdmin,
 CosNotifyFilter::FilterAdmin
 {
 CosNotification::EventTypeSeq obtain_subscription_types (
 in ObtainInfoMode mode);
 };

 interface ProxySupplier :
 CosNotification::QoSAdmin,
 CosNotifyFilter::FilterAdmin
 {
 CosNotification::EventTypeSeq obtain_offered_types (
 in ObtainInfoMode mode);
 };
};

888 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

Table 25-7 lists the possible values for the ObtainInfoMode parameter.

For example, to get a list of all event types currently required by consumers of
the channel, and to enable (via subscription_change()) subscription
updates, our supplier would invoke obtain_subscription_types() on its
consumer proxy object:

 CosNotification::EventTypeSeq_var event_type_seq =
 structured_proxy_consumer->obtain_subscription_types (
 CosNotifyChannelAdmin::ALL_NOW_UPDATES_ON);

To get a list of all event types currently offered by suppliers of the channel,
and to disable future offer updates via offer_change(), our consumer
would invoke the obtain_offered_types() operation on its supplier
proxy object:

 CosNotification::EventTypeSeq_var event_type_seq =
 structured_proxy_supplier->obtain_offered_types (
 CosNotifyChannelAdmin::ALL_NOW_UPDATES_OFF);

Before obtain_offered_types() or obtain_subscription_types()
are called, offer and subscription updates are enabled. If you do not wish to
receive these updates, you must explicitly disable them as described above.

Table 25-7 ObtainInfoMode Parameter Values

Value Description

ALL_NOW_UPDATES_OFF

Returns the current list of subscription (offer) types
known by the target proxy consumer (supplier).
Subsequent automatic sending of subscription (offer)
update information is disabled.

ALL_NOW_UPDATES_ON

Returns the current list of subscription (offer) types
known by the target proxy consumer (supplier).
Subsequent automatic sending of subscription (offer)
update information is enabled.

NONE_NOW_UPDATES_OFF
The invocation does not return any data. Subsequent
automatic sending of subscription (offer) update
information is disabled.

NONE_NOW_UPDATES_ON
The invocation does not return any data. Subsequent
automatic sending of subscription (offer) update
information is enabled.

o c i w e b . c o m 889

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

25.4.5 Adding Event Filtering
In this section, we add event filtering to our simple example. Full source code
for this example is in the TAO source code distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/NotifyService/Filtering/.

25.4.5.1 Adding Event Filtering to the Supplier
Suppose we want to ensure that only events matching certain criteria are
supplied to the notification channel. We want events not matching the criteria
to be discarded. For example, assume we want to allow only those events for
which the Subject field exactly matches the string urgent. Recall that we can
filter on any field in the optional header part, filterable body part, or remaining
body part of the structured event. To accomplish this, we can create a filter
object and attach it to the supplier administration object. This filter would be
shared by all the suppliers associated with that SupplierAdmin object. To
apply a filter to a single supplier, we would attach it to that supplier’s proxy
consumer. Both of these approaches depend on our use of an admin object
created with the AND inter-group filter operator:

 CosNotifyChannelAdmin::AdminID adminid;
 CosNotifyChannelAdmin::SupplierAdmin_var supplier_admin =
 ec->new_for_suppliers (CosNotifyChannelAdmin::AND_OP, adminid);

Each notification channel provides a filter factory for creating filter objects.
Use the default_filter_factory() operation to obtain an object
reference to the channel’s filter factory object:

 CosNotifyFilter::FilterFactory_var filter_factory =
 notify_channel->default_filter_factory ();

Next, the factory must create a filter object. The factory’s create_filter()
operation takes one parameter representing the name of the constraint
language the filter object will use to express filtering constraints. The
Notification Service specification defines EXTENDED_TCL as the standard
value for specifying ETCL filters. TAO’s Notification Service also
understands ETCL, but we’ll use the standard string for portability reasons:

 CosNotifyFilter::Filter_var filter =
 filter_factory->create_filter ("EXTENDED_TCL");
 if (CORBA::is_nil (filter.in())) {
 std::cerr << "Unable to create filter object" << std::endl;

890 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

 return 1;
 }

Next, create a sequence of constraints. Each constraint is a data structure with
two members.

• A sequence of event types indicating the types of events to which the
constraint applies. Its type is CosNotification::EventTypeSeq,
described in 25.4.4.1.

• A string specifying a boolean expression in the chosen constraint
grammar that will be applied to the contents of each event if it is of a type
contained in the sequence of event types in the first element.

By convention, if the event type sequence has a length of zero, or if it contains
a single element in which the domain and event type names are empty strings,
the boolean expression applies to all event types. Wildcard characters (“*” and
“%ALL”) are also allowed in the event type fields.

Use the add_constraints() operation to add the constraints to the filter
object. Then add the filter object to the supplier administration object or the
proxy consumer object using the add_filter() operation.

Here we create a constraint list with a single element. The constraint
expression $.Subject ==’urgent’ is applied to all events regardless of the
event’s type.

 CosNotifyFilter::ConstraintExpSeq constraint_list;
 constraint_list.length (1);
 constraint_list[0].event_types.length (0);
 constraint_list[0].constraint_expr =
 CORBA::string_dup ("$.Subject == ’urgent’");
 filter->add_constraints (constraint_list);

 // Apply the filter to all suppliers sharing the same SupplierAdmin object.
 supplier_admin->add_filter (filter.in());

or

 // Apply the filter to only one supplier’s proxy consumer object.
 structured_proxy_consumer->add_filter (filter.in());

The result is that only events with a field Subject that has the value urgent
will be forwarded to the notification channel.

o c i w e b . c o m 891

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

The results of multiple constraints within a filter object are ORed together to
determine if the event matches any of the filtering constraints. If the result is
true, the event has passed the filter. If there are multiple filters added to a
proxy or supplier administration object, the event is evaluated against each
filter until one of the filters returns true or all the filters return false. If all the
filters return false, the event is discarded. If one of the filters returns true, the
event passes and is forwarded to the notification channel.

25.4.5.2 Adding Event Filtering to the Consumer
Filtering can also be applied to the consumer side of Notification Service
event communication. With consumer-side filtering, a structured event
consumer can specify the precise set of events it is interested in receiving,
based upon filtering criteria. Only events that meet these criteria will be
forwarded to the consumer by the consumer’s proxy supplier. As on the
supplier side, we need to ensure that we use the AND inter-group filter
operator:

 CosNotifyChannelAdmin::AdminID adminid;
 CosNotifyChannelAdmin::ConsumerAdmin_var consumer_admin =
 ec->new_for_consumers(CosNotifyChannelAdmin::AND_OP, adminid);

For example, suppose our consumer object wants to receive events only for
those messages that originated from “sysadmin@company.com”. We can
add a filter on the consumer side to filter incoming events accordingly. Similar
to what we did in the supplier, we now add a filter object to the consumer
administration object.

 CosNotifyFilter::FilterFactory_var filter_factory =
 notify_channel->default_filter_factory ();

 CosNotifyFilter::Filter_var filter =
 filter_factory->create_filter ("EXTENDED_TCL");
 if (CORBA::is_nil (filter.in())) {
 std::cerr << "Unable to create filter object" << std::endl;
 return 1;
 }

 CosNotifyFilter::ConstraintExpSeq constraint_list;
 constraint_list.length (1);
 constraint_list[0].event_types.length (0);
 constraint_list[0].constraint_expr =
 CORBA::string_dup ("$.From == ’sysadmin@company.com’");
 filter->add_constraints (constraint_list);

892 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

 // Apply the filter to all consumers sharing the same ConsumerAdmin object.
 consumer_admin->add_filter (filter.in());

or

 // Apply the filter to only one consumer’s proxy supplier object.
 structured_proxy_supplier->add_filter (filter.in());

Our consumer will now receive only those events for messages originating
from the MessengerClient at sysadmin@company.com.

25.4.6 Adding QoS Properties
Next, we extend the MessengerServer code from our basic example to use
certain QoS properties. Full source code for this example is in the TAO source
code distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/NotifyService/QoSProperties/.

We can add notification administrative QoS properties to the event channel
created in the Messenger_i class. In this example, we add the
MaxQueueLength, MaxSuppliers, and MaxConsumers properties and set
their values to 7, 5, and 5 respectively:

 CosNotifyChannelAdmin::EventChannelFactory_var notify_factory =
 CosNotifyChannelAdmin::EventChannelFactory::_narrow (obj.in ());

 CosNotifyChannelAdmin::ChannelID id;
 CosNotification::QoSProperties initial_qos;
 CosNotification::AdminProperties initial_admin;

 initial_admin.length (3);

 initial_admin[0].name =
 CORBA::string_dup (CosNotification::MaxQueueLength);
 initial_admin[0].value <<= (CORBA::Long)7;

 initial_admin[1].name = CORBA::string_dup (CosNotification::MaxSuppliers);
 initial_admin[1].value <<= (CORBA::Long)5;

 initial_admin[2].name = CORBA::string_dup (CosNotification::MaxConsumers);
 initial_admin[2].value <<= (CORBA::Long)5;

 CosNotifyChannelAdmin::EventChannel_var ec =
 notify_factory->create_channel (initial_qos, initial_admin, id);

o c i w e b . c o m 893

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

Since we set the MaxQueueLength to be 7, the notification channel will
queue the incoming events internally until the number of events exceeds 7.
Once the number of events exceeds this limit the channel will start to discard
the queued events. We restrict the number of suppliers that can be connected
to the notification event channel at a time to be 5. If an attempt is made to
connect a supplier when the number of suppliers connected to the channel is 5,
IMP_LIMIT exception is raised. We also restrict the number of consumers that
can be connected to the notification event channel at a time to be 5. If an
attempt is made to connect a consumer when the number of consumers
connected to the channel is 5, then IMP_LIMIT exception is raised.

QoS properties can be added at the proxy level too. To illustrate this, we add
the OrderPolicy property to the proxy supplier object and set its value to
FifoOrder in our MessengerConsumer:

 CosNotifyChannelAdmin::StructuredProxyPushSupplier_var supplier_proxy;
 supplier_proxy =
 CosNotifyChannelAdmin::StructuredProxyPushSupplier::_narrow (
 proxy_supplier.in());

 CosNotification::QoSProperties properties (1);

 properties.length (1);
 properties[0].name = CORBA::string_dup (CosNotification::OrderPolicy);
 properties[0].value <<= CosNotification::FifoOrder;

 supplier_proxy->set_qos (properties);
 supplier_proxy->connect_structured_push_consumer(consumer.in());

Since we set the OrderPolicy property to FifoOrder, the proxy supplier
will arrange the events in its dispatch queue in the same order as the events
were received.

25.4.7 Transmitting an EventBatch
The Notification Service also defines interfaces required to transfer more than
one structured event using one operation, in the form of a sequence of
structured events known as an EventBatch. In this section, we extend our
example to show how to use batched events. Full source code for this example
is in the TAO source code distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/NotifyService/EventSequence/.

894 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

We modify the MessengerServer to create an EventBatch whenever it
receives a message from a client and send it through a notification event
channel to consumers. To transmit event batches, we need to implement the
SequencePushSupplier and SequencePushConsumer interfaces, which
define the behavior of objects that transmits event batches using push-style
communication. Our EventSequenceSupplier_i class implements the
SequencePushSupplier interface and our EventSequenceConsumer_i
class implements the SequencePushConsumer interface.

25.4.7.1 Implementing the Sequence Push Supplier Interface
The CosNotifyComm::SequencePushSupplier IDL interface is
implemented by our supplier class EventSequenceSupplier_i. The
SequencePushSupplier interface has two operations:
disconnect_sequence_push_supplier() and
subscription_change().

The disconnect_sequence_push_supplier() operation is called when
the supplier is being disconnected from the notification channel. Our
implementation deactivates the supplier object from its POA:

void EventSequenceSupplier_i::disconnect_sequence_push_supplier ()
{
 CORBA::Object_var obj = orb_->resolve_initial_references ("POACurrent");
 PortableServer::Current_var current =
 PortableServer::Current::_narrow (obj.in());
 PortableServer::POA_var poa = current->get_POA ();
 PortableServer::ObjectId_var objectId = current->get_object_id ();
 poa->deactivate_object (objectId.in());
}

The subscription_change() operation is called by the supplier’s
consumer proxy object to inform the supplier of changes to the subscription
information by the notification channel’s consumers. A specific
implementation is not necessary for this example:

void EventSequenceSupplier_i::subscription_change (
 const CosNotification::EventTypeSeq& added,
 const CosNotififcation::EventTypeSeq& removed)
{
}

o c i w e b . c o m 895

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

25.4.7.2 Developing the EventBatch Supplier
Next, we implement our MessengerServer as a supplier of an
EventBatch. Each time it receives a message, it will create a new
EventBatch and populate it with the information from the message, then
push this EventBatch to the notification channel via its consumer proxy.

In the MessengerServer class, we initialize the ORB and get a reference to
the RootPOA. We create a Messenger_i servant and activate it in the
RootPOA. Once the servant is activated, we convert the servant’s object
reference to a string and write it to the file Messenger.ior as usual:

#include "Messenger_i.h"
#include <iostream>
#include <fstream>

int main(int argc, char* argv[])
{
 try {
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->resolve_initial_references ("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(obj.in());
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();

 PortableServer::Servant_var<Messenger_i> messenger_servant =
 new Messenger_i(orb.in());
 PortableServer::ObjectId_var oid =
 poa->activate_object(messenger_servant.in());
 CORBA::Object_var messenger_obj = poa->id_to_reference(oid.in());
 CORBA::String_var str = orb->object_to_string(messenger_obj.in());
 std::ofstream iorfile("Messenger.ior");
 iorfile << str.in() << std::endl;
 std::cout << "IOR written to file Messenger.ior" << std::endl;
 orb->run();
 orb->destroy();
 }
 catch (CORBA::Exception& ex) {
 std::cerr << ex << std::endl;
 return 1;
 }
 return 0;
}

Now we turn our attention to the Messenger_i class that implements the
Messenger interface. It now acts as an EventBatch supplier. In the
constructor of the Messenger_i class we create a new notification channel

896 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

and bind it to the root naming context of the Naming Service with the name
MessengerChannel:

Messenger_i::Messenger_i (CORBA::ORB_ptr orb)
 : orb_(CORBA::ORB::_duplicate(orb))
{
 try {
 CORBA::Object_var naming_obj =
 orb_->resolve_initial_references ("NameService");
 CosNaming::NamingContext_var naming_context =
 CosNaming::NamingContext::_narrow(naming_obj.in());

 CosNaming::Name name;
 name.length (1);
 name[0].id = CORBA::string_dup("NotifyEventChannelFactory");
 CORBA::Object_var obj = naming_context->resolve(name);

 CosNotifyChannelAdmin::EventChannelFactory_var notify_factory =
 CosNotifyChannelAdmin::EventChannelFactory::_narrow(obj.in());
 if (CORBA::is_nil(notify_factory.in())) {
 std::cerr << "Unable to find notify factory" << std::endl;
 }

 CosNotifyChannelAdmin::ChannelID id;
 CosNotification::QoSProperties initial_qos;
 CosNotification::AdminProperties initial_admin;

 CosNotifyChannelAdmin::EventChannel_var notify_channel =
 notify_factory->create_channel (initial_qos,
 initial_admin,
 id);
 if (CORBA::is_nil(notify_channel.in())) {
 std::cerr << "Unable to create notification channel" << std::endl;
 }

 name[0].id = CORBA::string_dup("MessengerChannel");
 naming_context->rebind(name, notify_channel.in());

Once we create the notification channel we obtain a SupplierAdmin object
using new_for_suppliers() operation:

 CosNotifyChannelAdmin::InterFilterGroupOperator ifgop =
 CosNotifyChannelAdmin::AND_OP;
 CosNotifyChannelAdmin::AdminID adminid;
 CosNotifyChannelAdmin::SupplierAdmin_var supplier_admin =
 notify_channel->new_for_suppliers (ifgop, adminid);
 if (CORBA::is_nil (supplier_admin.in())) {
 std::cerr << "Unable to access supplier admin" << std::endl;

o c i w e b . c o m 897

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

 }

Next, we obtain a proxy push consumer object so that the push supplier can
push events to the notification channel. We obtain a reference to a proxy push
consumer object by invoking obtain_notification_push_consumer()
on the SupplierAdmin object. The parameters passed to this operation are
ClientType and ProxyID. ClientType identifies the types of events our
supplier will produce. ProxyID is an out parameter that identifies the proxy
object. Since our supplier is producing a sequence of structured events, we
specify ClientType to be SEQUENCE_EVENT.

We obtain a CosNotifyChannelAdmin::ProxyConsumer object reference
from the obtain_notification_push_consumer() operation. We
narrow it to CosNotifyChannelAdmin::SequenceProxyPushConsumer
since our supplier will be producing sequences of structured events. The
supplier uses this proxy consumer to push sequences of structured events to
the notification channel:

 CosNotifyChannelAdmin::ProxyID proxy_id;
 CosNotifyChannelAdmin::ProxyConsumer_var proxy_consumer =
 supplier_admin->obtain_notification_push_consumer(
 CosNotifyChannelAdmin::SEQUENCE_EVENT,
 proxy_id);

 sequence_proxy_consumer_ =
 CosNotifyChannelAdmin::SequenceProxyPushConsumer::_narrow(
 proxy_consumer.in());
 if (CORBA::is_nil(sequence_proxy_consumer_.in())) {
 std::cerr << "Unable to obtain sequence proxy push consumer" << std::endl;
 }

Next, we create an instance of our EventSequenceSupplier_i push
supplier servant class and activate it in the RootPOA. Finally, we connect our
supplier to the consumer proxy object:

 PortableServer::Servant_var<EventSequenceSupplier_i> supplier_servant =
 new EventSequenceSupplier_i(orb_.in());
 CORBA::Object_var poa_obj = orb_->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa = PortableServer::POA::_narrow(poa_obj.in());
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();
 PortableServer::ObjectId_var objectId =
 poa->activate_object(supplier_servant.in());

 CORBA::Object_var supplier_obj = poa->id_to_reference(objectId.in());

898 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

 CosNotifyComm::SequencePushSupplier_var supplier =
 CosNotifyComm::SequencePushSupplier::_narrow(supplier_obj.in());
 sequence_proxy_consumer_->
 connect_sequence_push_supplier(supplier.in());
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "Caught a CORBA exception: " << ex << std::endl;
 }
}

In the send_message() operation of Messenger_i class we print the
information about the message received. Then, we create a new structured
event and populate it with the contents of the message. For this example, we
set the event type domain to be OCI_TAO and the event type name to be
examples. We then create an EventBatch from the single structured event
we created to illustrate how we can transmit an EventBatch without adding
much complexity. We invoke the push_structured_events() operation
of the sequence push consumer proxy object to push the EventBatch to the
notification channel:

CORBA::Boolean Messenger_i::send_message (
 const char* user_name,
 const char* subject,
 char*& message
)
{
 std::cerr << "Message from: " << user_name << std::endl;
 std::cerr << "Subject: " << subject << std::endl;
 std::cerr << "Message: " << message << std::endl;

 try
 {
 // Create a structured event.
 CosNotification::StructuredEvent event;

 // Populate the event’s fixed header fields.
 event.header.fixed_header.event_type.domain_name =
 CORBA::string_dup("OCI_TAO");
 event.header.fixed_header.event_type.type_name =
 CORBA::string_dup("examples");
 event.header.fixed_header.event_name =
 CORBA::string_dup("myevent");

 // Populate the event’s filterable body fields.
 event.filterable_data.length (3);
 event.filterable_data[0].name = CORBA::string_dup("Message from:");
 event.filterable_data[0].value <<= (const char *)user_name;

o c i w e b . c o m 899

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

 event.filterable_data[1].name = CORBA::string_dup("Subject:");
 event.filterable_data[1].value <<= (const char *)subject;
 event.filterable_data[2].name = CORBA::string_dup("Message:");
 event.filterable_data[2].value <<= (const char *)message;

 // Create and populate an EventBatch.
 // (We simply put 4 copies of the same event into the sequence.)
 CosNotification::EventBatch events;
 events.length(4);
 events[0] = event;
 events[1] = event;
 events[2] = event;
 events[3] = event;

 // Push the event to the notification channel.
 sequence_proxy_consumer->push_structured_events(events);
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "Caught a CORBA exception: " << ex << std::endl;
 return false;
 }
 return true;
}

25.4.7.3 Implementing the Sequence Push Consumer Interface
The CosNotifyComm::SequencePushConsumer IDL interface is
implemented by the class EventSequenceConsumer_i. The
SequencePushConsumer interface contains the three operations:
push_structured_events(),
disconnect_sequence_push_consumer(), and offer_change().

The push_structured_events() operation is invoked for each event
sequence that matches the consumer’s subscription information. Our
implementation simply extracts and prints the filterable body fields of the
structured events contained in the EventBatch:

void EventSequenceConsumer_i::push_structured_events (
 const CosNotification::EventBatch& events)
{
 const char* value;
 for (unsigned int n=0; n<events.length(); ++n) {
 for (unsigned int i=0; i<events[n].filterable_data.length(); ++i) {
 events[n].filterable_data[i].value >>= value;
 std::cout << events[n].filterable_data[i].name << "\t" << value << std::endl;
 }

900 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

 }
}

The disconnect_sequence_push_consumer() operation is invoked
when the consumer is being disconnected from the notification channel. Our
implementation deactivates the consumer object from its POA:

void EventSequenceConsumer_i::disconnect_sequence_push_consumer ()
{
 CORBA::Object_var obj = orb_->resolve_initial_references ("POACurrent");
 PortableServer::Current_var current =
 PortableServer::Current::_narrow (obj.in());
 PortableServer::POA_var poa = current->get_POA ();
 PortableServer::ObjectId_var objectId = current->get_object_id ();
 poa->deactivate_object (objectId.in());
}

The offer_change() operation is invoked by the consumer’s supplier proxy
object to inform the consumer of changes in the event types offered by the
suppliers of the notification channel. A specific implementation is not
necessary for this example:

void StructuredEventConsumer_i::offer_change(
 const CosNotification::EventTypeSeq&,
 const CosNotification::EventTypeSeq&)
{
}

25.4.7.4 Developing the Event Consumer
Next, we create a MessengerConsumer application to find the notification
channel created by the supplier. In this application we create an instance of the
EventSequenceConsumer push consumer class, connect the consumer to
the channel, and process events.

In the MessengerConsumer class, we initialize the ORB, locate the Naming
Service, then resolve the MessengerChannel that was created by our
supplier:

#include <orbsvcs/CosNamingC.h>
#include <orbsvcs/CosNotifyChannelAdminC.h>
#include <orbsvcs/CosNotificationC.h>
#include <iostream>

o c i w e b . c o m 901

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

int main(int argc, char* argv[])
{
 try
 {
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var naming_obj =
 orb->resolve_initial_references ("NameService");
 if (CORBA::is_nil(naming_obj.in())) {
 std::cerr << "Unable to find Naming Service" << std::endl;
 return 1;
 }
 CosNaming::NamingContext_var naming_context =
 CosNaming::NamingContext::_narrow(naming_obj.in());

 CosNaming::Name name;
 name.length (1);
 name[0].id = CORBA::string_dup("MessengerChannel");
 CORBA::Object_var notify_channel_obj = naming_context->resolve(name);
 CosNotifyChannelAdmin::EventChannel_var notify_channel =
 CosNotifyChannelAdmin::EventChannel::_narrow(notify_channel_obj.in());
 if (CORBA::is_nil (notify_channel.in())) {
 std::cerr << "Unable to find the notification channel" << std::endl;
 return 1;
 }

Next, we obtain a ConsumerAdmin object using the new_for_consumers()
operation:

 CosNotifyChannelAdmin::AdminID adminid;
 CosNotifyChannelAdmin::InterFilterGroupOperator ifgop =
 CosNotifyChannelAdmin::AND_OP;
 CosNotifyChannelAdmin::ConsumerAdmin_var consumer_admin =
 notify_channel->new_for_consumers (ifgop, adminid);
 if (CORBA::is_nil (consumer_admin.in())) {
 std::cerr << "Unable to access consumer admin" << std::endl;
 }

We then use the obtain_notification_push_supplier() operation to
obtain a proxy supplier. The parameters passed to this operation are
ClientType and ProxyID. The ClientType parameter identifies the types
of events our supplier will produce. The ProxyID parameter is an out
parameter that identifies the proxy object. Since our consumer is receiving a
sequence of structured events, we specify ClientType to be
SEQUENCE_EVENT.

We obtain a CosNotifyChannelAdmin::ProxySupplier object from the
obtain_notification_push_supplier() operation. We narrow it to

902 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

CosNotifyChannelAdmin::SequenceProxyPushSupplier since our
supplier will be receiving sequences of structured events. The consumer will
connect to this proxy supplier to begin receiving sequences of structured
events from the notification channel:

 CosNotifyChannelAdmin::ProxyID proxy_id;
 CosNotifyChannelAdmin::ProxySupplier_var proxy_supplier =
 consumer_admin->obtain_notification_push_supplier(
 CosNotifyChannelAdmin::SEQUENCE_EVENT,
 proxy_id);
 CosNotifyChannelAdmin::SequenceProxyPushSupplier_var
 sequence_proxy_supplier =
 CosNotifyChannelAdmin::SequenceProxyPushSupplier::_narrow(
 proxy_supplier.in());
 if (CORBA::is_nil (sequence_proxy_supplier.in())) {
 std::cerr << "Unable to obtain sequence proxy push supplier" << std::endl;
 return 1;
 }

We create an instance of our EventSequenceConsumer_i push consumer
servant class and activate it in the RootPOA. We then obtain its object
reference and connect it to the proxy push supplier using the
connect_sequence_push_consumer() operation. We pass the
consumer’s object reference as a parameter this operation. Information about
the event types that the consumer is interested in receiving is also passed to the
proxy push supplier using the subscription_change() operation:

 PortableServer::Servant_var<EventSequenceConsumer_i> consumer_servant =
 EventSequenceConsumer_i(orb.in());
 CORBA::Object_var poa_obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa =
 PortableServer::POA::_narrow(poa_obj.in());
 PortableServer::ObjectId_var oid =
 poa->activate_object(consumer_servant.in());
 CORBA::Object_var consumer_obj = poa->id_to_reference(oid.in());
 CosNotifyComm::SequencePushConsumer_var consumer =
 CosNotifyComm::SequencePushConsumer::_narrow(consumer_obj.in());
 structured_proxy_supplier->connect_sequence_push_consumer(consumer.in());

 CosNotification::EventTypeSeq added;
 CosNotification::EventTypeSeq removed;
 added.length(1);
 removed.length(1);

 added[0].domain_name = CORBA::string_dup("OCI_TAO");
 added[0].type_name = CORBA::string_dup("examples");

o c i w e b . c o m 903

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

 removed[0].domain_name = CORBA::string_dup("*");
 removed[0].type_name = CORBA::string_dup("*");

 sequence_proxy_supplier->subscription_change(added, removed);

Finally, we activate the POA and enter the ORB event loop so we can receive
events. When an event is pushed to the notification channel, the operation
push_structured_events() will be invoked on our consumer.

 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();
 orb->run();
 orb->destroy();
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "Caught a CORBA exception: " << ex << std::endl;
 return 1;
 }
 return 0;
}

25.4.8 Collocated Notification Channels
The previous examples used the NotifyEventChannelFactory object
provided by the tao_cosnotification server to create notification
channels. Thus, the channel factory and the notification channels have all been
located in a separate process (the tao_cosnotification server) from the
consumers or suppliers. For performance reasons, there may be situations in
which you want to create and manage local, or collocated, notification
channels. For example, you may want to collocate a notification channel with
a particular supplier to avoid a network hop for each event originating from
that supplier. Full source code for this example is in the TAO source code
distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/NotifyService/Supplier
SideNC/.

25.4.8.1 Collocated Notification Channel Example
Here we show how to create and use a local notification channel factory. We
then use this factory to create a notification channel collocated with a supplier.

904 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

First, include the following header file that defines the notification channel
factory implementation (servant) class:

#include <orbsvcs/Notify/Notify_EventChannelFactory_i.h>

Next, in your program’s main() function, initialize the ORB and obtain and
activate the RootPOA as usual:

int main(int argc, char* argv[])
{
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var poa_object = orb->resolve_initial_references("RootPOA");

 PortableServer::POA_var poa =
 PortableServer::POA::_narrow(poa_object.in());
 PortableServer::POAManager_var mgr = poa->the_POAManager();
 mgr->activate();

The TAO_Notify_EventChannelFactory_i::create() operation is now
used to create an instance of TAO’s notification event channel factory
implementation class. The create() function not only creates a factory
servant instance, but also activates it in a POA (provided as a parameter) and
returns the factory’s object reference:

 CosNotifyChannelAdmin::EventChannelFactory_var notify_factory =
 TAO_Notify_EventChannelFactory_i::create(poa.in());

Next, we use this local factory to create our notification channel using the
create_channel() operation exactly as before (see 25.4.2.3). However, the
new notification channel will be a local object:

 CosNotifyChannelAdmin::ChannelID id;
 CosNotification::QoSProperties initial_qos;
 CosNotification::AdminProperties initial_admin;

 CosNotifyChannelAdmin::EventChannel_var notify_channel =
 notify_factory->create_channel(initial_qos,
 initial_admin,
 id);

The rest of the program requires no additional changes to use this collocated
notification channel.

o c i w e b . c o m 905

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

25.4.9 Real-Time Notification Example
In this section, we’ll discuss the modifications to the basic messenger example
from 25.4.2 that are necessary to use the RT CORBA features with the
Notification Service. We present selected snippets of this code with our
additions and changes in a bold font. Full source code for this example is in
the TAO source code distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/NotifyService/RTNotify/.

25.4.9.1 Notification Server Configuration
The notification server needs to be started with the RT CORBA and RT
Notification libraries loaded. We accomplish this be placing these directives:

dynamic TAO_RT_ORB_Loader Service_Object *TAO_RTCORBA:_make_TAO_RT_ORB_Loader ()
"-ORBPriorityMapping continuous"

dynamic TAO_Notify_Service Service_Object *
TAO_RT_Notification:_make_TAO_RT_Notify_Service () ""

in the notify.conf file and launching the server with this configuration file:

$TAO_ROOT/orbsvcs/Notify_Service/tao_cosnotification -ORBSvcConf notify.conf

This dynamically loads the RT Notification library and enables the RT
CORBA-related features in the notification service.

25.4.9.2 Messenger Server Changes
The Messenger Server process acts as our event supplier and we modify it
here to allocate a thread pool with lanes for our consumer proxy and to set the
RT CORBA priority for event publication.

First, we need to set the ThreadPoolLanes property on the supplier admin.
This is done before creating the consumer proxy:

 CosNotifyChannelAdmin::SupplierAdmin_var supplier_admin =
 ec->new_for_suppliers (ifgop, adminid);

 NotifyExt::ThreadPoolLanesParams tpl_params;

 tpl_params.priority_model = NotifyExt::CLIENT_PROPAGATED;
 tpl_params.server_priority = DEFAULT_PRIORITY;
 tpl_params.stacksize = 0;
 tpl_params.allow_borrowing = 0;

906 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

 tpl_params.allow_request_buffering = 0;
 tpl_params.max_buffered_requests = 0;
 tpl_params.max_request_buffer_size = 0;
 tpl_params.lanes.length (2);
 tpl_params.lanes[0].lane_priority = LOW_PRIORITY;
 tpl_params.lanes[0].static_threads = 2;
 tpl_params.lanes[0].dynamic_threads = 0;
 tpl_params.lanes[1].lane_priority = HIGH_PRIORITY;
 tpl_params.lanes[1].static_threads = 2;
 tpl_params.lanes[1].dynamic_threads = 0;
 CosNotification::QoSProperties qos;
 qos.length(1);
 qos[0].name = CORBA::string_dup (NotifyExt::ThreadPoolLanes);
 qos[0].value <<= tpl_params;

 supplier_admin->set_qos(qos);

 CosNotifyChannelAdmin::ProxyID supplieradmin_proxy_id;

 CosNotifyChannelAdmin::ProxyConsumer_var proxy_consumer =
 supplier_admin->obtain_notification_push_consumer(
 CosNotifyChannelAdmin::STRUCTURED_EVENT,
 supplieradmin_proxy_id);

This causes the supplier admin to create a POA with the Priority Model and
Thread Pool policies that is used to activate any subsequently created
consumer proxies. When we subsequently use our consumer proxy to begin
publishing events they are placed into the correct lanes of the thread pool
based on the priority of the incoming push_structured_event()
operation. Here are the modifications related to setting the priority for event
publication:

 CORBA::Object_var current_obj =
 this->orb_->resolve_initial_references ("RTCurrent");
 RTCORBA::Current_var current = RTCORBA::Current::_narrow (current_obj.in ());

 current_->the_priority(HIGH_PRIORITY);

 // Set up the events for publication...
 consumer_proxy_->push_structured_event(event);

Obtaining and narrowing the RTCurrent object can be done once for the
process and stored for use in all threads. The stored RTCurrent object
reference can then be used to set the priority for each thread where push
operations are called.

o c i w e b . c o m 907

2 5 . 4 U s i n g t h e N o t i f i c a t i o n S e r v i c e

25.4.9.3 Messenger Consumer Changes
The consumer side changes involve setting up a thread pool for the supplier
proxy and setting up the proper RT CORBA policies for the consumer object’s
activation.

Setting up the thread pool for the supplier proxy is analogous to what we saw
above for the supplier-side:

 CosNotifyComm::StructuredPushConsumer_var consumer =
 CosNotifyComm::StructuredPushConsumer::_narrow (consumer_obj.in ());

 NotifyExt::ThreadPoolLanesParams tpl_params;

 tpl_params.priority_model = NotifyExt::CLIENT_PROPAGATED;
 tpl_params.server_priority = DEFAULT_PRIORITY;
 tpl_params.stacksize = 0;
 tpl_params.allow_borrowing = 0;
 tpl_params.allow_request_buffering = 0;
 tpl_params.max_buffered_requests = 0;
 tpl_params.max_request_buffer_size = 0;
 tpl_params.lanes.length (2);
 tpl_params.lanes[0].lane_priority = LOW_PRIORITY;
 tpl_params.lanes[0].static_threads = 2;
 tpl_params.lanes[0].dynamic_threads = 0;
 tpl_params.lanes[1].lane_priority = HIGH_PRIORITY;
 tpl_params.lanes[1].static_threads = 2;
 tpl_params.lanes[1].dynamic_threads = 0;
 CosNotification::QoSProperties qos;
 qos.length(1);
 qos[0].name = CORBA::string_dup (NotifyExt::ThreadPoolLanes);
 qos[0].value <<= tpl_params;

 consumer_admin->set_qos(qos);

 CosNotifyChannelAdmin::ProxyID consumeradmin_proxy_id;

 CosNotifyChannelAdmin::ProxySupplier_var proxy_supplier =
 consumer_admin->obtain_notification_push_supplier(
 CosNotifyChannelAdmin::STRUCTURED_EVENT,
 consumeradmin_proxy_id);

In order for our consumer to be enabled for RT CORBA and honor the
priorities that the events carry through the event channel, we need to create the
necessary RT CORBA policies, construct an RT POA with them, and then use
this POA to activate our consumer. The code below illustrates this for our
example.

908 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

 CORBA::Object_var poa_object =
 orb->resolve_initial_references("RootPOA");

 PortableServer::POA_var poa =
 PortableServer::POA::_narrow (poa_object.in());

 CORBA::Object_var rtorb_obj = orb->resolve_initial_references ("RTORB");
 RTCORBA::RTORB_var rt_orb = RTCORBA::RTORB::_narrow (rtorb_obj.in ());

 // Create an RT POA with a lane at the given priority.
 CORBA::Policy_var priority_model_policy =
 rt_orb->create_priority_model_policy (RTCORBA::CLIENT_PROPAGATED,
 DEFAULT_PRIORITY);

 RTCORBA::ThreadpoolLanes lanes (2);
 lanes.length (2);

 lanes[0].lane_priority = LOW_PRIORITY;
 lanes[0].static_threads = 2;
 lanes[0].dynamic_threads = 0;
 lanes[1].lane_priority = HIGH_PRIORITY;
 lanes[1].static_threads = 2;
 lanes[1].dynamic_threads = 0;

 // Create a thread-pool.
 CORBA::ULong stacksize = 0;
 CORBA::Boolean allow_request_buffering = false;
 CORBA::ULong max_buffered_requests = false;
 CORBA::ULong max_request_buffer_size = false;
 CORBA::Boolean allow_borrowing = false;

 // Create the thread-pool.
 RTCORBA::ThreadpoolId threadpool_id =
 rt_orb->create_threadpool_with_lanes (stacksize,
 lanes,
 allow_borrowing,
 allow_request_buffering,
 max_buffered_requests,
 max_request_buffer_size);

 // Create a thread-pool policy.
 CORBA::Policy_var lanes_policy =
 rt_orb->create_threadpool_policy (threadpool_id);

 CORBA::PolicyList poa_policy_list(2);
 poa_policy_list.length (2);
 poa_policy_list[0] = priority_model_policy;
 poa_policy_list[1] = lanes_policy;

o c i w e b . c o m 909

2 5 . 5 C o m p a t i b i l i t y w i t h t h e E v e n t S e r v i c e

 PortableServer::POAManager_var poa_manager = poa->the_POAManager ();

 PortableServer::POA_var rt_poa = poa->create_POA ("RT POA",
 poa_manager.in (),
 poa_policy_list);

 PortableServer::Servant_var<StructuredEventConsumer_i> servant =
 new StructuredEventConsumer_i(orb.in());

 PortableServer::ObjectId_var objectId =
 rt_poa->activate_object (servant.in());

 CORBA::Object_var consumer_obj =
 rt_poa->id_to_reference (objectId.in ());

 CosNotifyComm::StructuredPushConsumer_var consumer =
 CosNotifyComm::StructuredPushConsumer::_narrow (consumer_obj.in ());

Now, when our consumer is connected to the event channel, events published
through the event channel propagate their priority with them and this priority
is used to select the correct lane for processing in the consumer process.

25.5 Compatibility with the Event Service

The Notification Service is backwards compatible with the Event Service.
Therefore, existing Event Service applications can interoperate with
Notification Service applications. For example, Event Service consumers and
suppliers can connect to a Notification Service event channel using the basic
IDL interfaces defined by the Event Service.

25.6 tao_cosnotification Command Line Options

The full path of the tao_cosnotification server is:

$TAO_ROOT/orbsvcs/Notify_Service/tao_cosnotification

The tao_cosnotification server provides a single notification event
channel factory in its own process. By default, it binds the factory to the name
NotifyEventChannelFactory in the root naming context of the Naming
Service. The Naming Service must already be running to use the
tao_cosnotification server.

910 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

The tao_cosnotification server accepts various command line options to
control aspects of its initialization. Table 25-8 describes these command line
options.

Table 25-8 tao_cosnotification Command Line Options

Option Description Default

-? Displays the available options. None

-Factory
factory_name

Specifies the name with which to
bind the notification channel
factory in the root naming context
of the Naming Service. The
factory_name is also used to bind
the factory object in the IOR table
when -Boot is specified.

NotifyEventChannelFactory

-Boot

Specifies that factory_name should
be registered with the IOR table.
This allows the use of corbaloc
style URLs and also TAO’s
Implementation Repository. (See
Chapter 28.)

Disabled

-NameSvc
Binds the notification event channel
factory with the Naming Service. Enabled

-NoNameSvc
Specifies that the Naming Service
should not be used. Disabled

-IORoutput
file_name

Specifies the name of the file for
storing the notification channel
factory’s IOR as a string.

stderr

-Channel
Specifies that a notification channel
should be created in addition to the
notification channel factory.

Disabled

-ChannelName
channel_name

Specifies the name with which to
bind the notification channel, if
created, in the root naming context
of the Naming Service.

NotifyEventChannel

-Notify_TPReactor
nthreads
-RunThreads
nthreads

Specifies the number of worker
threads in the thread pool for TP
reactor. The ORB should be
instructed to use the TP reactor via
the service configurator. Note: The
Notify_TPReactor option is
deprecated and is only included for
backwards compatibility

1

o c i w e b . c o m 911

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

25.7 Notification Service Configuration Options

To allow the Notification Service to be used in a wide variety of situations, its
behavior can be configured via three separate factories using the service
configurator. See 16.3 for a general discussion of service configurator usage.
The majority of the notification service configuration options, especially
threading controls, are available via the Notify Service Factory as discussed in
25.7.1. The topology persistence feature is configured via the Connection
Reliability Factory (see 25.7.4) and the event persistence feature is controlled
via the Event Reliability Factory (see 25.7.5).

25.7.1 Notify Service Factory Options
The options specified for the notify service factory allow the Notification
Service to use multiple threads and other asynchronous techniques to reduce
the coupling between the Notification Service and its clients. These options
are applied via the service configurator to the Notify Service Factory. This
factory was previously called
Notify_Default_Event_Manager_Objects_Factory, but has now been
mercifully renamed to TAO_CosNotify_Service. You can still use both
names in your service configuration files, but we recommend using the latter
and use it exclusively in the ensuing examples. The options described in this

-LoggingInterval
interval

Enables the Notification Service to
use the ACE Logging Service. The
interval is in seconds and is used for
a timer that the logging service
needs. The ACE logging service
must be configured via a separate
directive in the svc.conf file.

No logger timer is
registered; ACE logging
service can’t be used by
the notification service.

-Timeout time
Applies the round trip timeout
policy to the ORBs the Notification
Service is using.

No timeout. Calls block
indefinitely.

-UseSeparateDispa
tchingORB (0 | 1)

Causes the NS to use a separate
ORB for dispatching events to
consumers. This helps alleviate
“back pressure” issues for some
performance-intensive applications.

The same ORB is used to
process CORBA requests
and dispatch events.

Table 25-8 tao_cosnotification Command Line Options

Option Description Default

912 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

section can also be passed via the RT Notify Service Factory when it is used to
load the RT CORBA Notification features as described in 25.3.8.

These options appear in the following line in the service configurator file (e.g.,
svc.conf):

static TAO_CosNotify_Service "options"

25.7.2 Threading Options
By default, the notification channel processes events immediately, or
reactively. The thread that processes the incoming publication of a push()
operation is also used for all processing of that event, including subsequent

push() invocations on the consumers. Immediate processing results in less
overhead, but it results in coupling between clients as the behavior of one
client can have an adverse effect on other clients. A slow consumer delays
delivery of the same event to other consumers and may block publication of
other events by the supplier. Various options below add additional thread
breaks in the processing pipeline by adding thread pools at different locations.

A notification channel server can operate in one of two basic threading modes.
This mode changes the behavior of some of the following options. By default,
different proxies (consumer and supplier) share the same server threading
resources in the shared resource model. By contrast, when the
-AllocateTaskPerProxy option is used, we are using the task per proxy
model where each proxy is allocated its own threading resources.

There are two “branch points” during the processing of an event, the Source
point and the Dispatch point. At each of these branch points, the event can be
processed immediately (on the current thread) or it can be queued for later
processing by one thread from a pool of threads. Use the
-DispatchingThreads option to specify the number of threads to allocate
at the Dispatch point and the -SourceThreads option to specify the number
of threads at the Source point. When separate source threads are used, the
ORB thread processing a supplier’s push() request limits itself to queueing
the event for processing on a source thread. When dispatching threads are
used, the outgoing push() invocation on the consumer occurs on the
dispatching thread. All other processing is done before the dispatching thread
break (by either the source or ORB thread). The number of ORB threads
allocated can be specified via the -RunThreads option as discussed in 25.6.

o c i w e b . c o m 913

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

When using the task per proxy model, the specified number of source threads
are created for each consumer proxy (or supplier) and the specified number of
dispatching threads are created for each supplier proxy (or consumer).

The options specified via the service configurator act as the global defaults for
all channels and proxies in a process but can be overridden for individual
proxies via the ThreadPool and ThreadPoolLanes properties as discussed
in 25.3.5.4 and 25.3.8.

Previous versions of the Notification Service allowed for the number of
threads to be specified at two additional branch points, Lookup and Listener
Evaluation. These extra branch points were previously honored as separate
points but are now collapsed into the existing branch points. The Lookup
Evaluation point has been merged into the Source point and the Listener
Evaluation point has been merged into the Dispatch point. The corresponding
-ListenerThreads and -LookupThreads options have been deprecated
and should no longer be used. If specified, these options result in a warning
message and the threads specified may be added to the remaining branch
points. Listener threads are always added to the dispatch thread pool. When
the task per proxy model is used, lookup threads are added to the source thread
pool. Otherwise, lookup threads are ignored.

Originally, it was necessary to enable multithreading at one of these branch
points, then specify the number of threads available. This has been
streamlined so that specifying the number of threads automatically enables
multithreading. Because of this change the following options, are deprecated,
but still recognized and ignored: -MTDispatching, -MTSourceEval,
-MTLookup, and -MTListenerEval. You should no longer use these options
as they now result in warnings and will eventually be removed.

The -AsynchUpdates option, if specified, creates a separate thread
responsible for delivering subscription information to clients. Unless you are
using subscription information to control what information is generated by
suppliers based on what information the consumer subscriptions, you can
ignore this option.

Option Section Description

-AllocateTaskPerProxy 25.7.3.1
Specifies that the Notification Service
should allocate thread resources on a
per proxy basis.

914 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.7.3 Other Options
The -AllowReconnect option controls whether consumer and supplier
proxies allow subsequent connect calls to proxies that are already connected.

The -DefaultConsumerAdminFilterOp and
-DefaultSupplierAdminFilterOp options allow developers to override
the inter-group filter operator that the default admin objects are created with.
This operator is used to determine whether the proxy and admin filter sets are
evaluated.

The -UseSeparateDispatchingORB option specifies that the notification
channel should use a separate ORB for dispatching events to consumers. This
option is useful for avoiding the nested upcalls in busy notification channels.

The -ValidateClient option causes the notification service to validate
clients’ liveliness. Each consumer and supplier is checked for activity since
the last liveliness check. If the client has been active it is marked as alive, if
not a “ping” is done on the object reference. If the “ping” fails, the consumer
or supplier is disconnected. The -ValidateClientInterval controls the

-AsynchUpdates 25.7.3.3 Causes subscription and publication
updates to be sent asynchronously.

-DispatchingThreads nthreads 25.7.3.6 Specifies the number of dispatching
threads to use.

-ListenerThreads nthreads 25.7.3.7 Deprecated

-LookupThreads nthreads 25.7.3.8 Deprecated

-MTDispatching 25.7.3.9 Deprecated

-MTListenerEval 25.7.3.10 Deprecated

-MTLookup 25.7.3.11 Deprecated

-MTSourceEval 25.7.3.12 Deprecated

-SourceThreads nthreads 25.7.3.14
Specify the number of threads to
allocate for processing incoming
requests.

Option Section Description

o c i w e b . c o m 915

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

interval between validation passes. The -ValidateClientDelay allows for
a delay, before the initial validation pass.

Option Section Description

-AllowReconnect 25.7.3.2 Allows consumers and suppliers to
reconnect to existing proxies.

-DefaultConsumerAdminFilterOp
(AND | OR) 25.7.3.4 Specifies the inter-group filter operator

for the default consumer admin object.

-DefaultSupplierAdminFilterOp
(AND | OR) 25.7.3.5 Specifies the inter-group filter operator

for the default supplier admin object.

-NoUpdates 25.7.3.13 Globally disables subscription and
publication updates.

-UseSeparateDispatchingORB
 (0 | 1) 25.7.3.15 Use a separate ORB to dispatch events

to consumers.

-ValidateClient 25.7.3.16 Enable validation of clients’ liveliness
and removal of dead clients.

-ValidateClientDelay seconds 25.7.3.17 Specifies delay in seconds before the
initial client liveliness validation.

-ValidateClientInterval
seconds 25.7.3.18 Specifies the interval in seconds

between client validation passes.

916 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.7.3.1 AllocateTaskPerProxy
Description This option specifies that the Notification Service should allocate thread

resources (i.e., for dispatching and source processing) on a per proxy basis.
Using this option affects the behavior of the -SourceThreads and
-DispatchingThreads options as well as some of the QoS Properties.

Usage The notify service factory provides options to enable multithreading and
allocate threads for event dispatching and source processing. By default, the
requested number of threads is allocated for each consumer and supplier
admin object in the notification channel. Different consumer and supplier
proxies that are created in that admin object share the same pool of threads.

For example, multithreaded event dispatching is enabled by the
-DispatchingThreads option (see 25.7.3.6) which also specifies the
number of threads allocated for dispatching. By default, the number of threads
used for dispatching is whatever is supplied to the -DispatchingThreads
option for each consumer admin object, regardless of the number of proxies.
Use the -AllocateTaskPerProxy option to specify that the specified
number of threads should be allocated for each supplier proxy. Similarly, this
option also alters the source processing threads from being allocated on a
per-proxy basis to a per-admin basis.

Impact Allocating threads on a per-proxy basis consumes more resources than
allocating them on a per-admin basis. Large numbers of consumers and
suppliers can cause creation of excessive numbers of threads.

Events are queued within the notification channel on a per-task basis. This
means that when this option is not specified, all consumers share the same
event queue and any queue-based QoS properties (DiscardPolicy,
OrderPolicy, MaxEventsPerConsumer, BlockingPolicy) function on a
per-admin basis. When this option is specified, each proxy applies these QoS
properties independently to their own queue.

See Also 25.7.3.6, 25.7.3.14

Example static TAO_CosNotify_Service "-AllocateTaskPerProxy -DispatchingThreads 5"

o c i w e b . c o m 917

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

25.7.3.2 AllowReconnect
Description This option enables the non-standard behavior necessary to allow clients to

reconnect to an existing proxy in the notification service. It should be enabled
if topology persistence is configured.

Impact According to the OMG specification for the notification service, a client that
attempts to connect to a proxy that is already in use should receive a
CosEventChannelAdmin::AlreadyConnected exception. Unfortunately,
this prevents recovery from certain types of failure. When this option is
enabled, clients can reconnect to an existing proxy.

Setting this option may allow a rogue client to “steal” a connection that is
being used by another client. This should be taken into consideration in
designing a reliable system.

Example static TAO_CosNotify_Service "-AllowReconnect"

918 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.7.3.3 AsynchUpdates
Description This option specifies that the Notification Service should send subscription

updates to suppliers and publication (offer) updates to consumers
asynchronously. If this option is used, a separate thread will be allocated for
dispatching these subscription/publication updates.

Usage Use the -AsynchUpdates option to enable asynchronous sending of
subscription and publication updates. The number of threads used for sending
these updates defaults to one and is not configurable.

Impact When subscription or publication changes occur, the Notification Service
dispatches updates to registered listeners. By default, these updates are
performed on the same thread as that on which the subscription or publication
changes occur. Using a separate thread for sending these updates decouples
consumers making subscription changes from suppliers receiving subscription
updates, and decouples suppliers making publication changes from consumers
receiving publication updates. Using a separate thread for sending
subscription or publication updates can improve performance. The allocation
of a separate thread for these updates consumes additional resources.

See Also 25.4.4, 25.7.3.13

Example static TAO_CosNotify_Service "-AsynchUpdates"

o c i w e b . c o m 919

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

25.7.3.4 DefaultConsumerAdminFilterOp op_type

Description For most consumer admin objects, the inter-group filter operator is set when
the object is constructed. The default consumer admin is implicitly created by
the event channel and is by default given the OR operator. This option allows
application developers to override this default.

Usage Using this option to set the AND operator tends to give the semantics that
most users expect. The current TAO default of OR is being kept for backward
compatibility reasons.

See Also 25.7.3.5

Example static TAO_CosNotify_Service "-DefaultConsumerAdminFilterOp AND"

Values for op_type

OR (default)
Use the OR operator as the inter-group filter operator of the
default consumer admin. This means that events published
to the consumers in the default consumer admin only need to
pass either the admin’s or proxy’s filters.

AND

Use the OR operator as the inter-group filter operator of the
default consumer admin. This means that events published
to the consumers in the default consumer admin need to pass
both the admin’s and proxy’s filters.

920 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.7.3.5 DefaultSupplierAdminFilterOp op_type

Description For most supplier admin objects, the inter-group filter operator is set when the
object is constructed. The default supplier admin is implicitly created by the
event channel and is by default given the OR operator. This option allows
application developers to override this default.

Usage Using this option to set the AND operator tends to give the semantics that
most users expect. The current TAO default of OR is being kept for backward
compatibility reasons.

See Also 25.7.3.4

Example static TAO_CosNotify_Service "-DefaultSupplierAdminFilterOp AND"

Values for op_type

OR (default)
Use the OR operator as the inter-group filter operator of the
default supplier admin. This means that events published by
the suppliers in the default supplier admin only need to pass
either the admin’s or proxy’s filters.

AND

Use the OR operator as the inter-group filter operator of the
default supplier admin. This means that events published by
the suppliers in the default supplier admin need to pass both
the admin’s and proxy’s filters.

o c i w e b . c o m 921

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

25.7.3.6 DispatchingThreads nthreads
Description This option specifies the number of threads to be created and used for

multithreaded dispatching of events.

Usage Using this option gives you the benefit of separating the dispatching thread
from the processing thread. This separation allows for greater decoupling
between suppliers and consumers. If this option is not used, then the same
thread used to process the event is also used to dispatch it to the consumers.
By default, the number of threads specified for this option are allocated as a
pool for each consumer admin object. When used with the
-AllocateTaskPerProxy option, the specified number of threads is
allocated per supplier proxy, which is effectively per consumer.

Impact Specifying additional dispatching threads results in increased decoupling
between consumers and suppliers. It may also increase throughput for heavy
loads. However, additional dispatching threads consume more resources and
may introduce higher event latencies due to context switches.

See Also 25.7.3.1

Example static TAO_CosNotify_Service "-DispatchingThreads 5"

922 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.7.3.7 ListenerThreads nthreads [DEPRECATED]
Description This option is deprecated.

This option specifies the number of threads to be created and used for listener
(proxy supplier) filter evaluation.

Usage This activity now occurs on the dispatching threads and the threads specified
by this option are now simply treated as additional dispatching threads. You
should no longer use this option and should simply define your total desired
dispatching threads directly using -DispatchingThreads.

Impact See 25.7.3.6 for dispatching threads impact.

See Also 25.7.3.6

Example static TAO_CosNotify_Service "-ListenerThreads 5"

o c i w e b . c o m 923

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

25.7.3.8 LookupThreads nthreads [DEPRECATED]
Description This option is deprecated.

This option specifies the number of threads to be created and used for
subscription lookup.

Usage This activity now occurs on the source thread. If -AllocateTaskPerProxy
is specified, then this option is ignored. If -AllocateTaskPerProxy is not
specified, then the threads specified by this option are simply treated as
additional source processing threads. You should no longer use this option and
should simply define your total desired source processing threads directly
using -SourceThreads.

Impact See 25.7.3.14 for source processing threads impact

See Also 25.7.3.14

Example static TAO_CosNotify_Service "-LookupThreads 5"

924 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.7.3.9 MTDispatching [DEPRECATED]
Description This option is deprecated.

This option was previously required to force the notification channel to use a
separate dispatching thread pool. This functionality is now invoked implicitly
when using the -DispatchingThreads option.

Usage Use the -DispatchingThreads option to specify the number of dispatching
threads and to force multithreaded dispatching.

Impact See 25.7.3.6 for dispatching threads impact.

See Also 25.7.3.6

Example This example forces multithreaded dispatching with a pool of one dispatching
thread.
static TAO_CosNotify_Service "-DispatchingThreads 1"

o c i w e b . c o m 925

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

25.7.3.10 MTListenerEval [DEPRECATED]
Description This option is deprecated.

This option was previously required to force the notification channel to use a
separate listener evaluation thread pool. This functionality is no longer
allocated its own thread pool.

Usage Use the -SourceThreads and -DispatchingThreads options to allocate
the desired thread pools.

Impact N/A

See Also 25.7.3.6, 25.7.3.14

Example N/A

926 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.7.3.11 MTLookup [DEPRECATED]
Description This option is deprecated.

This option was previously required to force the notification channel to use a
separate listener evaluation thread pool. This functionality is no longer
allocated its own thread pool.

Usage Use the -SourceThreads and -DispatchingThreads options to allocate
the desired thread pools.

Impact N/A

See Also 25.7.3.6, 25.7.3.14

Example N/A

o c i w e b . c o m 927

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

25.7.3.12 MTSourceEval [DEPRECATED]
Description This option is deprecated.

This option was previously required to force the notification channel to use a
separate source evaluation thread pool. This functionality is now invoked
implicitly when using the -SourceThreads option.

Usage Use the -SourceThreads option to specify the number of source evaluation
threads and to force multithreaded processing.

Impact See 25.7.3.14 for dispatching threads impact.

See Also 25.7.3.14

Example static TAO_CosNotify_Service "-SourceThreads"

928 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.7.3.13 NoUpdates
Description This option globally disables subscription and publication updates.

Usage When specified, this option causes all subscription and publication updates to
be disabled. Any consumers or suppliers subscribing to these updates will
never receive any.

Impact Consumers and suppliers that depend on subscription and publication updates
may not function correctly. There should be a small decrease in processor
resource usage when this option is enabled.

See Also 25.7.3.3

Example static TAO_CosNotify_Service "-NoUpdates"

o c i w e b . c o m 929

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

25.7.3.14 SourceThreads nthreads
Description This option specifies the number of threads to be created and used for

multithreaded source processing of events.

Usage Using this option gives you the benefit of separating the source processing
thread from the ORB’s thread that is used to process an incoming push()
operation. This separation allows for greater decoupling between suppliers
and consumers. If this option is not used, then the same thread used to process
the incoming event is also used for consumer proxy filter evaluation and fan
out to the receiving supplier proxies. By default, the number of threads
specified for this option are allocated as a pool for each supplier admin object.
When used with the -AllocateTaskPerProxy option, the specified number
of threads is allocated per consumer proxy, which is effectively per supplier.

Impact Specifying additional source processing threads results in increased
decoupling between consumers and suppliers. It may also increase throughput
for heavy loads. However, additional source processing threads consume more
resources and may introduce higher event latencies due to context switches.

See Also 25.7.3.1

Example static TAO_CosNotify_Service "-SourceThreads 5"

930 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.7.3.15 UseSeparateDispatchingORB enabled

Description Normally, the notification service uses the same ORB for processing
incoming CORBA requests (such as push calls from suppliers) as it does for
dispatching (push calls to consumers). Because of the way TAO processes
nested upcalls (see 15.4.4 for details), heavily loaded servers can in some
situations become deeply nested and exhibit a variety of undesirable
characteristics. These include application deadlocks, excessive memory usage,
and excessive event latencies.

Enabling this option, causes the use of a separate ORB for event dispatching.
Because this ORB has no activated objects in it, there should never be nested
upcalls on it. This helps avoid many of the above characteristics.

Usage Use this option when you see indications of excessive nested upcalls in your
notification channel server.

Impact There is a small increase in resource usage when two ORBs are being used.

Example static TAO_CosNotify_Service "-UseSeparateDispatchingORB 1"

Values for enabled

0 (default) Use the same ORB to process CORBA requests and dispatch
events to consumers.

1
Create a second ORB and use it exclusively for dispatching
events to consumers.

o c i w e b . c o m 931

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

25.7.3.16 ValidateClient
Description This option causes the notification channel to validate the liveliness of client

objects (consumers and suppliers). If the client has been active since the last
validation, it is marked as alive. If it has not been active, its object reference is
“pinged” using a call to _non_existent(). Failure to contact the client
causes it to be disconnected from the notification channel.

The period between validation passes is controlled by the
-ValidateClientInterval option. The default value for that option is
zero, which indicates that only a single validation pass will occur.

Usage This option should be used to prevent “dead” clients from accumulating in the
notification channel and degrading performance.

Impact There is a small amount of processing and bandwidth overhead for this
feature.

See Also 25.7.3.17, 25.7.3.18

Example static TAO_CosNotify_Service "-ValidateClient"

932 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.7.3.17 ValidateClientDelay seconds
Description This option specifies a delay, in seconds, that occurs before the initial start of

the validator task that is enabled by the -ValidateClient option. The
default delay is zero, meaning the validation timer will begin immediately
after the notification channel factory is created.

Usage A long delay is useful when the notification channel is repopulating its
topology from a persistent store.

See Also 25.7.3.16, 25.7.3.18

Example static TAO_CosNotify_Service "-ValidateClient -ValidateClientDelay 30"

o c i w e b . c o m 933

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

25.7.3.18 ValidateClientInterval seconds
Description This option specifies the interval in seconds between the validation passes that

are enabled by the -ValidateClient option. The default for this option is
zero, which indicates that only one pass will be made. A non-zero value is
used as the interval between the end of one pass and the beginning of the next.

Usage Use this option to enable periodic validation of the notification service’s
clients.

See Also 25.7.3.16, 25.7.3.17

Example static TAO_CosNotify_Service "-ValidateClient -ValidateClientInterval 10"

934 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.7.4 Connection Reliability: Topology Persistence
Options
To support setting the QoS property ConnectionReliabilty to
Persistent (as discussed in 25.3.6), we must specify the
Topology_Factory that the notification channel uses. The only topology
factory currently supported is the XML topology factory which is located in
the TAO_CosNotification_Persist library. We typically load this library
and factory using a dynamic directive in the service configurator file. Here is
the general form of this directive (which should all appear on one line of the
configuration file):

dynamic Topology_Factory Service_Object*

TAO_CosNotification_Persist:_make_XML_Topology_Factory() "options"

This dynamically loads the XML Topology Factory as the
Topology_Factory and configures it with the specified options. The rest of
this section documents the various options that this factory allows.

Application developers are also free to write their own topology factories, but
that is left as an exercise to the reader.

Option Section Description

-v 25.7.4.6 Enable verbose logging for topology
factory configuration.

-base_path 25.7.4.2 Specifies base path to use for saving and
loading topology files.

-save_base_path 25.7.4.5 Specifies a specific base path to use for
saving topology files.

-load_base_path 25.7.4.3 Specifies a specific base path to use for
loading topology files.

-backup_count 25.7.4.1 Specifies the number of topology backup
files to keep.

-no_timestamp 25.7.4.4 Suppresses the writing of a time stamp in
the topology file.

o c i w e b . c o m 935

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

25.7.4.1 backup_count
Description This option specifies how many previous versions of the XML file will be

retained.

Usage This option is not required. The default value is 1.

The default value, 1, means that only the file_path.000 file will be kept. If a
higher number is specified, then older versions will be kept. The older
versions will be named file_path.001, file_path.002, and so on.

Impact Under normal circumstances, only one backup file is required; setting this
number to a larger value lets the system keep a brief history of topology
changes. Since the XML files are roughly human-readable, this can be used as
a diagnostic tool for problems related to Notification Service topology
persistence.

See Also 25.7.4.2

Example dynamic Topology_Factory Service_Object*
TAO_CosNotification_Persist:_make_XML_Topology_Factory() "-base_path
/safe/topology -backup_count 2"

936 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.7.4.2 base_path file_path

Description This option determines where persistent topology information is loaded from
and stored.

Usage The argument for this option is a fully qualified path name without an
extension. Three extensions will be appended to this path to create three file
names: .new, .xml, and .000.

This option is not required. Its default value is
./Notification_Service_Topology.

Impact Saved topology information will be written to file_path.new file. Information
in a topology persistence file with a .new extension is not necessarily
complete and will not be used to restore the topology.

When the file_path.new file is complete, the previous file_path.000 file (if
any) will be deleted, the previous file_path.xml file (if any) will be renamed
to file_path.000 and the file_path.new file will be renamed to file_path.xml.

The assumption is that a file system rename operation is atomic. If this
assumption holds, then at any time the file file_path.xml (if it exists) contains
the most recent complete save. If file_path.xml does not exist, then
file_path.000 contains the most recent complete save. If neither of these files
exist, the saved topology information is not available.

See Also 25.7.4.1, 25.7.4.5, 25.7.4.3

Example dynamic Topology_Factory Service_Object*
TAO_CosNotification_Persist:_make_XML_Topology_Factory() "-base_path
/safe/topology"

o c i w e b . c o m 937

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

25.7.4.3 load_base_path file_path

Description This option specifies the base path to be used for the files that load the
topology state. When used with the -store_base_path option they provide
an alternative to the -base_path option. They allow the file from which
topology information is loaded at Notification Service startup time to be
different from the file to which this information is saved as the system runs.

Usage This option is not required. There is no default value.

This option should not be used if the -base_path option is used.

If this option is used the -save_base_path option should also be used.

Impact This option is mostly used for developer testing. A system administrator may
find an interesting use for this option, possibly involving script files that
rename the XML files during recovery from a Notification Service failure.

See Also 25.7.4.2, 25.7.4.5

Example dynamic Topology_Factory Service_Object*
TAO_CosNotification_Persist:_make_XML_Topology_Factory() "-load_base_path
/safe/topology_in -save_base_path /safe/topology_out"

938 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.7.4.4 no_timestamp
Description This option suppresses the time stamp that is normally written to the XML file

in which the topology is saved.

Usage Use this option when you don’t want the timestamp written such as when you
wish to automate comparisons of XML topology persistence files.

Impact The time stamp is for information only and is not needed for correct
functioning of the topology persistence.

This option is intended primarily for testing the persistent topology
implementation.

Example dynamic Topology_Factory Service_Object*
TAO_CosNotification_Persist:_make_XML_Topology_Factory() "-no_timestamp"

o c i w e b . c o m 939

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

25.7.4.5 save_base_path file_path

Description This option specifies the base path to be used for the files that save the
topology state. When used with the -load_base_path option they provide
an alternative to the -base_path option. They allow the file from which
topology information is loaded at Notification Service startup time to be
different from the file to which this information is saved as the system runs.

Usage This option is not required. There is no default value.

This option should not be used if the -base_path option is used.

If this option is used the -load_base_path option should also be used.

Impact This option is mostly used for developer testing. A system administrator may
find an interesting use for this option, possibly involving script files that
rename the XML files during recovery from a Notification Service failure.

See Also 25.7.4.2, 25.7.4.3

Example dynamic Topology_Factory Service_Object*
TAO_CosNotification_Persist:_make_XML_Topology_Factory() "-load_base_path
/safe/topology_in -save_base_path /safe/topology_out"

940 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.7.4.6 v
Description This option enables verbose logging. This option and any option that appears

after it will be written to the log (normally the console) as it is processed. This
is intended to help diagnose and document the Topology Persistence settings.
This output is also enabled when the TAO debug level is greater than zero.

The default is to configure Topology Persistence silently.

Usage This should be the first option for the Topology_Factory in the service
configurator file so that all options will be displayed.

Example dynamic Topology_Factory Service_Object*
TAO_CosNotification_Persist:_make_XML_Topology_Factory() "-v"

o c i w e b . c o m 941

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

25.7.5 Event Reliability: Event Persistence Options
To support setting the QoS property EventReliability to Persistent (as
discussed in 25.3.7), we must specify the Event_Persistence factory that
the notification channel uses. The only event persistence factory currently
supported is the standard event persistence factory and we typically load this
factory using a dynamic directive in the service configurator file. Here is the
general form of this directive (which should all appear on one line of the
configuration file):
dynamic Event_Persistence Service_Object*
TAO_CosNotification:_make_Standard_Event_Persistence() “options”

This dynamically loads the standard event persistence factory as the
Event_Persistence factory and configures it with the specified options.
The rest of this section documents the various options that this factory allows.

Application developers are also free to write their own event persistence
factories, but that is left as an exercise to the reader.

Option Section Description

-v 25.7.5.3 Enable verbose logging for event
persistence factory configuration.

-file_path 25.7.5.2 Specifies the file to use for saving and
loading event persistence.

-block_size 25.7.5.1 Specifies a specific base path to use for
saving topology files.

942 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.7.5.1 block_size
Description This option gives the block size in bytes for the device on which the event

reliability file is stored.

Usage This option is not required. The default value is 512.

Impact For both performance and reliability reasons, it is important that the value
matches the physical characteristics of the device.

For Windows and for “normal” drives (IDE drives and most SCSI drives) on
Linux and UNIX, the correct value is almost always 512.

For special purpose SCSI drives or devices in a RAID array, the correct block
size is determined by the values used to format the disk and configure the
system. See information provided by your vendor and/or system
administrator.

Example dynamic Event_Persistence Service_Object*
TAO_CosNotification:_make_Standard_Event_Persistence() "-file_path /safe/events
-block_size 1024"

o c i w e b . c o m 943

2 5 . 7 N o t i f i c a t i o n S e r v i c e C o n f i g u r a t i o n O p t i o n s

25.7.5.2 file_path
Description This option gives the completely qualified name for the file in which

persistent event information will be stored.

This is a required option. There is no default value.

Impact The file should be configured on a reliable device that supports synchronized
writes (i.e., flushing the operating system’s write cache). A device that is
suitable for storing a reliable database would be appropriate for storing this
file. The file will be subject to a relatively high number of small (single block)
write requests, but very few, if any, read requests.

If the file does not exist, a new file will be created.

If the file does exist, and if topology is successfully loaded, the events from
this file will be reloaded and redelivered automatically.

Example dynamic Event_Persistence Service_Object*
TAO_CosNotification:_make_Standard_Event_Persistence() "-file_path /safe/events"

944 o c i w e b . c o m

N o t i f i c a t i o n S e r v i c e

25.7.5.3 v
Description This option enables verbose logging. This option and any option that appears

after it will be written to the log (normally the console) as it is processed. This
is intended to help diagnose and document the Event Persistence settings. This
output is also enabled when the TAO debug level is greater than zero.

The default is to configure Event Persistence silently.

Usage This should be the first option for the Event_Persistence factory in the
service configurator file so that all options will be displayed.

Example dynamic Event_Persistence Service_Object*
TAO_CosNotification:_make_Standard_Event_Persistence() "-v -file_path events"

o c i w e b . c o m 945

CHAPTER 26

Interface Repository

26.1 Introduction

The Interface Repository (IFR) is a CORBA service defined by the OMG in
Chapter 14 of the CORBA 3.1 specification (OMG Document
formal/08-01-04). The IFR manages information related to IDL entities. It is
able to maintain relationships between such things as modules, interfaces, and
operations, as well as all of the supporting entities, such as typedefs,
primitives, and structs. The IFR has its own set of interfaces, used to store,
manage, and retrieve information in the repository. See 14.5 and 14.7 of
CORBA 3.1 for a full description of the IDL defining the IFR

Why is it important to have a repository of information about IDL interfaces
and types? It gives CORBA objects the means for self description. It is similar
to Java’s Reflection API. Through the IFR, it is possible to obtain an
otherwise unknown object reference, and to be able to make invocations on it.
This is useful when building applications such as system management or
debugging tools, middleware gateways or protocol translators. It is also useful
when used in conjunction with, for instance, the Trader service. For example,
you may have a number of Objects which offer a “print” capability to deliver

946 o c i w e b . c o m

I n t e r f a c e R e p o s i t o r y

data to a printer, each one tuned to a specific kind of job. You may not wish to
compile in a number of similar stubs since your application may be older than
the objects with which it wishes to interact. Using the IFR, it is possible to
determine which object has the appropriate interface.

26.2 Using the Interface Repository

The IFR maintains an object model representing the contents of interfaces and
related IDL components. The IFR may hold the contents of many IDL files, all
anchored by a single CORBA::Repository object. The repository has an
interface that allows for addition of modules, interfaces, exceptions, typedefs,
anything that can legally exist outside the context of a module in IDL. The
Repository also has a query interface allowing for retrieval of this
information. See 26.4 for an example use of this query interface. The full
details of the IFR’s storage and retrieval interface are beyond the scope of this
book (see 14.5 and 14.7 in the CORBA specification).

In addition to the repository, there are interfaces that describe all of the IDL
constructs. For instance, ModuleDef is used to describe a module,
InterfaceDef for interfaces. These definition interfaces are all part of the
CORBA domain, and they all inherit from either Container, Contained, or
both.

The definition of any entity which may contain another entity, such as a
ModuleDef, or InterfaceDef, derives from Container (for the sake of
brevity, since all of these types are defined in the CORBA module, the prefix
"CORBA::" will be omitted). A Container has an interface which allows
searching over the contents of the container, with control over the scope of the
search, and the level of detail returned.

The definition of any entity which may be contained by another, which
includes all but the repository itself, derives from Contained. These
interfaces all inherit a common set of attributes including a reference to the
enclosing container, a Repository ID string uniquely identifying this entity,
and the name given to the entity in the original IDL.

The CORBA specification describes the Interface Repository as a tool for the
“management of a collection of related objects' interface definitions.” It does
not require, however, that all the IFR Objects in a repository be “related.” If
they are unrelated, or if a repository is used as a long-running catch-all, an

o c i w e b . c o m 947

2 6 . 3 T A O ’ s I n t e r f a c e R e p o s i t o r y I m p l e m e n t a t i o n

ambiguity could arise. In IDL, interfaces may be forward declared. Starting
with CORBA 2.3, it was legal to have the forward declaration of an interface
in one IDL file, and its full definition in another. This organization poses a
potential problem. Suppose that a Repository is used to hold interfaces from a
broad range of objects. It might be possible for the same Repository ID to
refer to more than one entity. This might happen as the result of using a
forward declaration of an interface in one file, and the full interface in another.
Or it might be that modules and prefixes are not sufficiently unique, and two
interfaces end up with the same repository Id. In this case, the TAO tools,
described below, will simply replace an existing entity with a new one. This
choice was made in the interest of interoperability, since it is the behavior
chosen by most other ORB vendors who have implemented an IFR.

26.3 TAO’s Interface Repository Implementation

TAO’s implementation of the Interface Repository consists of two processes.
The first, tao_ifr_service, is meant to be always available. It houses the
Repository objects and responds to queries. The other is the IFR loader,
tao_ifr, a utility used to interpret IDL files and load the results into the IFR.
It also provides other useful maintenance services. The source for both of
these applications is located in $TAO_ROOT/orbsvcs/IFR_Service.

26.3.1 tao_ifr_service
This is the application supplied with TAO that is host to Repository objects.
The tao_ifr_service application gives a measure of control over the
repository. As with any TAO application, tao_ifr_service is subject to all
of the ORB configuration options documented in Chapter 17. Table 26-1 lists
the additional command line options that are specific to tao_ifr_service.

Table 26-1 Interface Repository Service Command Line Options

Option Description Default

-o filename
Specify a filename for storing the
IOR from this server. IOR is written to if_repo.ior

-p
Make IFR service persistent using
a memory-mapped file.

IFR does not use
memory-mapped files.

-b filename
Specify a filename to use as
backing store with -p option.

ifr_default_backing_store
is used for the mapping file,

948 o c i w e b . c o m

I n t e r f a c e R e p o s i t o r y

When started, tao_ifr_service always writes the Repository IOR to a file.
By default, the file named if_repo.ior is used. The name of this file may
be changed by using the -o option. Clients may also locate the IFR service
via IP multicast. When multicast support is enabled with -m 1, the default
port on which the Interface Repository listens for service discovery multicast
requests is 10020. This is defined in $TAO_ROOT/tao/default_ports.h.
The environment variable InterfaceRepoServicePort can be used to
override this default. In addition, the clients may also locate the service by
placing a stringified object reference in the InterfaceRepositoryIOR
environment variable.

By default, the repository’s state is maintained in the process’s heap. It is
frequently desirable to use persistent storage, allowing the Repository to
withstand a process termination and not be populated each time it is started.
The -p option is used to enable the use of a memory-mapped file for the
repository’s state. The name of the backing store file may be set using the -b
option. When run on a Win32 based platform, the tao_ifr_service may use the
windows registry as its database, when started with -r. Use of the
memory-mapped file takes precedence over the registry. In other words, -p
takes precedence over -r.

The final command line option to discuss is the -l option, which activates the
use of mutex locks in a multithreaded tao_ifr_service. This is recommended
when multiple updates may occur concurrently.

-l
Lock repository during operation
invocations. No locking is used.

-r
Use the Windows registry as
backing store, if available.
Overridden by -p.

Do not use the windows registry
as a backing store.

-m (0 | 1)

Specify whether the IFR Service
should listen for multicast service
discovery requests. If -m 1 is
used, it listens for multicast
requests.

Do not listen for multicast service
location requests.

Table 26-1 Interface Repository Service Command Line Options

Option Description Default

o c i w e b . c o m 949

2 6 . 3 T A O ’ s I n t e r f a c e R e p o s i t o r y I m p l e m e n t a t i o n

26.3.2 tao_ifr
The tao_ifr executable is TAO’s interface repository loader and makes the
task of populating the IFR as simple as possible. It works by reading IDL files,
supplied as command line arguments, then adding (or removing) the entities
contained within. It uses the same front end and structural code as the TAO
IDL compiler, tao_idl. The front end is responsible for parsing and
processing the IDL files into internal data structures. The differences between
the IFR loader and IDL compiler lie in their back ends. The tao_ifr back
end populates the Interface Repository server with the IDL information it
processes. Like the IDL compiler, the IFR loader is applied to one or more
IDL files. The general form of the command line for tao_ifr is:
tao_ifr [-ORB options][ifr options] idl_file [idl_file ...]

See Chapter 17 for information on the ORB initialization options, all of which
are available here. Because they share a common front end, options intended
for this code are identical to those of the TAO IDL compiler. Table 26-2
describes all of front end-related command line options that the IFR loader
shares with the IDL compiler.

Table 26-2 tao_ifr Front End Options

Option Description

-v Traces tao_ifr processing stages.

-V Prints the version info for tao_ifr and exits.

-d Outputs a dump of the Abstract Symbol Tree (AST).

-u Prints the list of options and exits.

-E Invokes the preprocessor and exits.

-Dmacro_def Preprocessor defines macro_def

-Umacro_name Preprocessor undefines macro_name.

-Iinclude_path include_path is passed to the preprocessor.

-Aassertion
assertion (a local implementation-specific escape) is passed to
the preprocessor.

-Yp,path
Specifies a path to the preprocessor, rather than what was used
to build tao_ifr.

-t dir_name
Temporary directory to be used by the tao_ifr front end. If
not specified, then ACE_DEFAULT_TEMP_DIR_ENV or /tmp
is used.

950 o c i w e b . c o m

I n t e r f a c e R e p o s i t o r y

These command line options can be broken into two groups. The first group is
essentially for debugging; these are -v, -V, and -d. The remainder control
the processing of the IDL files. All of the options above are identical to those
of the IDL compiler.

Table 26-3 describes all of command line options that are unique to the
interface loader.

By default, the IFR loader processes all IDL found in the files specified to it
and all their included files and adds this information to the repository. The
-Si option cause the IFR loader to only add information from IDL files
specified on the command line and not from included files. The -r option
causes all processed IDL elements to be removed from the IFR repository.
The -T option allows duplicate typedefs to be processed, by ignoring any
typedefs after the first one of an identifier. In the absence of the -T option, the
second and subsequent typedefs of the same identifier will be reported as an
error.

The TAO IFR loader uses the same techniques for obtaining a reference to the
Repository as any other CORBA process. It asks the ORB to resolve the initial
reference of “InterfaceRepository.” The ORB will try an initial reference
supplied on the command line (see 17.13.36). Use “InterfaceRepository”
for the Object ID, and use “file://if_repo.ior” for the Object URL. Of

-Cw
Output a warning if two identifiers in the same scope differ in
spelling only by case.

-Ce
Output an error if two identifiers in the same scope differ only
by case. This is the default if -Cw is not specified.

-w Suppress warning messages.

-Wp,arg1,arg2,... Passes the arguments to the preprocessor.

Table 26-3 tao_ifr Back End Options

Option Description

-Si Suppress processing of included IDL files.

-L Enable locking at IDL file level.

-r
Contents of IDL file(s) are removed from, not added to, the
repository.

-T Allows duplicate typedefs in IDL files.

Table 26-2 tao_ifr Front End Options

Option Description

o c i w e b . c o m 951

2 6 . 4 E x a m p l e I F R C l i e n t

course, if tao_ifr_service was started with -o filename, then use that file
name instead. Otherwise, the ORB may locate the IOR via the
InterfaceRepositoryIOR environment variable or an IP multicast request
(assuming the IFR server was started with multicast enabled).

26.4 Example IFR Client

Now we take a look at how an application can use the IFR to obtain
information about an interface. This program, called IFRBrowser, obtains a
reference to the Repository, then traverses all of the entities, writing them to
the console. Full source code for this example is in the TAO source code
distribution in the directory
$TAO_ROOT/orbsvcs/DevGuideExamples/InterfaceRepo/.

26.4.1 Annotated Source Code
The following code is from IFRBrowser.cpp.

The CORBA specification does not define a location for the IFR interface
headers. All of the interfaces this browser uses are defined in
IFR_Basic.idl, found in $TAO_ROOT/tao/IFR_Client. Therefore this
browser needs the client side include file shown below. The Log_Msg.h
include file provides access to the ACE logging facility that provides the
ACE_DEBUG macro.

#include <ace/Log_Msg.h>
#include <tao/IFR_Client/IFR_BasicC.h>
#include <tao/ORB.h>

const char* programLabel = "IFR Browser";

The following forward declarations are for methods used in main(), but
defined further below. They represent the methods used to output certain
elements of the IFR.

void listContents(const CORBA::ContainedSeq& repoContents);
void listInterface(CORBA::InterfaceDef_ptr interfaceDef);
void listOperation(CORBA::OperationDescription* operationDescr);
void listParameter(CORBA::ParameterDescription* parameterDescr);

const char* decodeTypeCode(const CORBA::TypeCode_ptr typeCode);
const char* decodeParameterMode(CORBA::ParameterMode mode);

952 o c i w e b . c o m

I n t e r f a c e R e p o s i t o r y

const char* decodeOperationMode(CORBA::OperationMode mode);

The main function performs all of the common CORBA application
initialization, obtains a reference to the Interface Repository, then lets the
listRepo() function handle the actual work.

int main(int argc, char* argv[])
{
 try
 {
 CORBA::ORB_var orb =
 CORBA::ORB_init(argc, argv);

 CORBA::Object_var obj =
 orb->resolve_initial_references("InterfaceRepository");

 CORBA::Repository_var ifrRepo =
 CORBA::Repository::_narrow(obj.in());

 if(CORBA::is_nil(ifrRepo.in())) {
 ACE_DEBUG((LM_ERROR,
 ACE_TEXT("(%N) failed to narrow interface repository reference.\n")
));
 return -1;
 }

The Repository may hold many elements. The operation contents()
retrieves all of these repository-level elements in a single sequence. The
description kind value CORBA::dk_all indicates that all elements are to be
included in the list. The kind value may be used to constrain the list to only
particular kinds of elements, such as typedefs or interfaces.

 CORBA::ContainedSeq_var repoContents =
 ifrRepo->contents(CORBA::dk_all,1);

 ACE_DEBUG((LM_INFO,
 ACE_TEXT("%s: the interface repository contains %d elements.\n"),
 programLabel,
 repoContents.length()
));
 listContents(repoContents.in());

 return 0;
 }
 catch(CORBA::Exception& ex) {
 ex._tao_print_exception("Main block");
 }

o c i w e b . c o m 953

2 6 . 4 E x a m p l e I F R C l i e n t

 return 1;
}

The listContents() function iterates over the sequence of contained
objects, some of which may in turn contain other objects. The Repository may
directly contain anything that can be defined outside the context of a module,
which traditionally includes constants, type definitions, exceptions, interfaces,
valuetypes, value boxes, and modules. With the addition of the CORBA
Component Model (CCM) this can also include things such as components
and homes. This example only supports constants, typedefs, exceptions,
interfaces, and modules. It ignores all other constructs.

void listContents(const CORBA::ContainedSeq& repoContents)
{
 //
 // List the contents of each element.
 //
 for(unsigned int i = 0; i < repoContents.length(); ++i) {
 switch(((repoContents[i])->describe())->kind) {
 case CORBA::dk_Constant:
 ACE_DEBUG((LM_INFO,
 ACE_TEXT("%s: element[%d] is a constant definition.\n"),
 programLabel,
 i + 1
));
 break;
 case CORBA::dk_Typedef:
 ACE_DEBUG((LM_INFO,
 ACE_TEXT("%s: element[%d] is a typedef definition.\n"),
 programLabel,
 i + 1
));
 break;
 case CORBA::dk_Exception:
 ACE_DEBUG((LM_INFO,
 ACE_TEXT("%s: element[%d] is an exception definition.\n"),
 programLabel,
 i + 1
));
 break;
 case CORBA::dk_Interface:
 {
 ACE_DEBUG((LM_INFO,
 ACE_TEXT("%s: element[%d] is an interface definition.\n")
 ACE_TEXT("%s: listing element[%d]...\n"),
 programLabel,
 i + 1,

954 o c i w e b . c o m

I n t e r f a c e R e p o s i t o r y

 programLabel,
 i + 1
));

When the kind of element encountered is an interface, IFRBrowser narrows
the contained reference to an InterfaceDef, which is the definition of an
interface. Then, listInterface() is used to output the particulars for the
interface.

 CORBA::InterfaceDef_var interfaceDef =
 CORBA::InterfaceDef::_narrow(repoContents[i].in());
 listInterface(interfaceDef.in());
 break;
 }
 case CORBA::dk_Module:{
 ACE_DEBUG((LM_INFO,
 ACE_TEXT("%s: element[%d] is a module definition.\n"),
 programLabel,
 i + 1
));

As with the interface description, a module may also contain other elements.
No special function is needed for a module as the interface ModuleDef is
nothing more than the empty inheritance of Container and Contained. The
Contained interface has all the necessary identity information access.

 CORBA::ModuleDef_var moduleDef =
 CORBA::ModuleDef::_narrow(repoContents[i].in());
 CORBA::ContainedSeq_var moduleContents =
 moduleDef->contents(CORBA::dk_all,1);
 CORBA::String_var moduleId = moduleDef->id();
 CORBA::String_var moduleName = moduleDef->name();
 ACE_DEBUG((LM_INFO,
 ACE_TEXT("%s: \n // %s\n module %s\n{\n")
 ACE_TEXT("%s: the module contains %d elements.\n"),
 programLabel,
 moduleId.in(),
 moduleName.in(),
 programLabel,
 repoContents.length(),
));
 listContents(moduleContents.in());
 break;
 }
 default:
 break;
 }

o c i w e b . c o m 955

2 6 . 4 E x a m p l e I F R C l i e n t

 }
}

When an interface is encountered above, listInterface() is used to output
all of the particulars. Note below, that a specialized interface is used to obtain
the identity information. This differs from the ModuleDef, which relies on the
inherited Contained interface for identity. Since InterfaceDef also
inherits from Contained, the name and repository Id could be accessed
through the InterfaceDef directly. The FullInterfaceDescription
provides access to the basic identity as well as to other interface-specific
information, thus providing “one stop shopping” for all of the interface’s
details.

void listInterface(CORBA::InterfaceDef_ptr interfaceDef)
{
 CORBA::InterfaceDef::FullInterfaceDescription_var fullDescr =
 interfaceDef->describe_interface();

 const char* interfaceName =
 fullDescr->name;
 const char* interfaceRepoId =
 fullDescr->id;

 ACE_DEBUG((LM_INFO,
 ACE_TEXT("%s:\n\t// %s\n\tinterface %s\n\t{"),
 programLabel,
 interfaceRepoId,
 interfaceName
));

 unsigned int operationsCount;
 if((operationsCount =
 fullDescr->operations.length()
) > 0
)
 {
 for(unsigned int i = 0; i < operationsCount; ++i) {
 listOperation(&(fullDescr->operations[i]));
 }
 }

 unsigned int attributesCount;
 if((attributesCount =
 fullDescr->attributes.length()
) > 0
)

956 o c i w e b . c o m

I n t e r f a c e R e p o s i t o r y

 {
 ACE_DEBUG((LM_INFO,
 ACE_TEXT("%s: %s has %d attribute(s).\n"),
 programLabel,
 interfaceName,
 attributesCount
));
 }

 ACE_DEBUG((LM_INFO, "\n\t}\n"));
}

For each operation in an interface, the listOperation() method lists the
repository Id, name, return type, and all of the parameters.

void listOperation(CORBA::OperationDescription* operationDescr)
{
 const char* operationName =
 operationDescr->name;
 const char* operationRepoId =
 operationDescr->id;
 const char* operationResult =
 decodeTypeCode(operationDescr->result.in());
 const char* operationMode =
 decodeOperationMode(operationDescr->mode);

 ACE_DEBUG((LM_INFO,
 ACE_TEXT("\n\t\t// %s \n\t\t%s %s %s"),
 operationRepoId,
 operationResult,
 operationName,
 operationMode
));

 CORBA::ParDescriptionSeq* params =
 &(operationDescr->parameters);
 CORBA::ULong paramsCount = params->length();
 if (paramsCount > 0) {
 ACE_DEBUG((LM_INFO, "\n\t\t(\n\t\t"));
 for (CORBA::ULong i =0; i < paramsCount; ++i) {
 listParameter(&((*params)[i]));
 if(i < (paramsCount - 1)) {
 ACE_DEBUG((LM_INFO, ",\n\t\t"));
 }
 }
 ACE_DEBUG((LM_INFO, "\n\t\t);\n"));
 }
 else {
 ACE_DEBUG((LM_INFO, "();\n"));

o c i w e b . c o m 957

2 6 . 4 E x a m p l e I F R C l i e n t

 }
}

Finally, each parameter to an operation is listed, one per line, based on the
contents of the supplied parameter description. This information could also be
used to populate an argument list on a dynamic request object, if DII were
used to interact with an object implementing this interface.

void listParameter(CORBA::ParameterDescription* parameterDescr)
{
 const char* typCode =
 decodeTypeCode(parameterDescr->type.in());
 const char* paramMode =
 decodeParameterMode(parameterDescr->mode);
 ACE_DEBUG((LM_INFO,
 ACE_TEXT("%s %s %s"),
 paramMode,
 typCode,
 parameterDescr->name.in()
));
}

The remaining helper functions are used to return strings based on various
codes.

const char* decodeTypeCode(const CORBA::TypeCode_ptr typeCode)
{
 const char* code;
 if(typeCode->equivalent(CORBA::_tc_void))
 code = "void";
 else if(typeCode->equivalent(CORBA::_tc_boolean))
 code = "boolean";
 else if(typeCode->equivalent(CORBA::_tc_string))
 code = "string";
 else
 code = "";
 return code;
}

const char* decodeParameterMode(CORBA::ParameterMode mode)
{
 const char* paramMode;
 switch(mode) {
 case CORBA::PARAM_IN:
 paramMode = "in";
 break;
 case CORBA::PARAM_OUT:

958 o c i w e b . c o m

I n t e r f a c e R e p o s i t o r y

 paramMode = "out";
 break;
 case CORBA::PARAM_INOUT:
 paramMode = "inout";
 break;
 default:
 paramMode = "";
 }
 return paramMode;
}

const char* decodeOperationMode(CORBA::OperationMode mode)
{
 return (mode == CORBA::OP_NORMAL) ? "synchronous" : "asynchronous";
}

26.4.2 Run the Example
For this example, we have a simple IDL file, test.idl. The implementation
of the IDL is not important to this example. However, this IDL file shows
several major components of IDL, including a module, an interface and an
operation.

module warehouse
{
 interface inventory
 {
 boolean getCDinfo (in string artist,
 inout string title,
 out float price);
 };
};

The following commands show how to start the Interface Repository service,
and how to populate the repository with the elements of the IDL file shown
above.

tao_ifr_service -m 1&

tao_ifr test.idl

The first command starts the tao_ifr_service with multicast discovery
enabled. We will rely on clients using multicast to locate the Interface
Repository. The tao_ifr_service is normally a long-running process, so
this example runs it in the background (assuming some Unix command shell).

o c i w e b . c o m 959

2 6 . 4 E x a m p l e I F R C l i e n t

When first run, the Repository is empty. The tao_ifr command above reads
the contents of test.idl and populates the Repository. At this point, we run
the IFRBrowser.

IFRBrowser

IFRBrowser uses multicast to locate the Repository, then iterates over the
entire contents of the Repository, writing the results as shown.

IFR Browser: the interface repository contains 1 elements
IFR Browser: element[1] is a module definition.
IFR Browser:
// IDL:warehouse:1.0
module warehouse
{
IFR Browser: the module contains 1 elements.
IFR Browser: element[1] is an interface definition.
IFR Browser: listing element[1]...
 // IDL:warehouse/inventory:1.0
 interface inventory
 {
 // IDL:warehouse/inventory/getCDinfo:1.0
 boolean getCDinfo synchronous
 (
 in string artist,
 inout string title,
 out price
);
 }
}

Alternatively, we could run this example using the
InterfaceRepositoryIOR environment variable. The following code
assumes the use of bash (or another similar shell environment):

tao_ifr_service -o ifr.ior&

export InterfaceRepositoryIOR=file://ifr.ior

tao_ifr test.idl

IFRBrowser

960 o c i w e b . c o m

I n t e r f a c e R e p o s i t o r y

o c i w e b . c o m 961

CHAPTER 27

TAO Security

Preface

Support for security in CORBA has been through a number of iterations and
resulting specifications. TAO has supported subsets of many of these
specifications and provides many tools and interfaces that application
developers can use to build and deploy secure applications.

The TAO 1.6a implementation remains in a state of transition. Previous
versions of TAO included a partial implementation of CORBA Security and
SSLIOP. The implementation in TAO 1.6a is based on newer versions of the
CORBA Security specification. Unfortunately, the implementation is
incomplete, so some features are not available. Further, some features that
were available in previous releases may not be available as the
implementation currently exists. Specifically, Policy Enforcing applications
(see 27.8, “Security Policy Enforcing Application”) will very likely not work
properly, though all Security Unaware (see 27.6, “Security Unaware
Application”) and many Policy Changing (see 27.7, “Security Policy
Controlling Application”) applications will work. The rest of this chapter
documents these working (or mostly working) features.

962 o c i w e b . c o m

T A O S e c u r i t y

Why is CORBA Security changing? In the original specification for the
CORBA Security Service (OMG Document security/00-12-02), the OMG
defined a model for security by specifying sets of features required for
security. These feature sets were further divided into feature packages (see
Table 27-1). The specification also defined IDL interfaces (effectively, APIs)
for accessing these various feature sets from within applications.

One of the more critical feature packages was “Common Secure
Interoperability,” or “CSI,” which was supposed to allow different vendors’
implementations of security to interoperate, so that a secure CORBA
application need not be deployed in an ORB-homogenous environment.
Unfortunately, as implementations for CSI emerged and evolved (one of these
implementations was in TAO), developers recognized that the original CSI
package merely addressed the transport layer and was inadequate for truly
interoperable security systems. Thus, the OMG augmented this feature
package with CSIv2 (Chapter 10 of CORBA 3.1, Part 2), which layers atop
CSIv1 and communicates privileges under which requests are made.

As developers progressed on implementing CSIv2, they also realized that the
existing APIs (IDL modules SecurityLevel1 and SecurityLevel2) were
insufficient to use with CSIv2. Thus, as one of the principal members of the
CSIv2 task force developed a Java implementation of CORBA Security, he
concurrently created SecurityLevel3, an API which, in the developer’s
words, is “much more robust...than OMG’s Security Level 2 API, and has
well defined semantics.” We anticipate that SecurityLevel3 will eventually
be pushed into an official OMG specification. Also, recognizing the
deficiencies of the Security Levels 1 and 2 APIs, developers of other security
implementations for other ORBs began implementing CSIv2 under Security
Level 3 APIs. TAO contains one of those implementations.

The TAO 1.6a release remains between these implementations. The newer
SecurityLevel3 module replaces SecurityLevel1 and
SecurityLevel2, and there is no design for coexistence. Although many in
the TAO community seem to be interested in using security features, few have
shown interest in sponsoring research or development activity in that area.
That, of course, means that development moves forward on a time-permitting
basis from volunteers who already have other sponsored work.

TAO’s security implementation will continue to grow and improve, hopefully
accelerated by active sponsorship from the community-at-large.

o c i w e b . c o m 963

2 7 . 1 I n t r o d u c t i o n

27.1 Introduction

This chapter introduces you to various features of TAO’s Security Service:

• The OMG’s Security Service Specification.

• Modern cryptographic techniques.

• The Secure Sockets Layer (SSL) protocol.

• TAO’s fundamental capabilities with respect to distributed object system
security.

Since we cannot provide a complete treatment of security in a single chapter,
we have not attempted it. Ultimately, you are responsible for determining the
security needs of your system, the suitability of TAO’s feature set to those
needs, and the correctness of the implementations in that context. This chapter
provides guidance on how to use many of the features available in TAO, but
not all.

We have chosen code examples that are faithful to the specification and to
TAO’s design objectives. We have chosen not to present examples that
demonstrate how to circumvent known issues and problems because such
examples would too quickly become irrelevant; for this sort of information we
refer you to the release notes included with each source distribution.

27.1.1 Road Map
In this chapter, we explore the topic of security from the perspective of an
application with security needs, as well as from the perspective of the features
available in TAO’s implementation. While the chapter is designed to be
consumed as a whole, you may find it beneficial to read certain sections
independently.

If you want to learn more about...

• background information required to make good decisions about using
TAO’s security service, Sections 27.2, “Introduction to CORBA Security”
and 27.3, “Secure Sockets Layer Protocol” provide overviews on core
concepts in CORBA Security and the core technologies in SSL, the
security technology used in TAO’s implementation.

964 o c i w e b . c o m

T A O S e c u r i t y

• dealing with certificates required for using SSL, Section 27.4, “Working
with Certificates” discusses the pragmatics of managing certificates for
use with SSL and TAO’s security service.

• building/compiling TAO’s security service implementation with
OpenSSL, look at Section 27.5, “Building ACE and TAO Security
Libraries.”

• code that uses CORBA Security features, Sections 27.6, “Security
Unaware Application” and 27.7, “Security Policy Controlling
Application” both give simple examples of applications at various levels
of participation in security. Full source code for the examples in this
chapter can be found in the TAO source code distribution in
$TAO_ROOT/orbsvcs/DevGuideExamples/Security and
subdirectories therein.

Please note that in addition to this chapter, in order to fully leverage the power
of TAO’s Security Service implementation, you must understand its
foundation, the OMG’s Security Service version 1.8 specification (OMG
Document formal/02-03-11).

This chapter presents capabilities that allow an application to participate at
two levels: security unaware and security policy controlling. The chapter
opens with an introduction to the security service specification. This is
followed by an overview of the SSL protocol and a summary of the associated
security technology concepts. We then explain how to build the ACE and
TAO security libraries, how to configure the ORB’s security services, and
how to work with certificates used by SSL. The chapter closes with working
examples of TAO’s security features and a summary of the ORB
configuration options related to security.

27.2 Introduction to CORBA Security

The OMG’s Security Service version 1.8 specification (OMG Document
formal/02-03-11) is a comprehensive treatment of security as it relates to
distributed object systems and applications. This specification defines a robust
feature set and architecture for the implementation of secure, CORBA-based,
distributed object systems. The specification:

• Summarizes potential threats faced by a distributed object system.

o c i w e b . c o m 965

2 7 . 2 I n t r o d u c t i o n t o C O R B A S e c u r i t y

• Identifies issues arising from the nature of distributed object systems.

• Describes an abstract Security Reference Model.

• Describes an Implementation Architecture.

• Defines interfaces for use by object system implementers, application
developers, and security administrators.

The specification does not, however, describe any specific security
technology. Its purpose is to identify the essential features of a secure
distributed object system and describe an architecture that can be integrated
with current security technologies, such as the Secure Sockets Layer Protocol
(SSL), and new security technologies that may emerge in the future.

Allowing application developers to choose the extent to which an application
participates in protecting itself is an essential aspect of CORBA Security.
There are three levels of participation for an application:

1. None: an application may rely completely on the enclosing object system
for its protection, remaining ignorant of the existence of any security.

2. Policy configuration: an application can set security policies that control
the protective measures employed by the object system. However, that
application is not obligated to take an active role in the enforcement of
that policy, deferring enforcement to the object system itself.

3. Policy configuration and context inspection: an application can take an
active role by setting policy and by using security context information,
obtained at run time, to control access to and use of its services.

This section summarizes essential aspects of the specification:

• The security reference model.

• Feature packages.

• The implementation architecture.

Other aspects of the specification, such as the various application developer
interfaces, are discussed in the various examples.

The reference model sets the overall context for CORBA Security. Distributed
object systems are deployed under a variety of circumstances and in numerous
application domains. Consequently, a distributed object technology, such as
CORBA, may be called upon to satisfy a broad range of requirements. The
security reference model’s purpose is to define a feature set that satisfies the
potential security needs of distributed object systems without specifying a

966 o c i w e b . c o m

T A O S e c u r i t y

feature solution for any specific system. Some features are purely functional,
meant to address the needs of secure applications. Other features are
architectural in nature, meant to give object system implementers flexibility
when selecting security technology and implementing security services.

The features described by the reference model are organized into a number of
feature packages. Object system implementers balance development costs,
system capability, and feature compliance by choosing among the various
feature packages.

The implementation architecture describes a means of realizing the reference
model in a way that will satisfy the needs of various user communities
including:

• End users.

• Application developers.

• System administrators and security managers.

• Object system implementers.

The architecture defines the responsibilities of the various components that
must cooperatively realize the features set forth by the reference model and
establishes the structural boundaries that separate these components.

27.2.1 CORBA Security Reference Model
The reference model defines a set of features that may be needed by an
arbitrary distributed object system. No single set of features is appropriate for
all systems. Instead, the feature set summarized here forms a collection of
resources from which a system can choose based on its needs.

27.2.1.1 “Principal” Identification and Authentication
Each human user or independently operating software entity, referred to as a
principal, that attempts to gain access to or use a secure system shall first
establish the right to do so (the CORBA Security concept of principal is
completely different from the GIOP 1.0 principal; we only speak of the
CORBA Security concept in this chapter). A principal establishes their right to
use a secure system by presenting an identity, a claim of “who they are,” and
evidence to justify their claim, proof that “they are who they claim to be.”
Each principal has at least one identity but may have multiple identities.

o c i w e b . c o m 967

2 7 . 2 I n t r o d u c t i o n t o C O R B A S e c u r i t y

For example, a principal may have an identity used to gain access to the
system, called an access identity, and a separate identity to represent that same
principal in system audit records, called an audit identity. A principal may
have other privileges that further quantify their rights within the system.
Identities are referred to as identity attributes. Privileges are referred to as
privilege attributes.

Various mechanisms may be used to identify and authenticate principals. The
mechanism used by a particular system may be an integral component but this
is not necessarily the case. A secure system may rely on external mechanisms,
such as operating system login procedures, to identify and authenticate
principals. Most importantly, the model does not define any specific means of
identifying and authenticating a principal, and leaves this to be defined by
other parties, such as the designer for a specific implementation of CORBA
Security, or even an additional OMG specification.

27.2.1.2 Delegation of Attributes
Consider the scenario where object A, in the course of executing an operation
on behalf of client C, needs to invoke an operation on another object Q. In an

unsecure system, this is neither unusual, nor does it pose a problem. However,
in a secured system where C->A is a secure invocation, there is a question
regarding which credentials A should use when performing its invocation on
Q.

A target object (such as A) acting as an intermediary between a principal (such
as C) that initiates an operation, called an initiating or originating principal,
and another object (such as Q) may present its own identity and privilege
attributes or it may present those of the initiating principal. In the first case,
the intermediary object assumes the role of originating principal with respect
to the new target object, somewhat akin to how a deputy temporarily assumes
the authority of a sheriff. In the second case, the intermediary object actually

A QC

968 o c i w e b . c o m

T A O S e c u r i t y

mediates between the originating principal and the new target object. Security
policies enforced at the new target are based on the identity and privilege
attributes presented by the intermediate object.

Simple delegation allows any intermediate object to present the originating
principal’s identity and privilege attributes to subsequent targets without
restriction. An intermediate object can effectively impersonate the originating
principal. Other forms of delegation allow the originating principal to control
the extent to which their identity and privilege attributes can be delegated by
intermediate objects.

27.2.1.3 Non-Repudiation
A user of a secure system, including a human user, a software component
acting on behalf of a human user, and a software component acting
independently, shall be prevented from denying their actions within the
system. A secure system may generate and record irrefutable evidence of
principals’ activities to prevent any principal from denying their actions. This
capability requires application level participation and so cannot be provided to
security unaware applications.

27.2.1.4 Auditing
Users of a secure system shall be accountable for their actions. Secure systems
make and keep records of actions that are relevant to system security. At the
system level, these events may include authentication of a principal, a change
in security policy, an operation invocation, and so forth. Application level
events may also be recorded depending upon an application’s needs. Event
records support system security audits by associating each security relevant
event with an initiating principal. Audit policies may be needed to restrict the
volume of recorded events because the number of security relevant events
may be quite large.

27.2.1.5 Transparent Protection
A secure system shall automatically protect all applications, according to
applicable security policy, including those applications that choose to remain
unaware of security policies and their enforcement. Applications need not take
an active role in the specification or enforcement of security policies.
Moreover, applications shall not accidentally circumvent security policy
through ordinary use of system services. For example, an application should

o c i w e b . c o m 969

2 7 . 2 I n t r o d u c t i o n t o C O R B A S e c u r i t y

not be able to circumvent security policy, intentionally or unintentionally,
merely by invoking an operation via an object reference.

27.2.1.6 Application Control of Security Policy
An application may alter security policy. A secure system shall enforce
default security policies unless and until those policies are modified by an
application. Subsequently, a secure system shall enforce the security policies
specified by the application. An application that modifies security policy is
not, however, obligated to enforce such policy. The burden of policy
enforcement lies with the object system. Of course, modifying a security
policy constitutes use of the system. Therefore, any application attempting to
modify security policy must have the authority to do so.

27.2.1.7 Application Enforcement of Security Policy
Applications may take an active part in the enforcement of security policy.
This is particularly true if the object system lacks the mechanisms to enforce a
desired policy. A principal’s identity and privilege attributes, represented by a
credential, are accessible, at the target, during the course of an invocation. An
application may use a principal’s attributes, obtained from the credential, to
manage that principal’s use of the system.

27.2.1.8 Secure Messaging
Principals invoking operations from remote systems shall be subject to
identification and authentication. During a secure invocation, secure object
systems first establish a secure association between the client and target. This
association includes sufficient context information to enable security policy
enforcement, throughout the invocation, by client and server ORBs. Secure
systems shall therefore provide a means for identifying and authenticating any
principal invoking an operation from a remote system. Moreover, messages
exchanged between systems within the context of a secure association may be
protected from unauthorized disclosure and tampering.

27.2.1.9 Administration
A secure system shall provide a means for administering security policies.
Objects are organized into domains for the purpose of defining and
administering security policies. Policies are defined with respect to a domain.

970 o c i w e b . c o m

T A O S e c u r i t y

Polices are applied to objects based upon the domain or domains of which
they are a member.

27.2.2 CORBA Security Feature Packages
Note This section refers to the now-obsolete SecurityLevel1 and SecurityLevel2

modules (see “Preface” on page -961), but the information contained herein
remains relevant to the discussion of the general features demanded by the
CORBA Security Specification.

As mentioned in 27.2.1, no single set of features is appropriate for all systems,
just as there’s not a single set of features available on a particular model car.
The specification permits leeway for an implementation of CORBA Security
to provide only those features of the reference model (described in 27.2.1.1
through 27.2.1.9) it deems relevant to its target audience. However, for
convenience, the specification defines certain “feature packages” with
common groupings of reference model features. Feature packaging permits
implementations with varying degrees of conformance to the specification.

Table 27-1 CORBA Security Feature Package Quick Reference

Package Type Package Name
In
TAO? What’s this? Section

Main

Level 1
Simple, basic security options,
such as secure communication.
Defined in Security and
SecurityLevel1. 27.2.2.1

Level 2 partial
Advanced control on security.
Defined in SecurityAdmin
and SecurityLevel2.

Optional Non-Repudiation
Supports generation of
non-repudiation evidence.
Defined in NRModule.

27.2.2.2

Security
Replaceability

ORB Services partial
Security implementation
provided via interceptors and
not in the ORB Core.

27.2.2.3

Security Services
Security implementation
provided external to ORB, but
not via interceptors.

o c i w e b . c o m 971

2 7 . 2 I n t r o d u c t i o n t o C O R B A S e c u r i t y

Common Secure
Interoperability

CSI 0
Security policies based on
identity only. No privileges
attributes transmitted or
support for delegation.

27.2.2.4
CSI 1

Security policies based on
identity only. No privilege
attributes transmitted.
Delegation optional, but
unavailable in TAO.

CSI 2
Security policies based on
identity and privileges.
Privilege attributes
transmitted. Delegation
required, and is
application-controlled.

Interoperability

SECIOP ORB supports SECIOP. 27.2.2.5

SECIOP +
DCE-CIOP ORB supports SECIOP and

DCE-CIOP. 27.2.2.6

Security
Mechanism

SPKM/GSSAPI
Public-key protocol allowing
identity-based policies. No
delegation support.
Requires SECIOP.

27.2.2.7

GSS Kerberos
Secret-key protocol allowing
identity--based policies.
Unrestricted delegation
supported.
Requires SECIOP.

CSI ECMA
Secret- and public-key
protocol allowing identity- and
privilege-based policies.
Controlled delegation
supported.
Requires SECIOP.

SSL
Public-key protocol allowing
identity-based policies. No
delegation support.
Cannot use SECIOP.

Table 27-1 CORBA Security Feature Package Quick Reference

Package Type Package Name
In
TAO? What’s this? Section

972 o c i w e b . c o m

T A O S e c u r i t y

27.2.2.1 Main Functionality Packages

Level 1
This package provides the most basic set of security capabilities. Security
features are provided to all applications whether or not they participate in
security policy enforcement. Principals are identified and authenticated
although not necessarily by the ORB.

The ORB provides for secure communication between client and server.
Secure communications features include establishing trust between client and
server and protecting messages from disclosure and tampering. Appropriate
access controls are applied to all secure invocations.

Interfaces and data types are defined in the Security and SecurityLevel1
modules.

Other capabilities and constraints include:

• An intermediate object can delegate the originating principal’s credentials
or present its own credentials to subsequent targets.

• Applications participating in security policy enforcement can access
principals’ credentials via the operation
SecurityLevel1::Current::get_attributes() (discussed later in
this chapter). Attribute values obtained via this operation may then be
used to control access to and use of the system, at the invocation level, and
to capture information for audit events.

• Level 1 provides control of security policy via the operation
CORBA::Object::set_policy_overrides() (also discussed later in
this chapter).

• Security administration interfaces are omitted at Level 1.

• Other feature packages, including the Optional and Security
Replaceability packages may also be supported at Level 1.

Level 2
This package provides additional interfaces for accessing principals’
credentials and additional capabilities for security policy control and
administration.

Interfaces and data types are defined in the SecurityAdmin and
SecurityLevel2 modules in addition to the Level 1 modules.

o c i w e b . c o m 973

2 7 . 2 I n t r o d u c t i o n t o C O R B A S e c u r i t y

27.2.2.2 Optional Packages

Non-repudiation
This is the only optional package. This package provides features and
interfaces to support the generation of non-repudiation evidence.

Interfaces and data types are defined in the NRModule.

Note TAO does not support non-repudiation, so this package is not discussed in this
chapter.

27.2.2.3 Security Replaceability Packages
There are many ways to integrate a CORBA Security implementation with an
ORB. An obvious way is to tightly couple the two such that the ORB
implementation does not stand independent of the Security implementation.
However, if more flexibility is desired perhaps because the provider of the
ORB implementation is different from the provider of the Security
implementation, there must be looser coupling.

The specification provides two standard packages to enable looser coupling at
different levels. These packages specify whether or not the ORB’s security
services can be replaced and, if so, the mechanism for incorporating additional
or alternative services. The specification does not define how the replacement
actually occurs, e.g., loading shared libraries, recompilation of source, etc.;
these details are left open to the ORB implementer.

The two specified packages are:

• ORB Services Replaceability: the ORB invokes security services via
specified interceptors and in a specified sequence. The use of other
specific interfaces, such as CORBA::Object::get_policy(), is
required in the interceptors’ implementation. This places all security
service code outside of the ORB core.

• Security Services Replaceability: the ORB invokes security services via
specified replaceability interfaces. The use of interceptors is optional.
Unlike the ORB Services Replaceability Package, this package allows
implementation of security services without specific knowledge of how
the ORB works. It is similar to ORB Services Replaceability in that it
positions all security service code outside of the ORB core.

974 o c i w e b . c o m

T A O S e c u r i t y

27.2.2.4 Common Secure Interoperability (CSI) Packages
These packages classify an ORB’s capabilities regarding security policy
definition and the delegation of credentials. Classifying capabilities in this
manner allows ORBs to make decisions regarding peer capabilities when
establishing secure associations and handling secure invocations.

• CSI 0: Security policies are based on identity attributes only. Privilege
attributes are not transmitted from client to server. Delegation of
credentials is not supported.

• CSI 1: Security policies are based on identity attributes only. Privilege
attributes are not transmitted from client to server. Delegation of
credentials, if supported, is unrestricted. A principal cannot control
whether or not an intermediary object delegates its credentials nor the
extent to which credentials are delegated.

• CSI 2: Security policies are based on identity and privilege attributes.
Privilege attributes are transmitted from client to server along with
identity attributes. Delegation of credentials is supported. A principal can
control whether or not an intermediary object delegates its credentials and,
when permitted, the extent to which delegation occurs.

27.2.2.5 SECIOP Interoperability Package
This package specifies that the ORB generates and uses security information
in IORs and exchanges messages with other ORB’s via the SECIOP protocol
using GIOP/IIOP (with specified security enhancements).

27.2.2.6 SECIOP + DCE-CIOP Interoperability
An ORB that realizes this package supports SECIOP over GIOP/IIOP and
secure communications, based on DCE security services, via the DCE-CIOP
protocol. ORBs that support this package meet all requirements for standard
secure interoperability.

27.2.2.7 Security Mechanism Packages

• Simple Public Key GSS-API Mechanism (SPKM) Protocol. This
protocol allows identity based policies, without delegation, using
public-key cryptography. (Public key cryptography techniques are

o c i w e b . c o m 975

2 7 . 2 I n t r o d u c t i o n t o C O R B A S e c u r i t y

described later in this chapter.) This protocol requires the SECIOP
extensions to the IIOP protocol.

• Generic Security Service (GSS) Kerberos Protocol. This protocol
allows identity-based policies with unrestricted delegation using secret
key cryptography. This protocol also requires the SECIOP extensions to
IIOP.

• CSI ECMA Protocol. This protocol supports identity- and
privilege-based security policies with controlled delegation. Secret and
public key cryptography techniques are used in this protocol. This
protocol also requires the SECIOP extensions to IIOP.

• Secure Sockets Layer (SSL) Protocol. SSL allows identity-based
policies without delegation. SSL is independent of GIOP/IIOP and so
does not require SECIOP extensions to IIOP.

Note TAO’s security features are based on SSL.

27.2.3 CORBA Security Implementation Architecture
The specification addresses the security architecture in four respects:

1. Basic environmental protection and communications.

2. Application components.

3. ORB Core, ORB Services, and Communications Protocols.

4. Security Technology.

27.2.3.1 Basic Environmental Protection and Communications
Basic environmental protection refers to matters such as the host platform, the
operating system, the physical plant, and so forth, that are outside the scope of

976 o c i w e b . c o m

T A O S e c u r i t y

any software system. As shown in Figure 27-1, a secure system operates
within a processing environment.

The processing environment consists of the host, the operating system, and
other system and application software. A secure system often depends upon
the processing environment’s security in one way or another. For example, a
secure system may rely on the processing environment to identify and
authenticate users by trusting user credentials obtained from or provided by
the processing environment.

Every processing environment exists within a physical environment. Different
physical environments offer varying degrees of protection. Consider the
different levels of protection offered by:

• A street-side kiosk.

• A home office.

• An ordinary office building.

• An office protected by an electronic access control system.

• A secure room protected by armed security guards and multiple electronic
access control systems.

Figure 27-1 System Environments

o c i w e b . c o m 977

2 7 . 2 I n t r o d u c t i o n t o C O R B A S e c u r i t y

A street-side kiosk environment offers little if any protection. An isolated
room surrounded by armed guards and multiple access control systems offers
a great deal of protection. In each of the examples cited here, the protection
provided by the physical environment is an important factor to consider when
choosing a processing environment. In turn, the degree of protection afforded
by a processing environment is an important factor in the design of a secure
software system.

Most distributed systems depend upon interactions between components that
are housed by separate processing environments. Many distributed systems
involve interactions among multiple components housed by separate
processing environments that are located in separate physical environments.
Secure communications facilities offer protection from disclosure of and
tampering with messages exchanged between systems using those facilities.
However, many systems are deployed in circumstances where secure
communications facilities are impractical or simply unavailable. Therefore, a
secure system may employ cryptographic technology for the express purpose
of protecting inter-process communications.

Compromising a secure system may require penetration of the physical and
processing environments, penetration of the communications facilities, or
both. Furthermore, users who are authorized to enter the physical
environment, access the processing environment, and use a system may
compromise the system accidentally or perhaps deliberately. Consequently, in
addition to protective measures taken by the system itself, action is also
required to mitigate threats to the physical and processing environments. The
CORBA security architecture is limited to the needs of software systems. It
does not address the issues related to processing environments, physical
environments, or secure communications facilities.

27.2.3.2 Security Architecture
Figure 27-2 depicts the fundamental relationships among:

• Application layer components.

• The ORB Core.

• ORB Services, including security services (note that “ORB Services” are
not equivalent to “CORBA Services”, such as CosNaming).

• Communications protocols.

978 o c i w e b . c o m

T A O S e c u r i t y

• Security technology components

The ORB Core provides the application layer, depicted here by CLIENT, with
a coherent representation of a distributed object system. From the
application’s perspective, a client object simply invokes an operation on a
target object via an object reference. The ORB Core arranges for
communications between the client and the target objects as needed to carry
out the requested operation. The ORB Core also has the responsibility to
invoke ORB Services as each request is processed. This responsibility
includes invoking security services as specified by applicable security policy.

When message protection policy requires message integrity or confidentiality,
the ORB uses a secure communications protocol to establish trust with its
peers, and to protect messages exchanged with its peers. The separation of the

Figure 27-2 Security Architecture

o c i w e b . c o m 979

2 7 . 2 I n t r o d u c t i o n t o C O R B A S e c u r i t y

ORB core, ORB services, and communications protocols is not evident to the
application layer. The different policies that apply to an object reference
control the way the ORB processes an invocation, but not the way a client
makes an invocation.

When a client invokes an operation on an object reference, the client-side
ORB selects the security services applied at the client. The server-side ORB
selects the security services applied at the target. If the policies or capabilities
at the client and target are inconsistent or incompatible, the server may
negotiate a different set of capabilities with the client prior to processing the
request or may refuse to process the request altogether.

Figure 27-3 Security Aware Application

980 o c i w e b . c o m

T A O S e c u r i t y

A security aware application, i.e., an application that controls security policy
or participates in the application of security policy, may invoke security
services directly as depicted in Figure 27-3.

Security aware applications can alter security policy via
CORBA::Object::set_policy_overrides() and obtain references to
security services via CORBA::ORB::resolve_initial_references().

Note that the security architecture maintains a clear distinction between:

• Security services and the underlying security technology.

• Secure protocols and the supporting security technology.

This allows ORB implementers to choose a security technology most
appropriate to their needs and their target audience. It also affords an
opportunity for growth as security technology evolves and new security
technologies emerge. The specification does, however, address the integration
of specific security technology, such as SSL, with the ORB and how that
effects the ORB’s compliance with the specification.

It is also important to be aware that the architecture does not specify interfaces
for applications to access the security technology used by the ORB. This does
not prohibit an application’s use of such technology. It simply places the
responsibility for such interfaces outside the scope of the ORB.

27.2.3.3 Security Context Information
Before a client can invoke an operation on a target object, a security
association must be established between the client and the target object
through a specific object reference. This association is sometimes referred to
as the binding between the client and the target as shown in Figure 27-4.The
ORB is responsible for creating and managing security associations. A
security association’s lifetime may not exceed that of the process in which it
was created although it may be shorter. Security policy and other
environmental factors specify how the ORB creates secure associations.

Context information specific to the client’s use of the object reference is
associated with the binding and represented at both the client and target. Some
of this context information can be accessed at the target via security services

o c i w e b . c o m 981

2 7 . 2 I n t r o d u c t i o n t o C O R B A S e c u r i t y

objects such as the Current objects. However, this information is not
accessible by the client.

27.2.3.4 TAO’s Security Service Architecture

Note Some figures and text in this section refer to SecurityLevel1 and
SecurityLevel2 Current objects. For reasons explained in the Preface, these
do not exist in TAO 1.6a. However, we leave them in this sections’ discussion
as the concept remains relevant in SecurityLevel3.

TAO’s security service architecture, depicted in Figure 27-5, is consistent
with the OMG’s specification.

Figure 27-4 Security Binding

982 o c i w e b . c o m

T A O S e c u r i t y

TAO employs SSL as the underlying security technology. SSLIOP is a secure
communications protocol that uses SSL to establish secure associations and to
provide message protection.

Security context information is made available at the target via several
objects:

• SecurityLevel1::Current

• SecurityLevel2::Current

• SSLIOP::Current

Figure 27-5 TAO’s Security Service Architecture

o c i w e b . c o m 983

2 7 . 3 S e c u r e S o c k e t s L a y e r P r o t o c o l

References to these objects are obtained via
CORBA::ORB::resolve_initial_references().

Note SSLIOP::Current is a TAO-specific extension unaffected by the Security
Level changes.

Security policies that control the establishment of trust between client and
target, and the level of message protection may be set by an application via
CORBA::Object::set_policy_overrides().

27.3 Secure Sockets Layer Protocol

SSL supports secure communications between two endpoints, including peer
authentication, message integrity, and message confidentiality. Authentication
guarantees that a peer’s identity is genuine. Message integrity guarantees that
messages cannot be modified in transit without detection. Message
confidentiality guarantees that only a message’s intended recipient can read it.

SSL uses both public-key and secret-key cryptography techniques. Public-key
techniques protect information exchanged between client and server to
establish a secure session. Secret-key cryptography protects messages
exchanged after a secure session is established. Public-key cryptography
provides better authentication and key exchange mechanisms than secret-key
cryptography, but is more computationally intensive and therefore less
efficient. Secret-key cryptography is better suited to bulk message protection.

There are three versions of SSL, referred to as SSLv1, SSLv2, and SSLv3.
There is also a closely-related specification, Transport Layer Security (TLS),
which is based upon SSLv3 and similar in capability. The difference between
SSL and TLS is that TLS is a standard from the Internet Engineering Task
Force, while SSL is a de facto standard originally defined, published, and
implemented by Netscape Corporation. Throughout this chapter, when we
refer to SSL we are referring to SSLv3, but the discussions are applicable to
TLS as well. OpenSSL, the SSL implementation used by TAO, supports both
SSLv3 and TLS.

This section opens with a conceptual introduction to secret-key and public-key
cryptography. It goes on to describe SSL’s architecture and its various
protocol elements. The section concludes with an example SSL session. This

984 o c i w e b . c o m

T A O S e c u r i t y

material is introductory only. It is not a complete treatment of cryptography or
SSL. It provides conceptual support for topics covered throughout the
remainder of this chapter. If you are already familiar with these topics, you
can skip ahead to 27.5.

27.3.1 Secret-Key Cryptography
Secret-key cryptography, sometimes called symmetric encryption, is based on
a single key that is known by a message’s originator and its receiver. As
shown in Figure 27-6, a message’s originator converts the message from a
legible form, called plaintext, to an illegible form, called ciphertext, using the
secret key and a mathematical algorithm. The message’s receiver uses the
same key and a companion algorithm to convert the ciphertext into the
original plaintext. A third party attempting to eavesdrop on the exchange
between originator and receiver cannot read the message because it is
encrypted.

Secret-key cryptography provides message confidentiality only. There is no
inherent mechanism to detect that a message was modified in transit.
Secret-key technology also carries with it the problem of key exchange. A
message originator cannot make a message private unless the message’s
receiver knows the key. Therefore, the key must be exchanged in advance,
preferably using a communications medium other than that used to exchange
encrypted messages.

Some secure protocols, Kerberos for example, resolve the key exchange
problem using a third-party system called a key server. A key server knows
the secret key of each system that it supports. A message originator first asks
the key server for a key and identifies the intended recipient. The key server
sends the message originator a ticket that contains a new key and a message
for the intended recipient. The key server encrypts the enclosed message,
which also contains the new key, using the intended recipient's key. The key

Figure 27-6 Symmetric Encryption/Decryption

o c i w e b . c o m 985

2 7 . 3 S e c u r e S o c k e t s L a y e r P r o t o c o l

server encrypts the ticket using the message originator's key. The message
originator now has the new key and a private means of conveying it to the
intended recipient.

27.3.2 Public-Key Cryptography
Public-key cryptography uses a different encryption scheme than secret-key
cryptography. Public-key cryptography also includes additional mechanisms
that provide for message integrity, identity authentication, and key exchange
at run time. The following sections describe both the encryption method and
additional capabilities offered by public-key cryptography.

27.3.2.1 Asymmetric Encryption
Public-key cryptography is based on asymmetric encryption, which uses two
related keys called a key-pair. As shown in Figure 27-7, data encrypted using
one key can only be deciphered using its companion key and vice versa.

A key-pair’s owner makes one key public and keeps the other key private. A
message encrypted using a party’s public key can be decrypted only with that
party’s private key. A message originator can send a private message by
encrypting it using the receiver’s public key. Only a holder of the receiver’s
private key can read such a message. A message originator can also encrypt a
message using its private key. This does not prevent disclosure of the
message, because any party holding the originator’s public key can read it, but
it deters tampering with the message. Only a holder of the originator’s private
key can create a message that deciphers correctly using the corresponding
public key.

Figure 27-7 Asymmetric Encryption/Decryption

986 o c i w e b . c o m

T A O S e c u r i t y

Message Integrity
Message integrity is provided through the use of message digests. A message
digest is an algorithm that yields a fixed length string from an arbitrary length
message. Ideally, a digest would be unique based on the input message, but
this is not practical. Therefore, most digest algorithms are devised so the
probability of two input messages producing the same digest is very low.

Since more than one input message can yield the same digest, it’s not possible
to derive the input message from the digest alone. Although not unique to a
particular message, a message digest can effectively serve as a message’s
fingerprint when it is enclosed with the message from which it was generated.
A message’s receiver can test the message’s integrity by computing a digest
and comparing it with the digest that was enclosed with the message. If the
two digests are identical, the message was received intact. Otherwise, the
message was modified in transit and is not trustworthy.

In practice, message digests are used to compute message authentication
codes and to create digital signatures. A message authentication code (MAC)
is computed using a message and a key. MACs have the same properties as
message digests:

• They cannot be deciphered to discover the original message or the key.

• It is hard to produce two messages that yield the same MAC.

• They can be used to verify a message’s integrity.

A digital signature confirms the authenticity of a message’s originator. A
digital signature is created by encrypting a message’s digest (or MAC) using
the message originator’s private key. The message’s receiver first obtains the
digest using the originator’s public key and then compares it with a locally
generated digest. If the two digests are comparable, it proves that the public
key’s owner sent the message and that the message was received intact.
Moreover, the signature is applicable only to a single message; it cannot be
used to forge other messages.

Identity Binding and Certificates
Public-key cryptography relies on the association between a key-pair’s public
and private components to verify identities. A message that is successfully
deciphered using a known public key implies that the originator holds the
private key, and therefore that the message was originated by the public key’s

o c i w e b . c o m 987

2 7 . 3 S e c u r e S o c k e t s L a y e r P r o t o c o l

owner. For this reason, it is crucial to bind a key-pair’s owner with the
owner’s identity.

A certificate binds a key-pair holder to his public key. To obtain a certificate,
an individual presents substantive proof of their identity to a certificate issuing
authority. The certificate authority (CA), once satisfied of the requestor’s
identity, creates and signs an electronic document containing:

• The certificate holder’s identity.

• The certificate holder’s public key.

• The certificate issuer’s identity.

Identities are represented by a distinguished name, a hierarchical naming
structure defined by the X.509 specification that gives each entity a unique
identifier. The digital signature affixed to a certificate attests to the issuing
authority’s identity. A certificate holder offers their certificate as proof of his
identity and a means of conveying his public key.

Certificate Authorities
A certificate is accepted as genuine if it is signed by a trusted certificate
authority. A certificate is authenticated by obtaining the issuing authority’s
public key, from the issuing authority’s own certificate, and using it to
decipher the signature. If the signature is authentic, the indicated authority
issued the certificate. If the system trusts that issuing authority, then the
certificate is considered authentic and the owner’s identity accepted.
Otherwise, the issuing authority’s certificate is authenticated using the same
procedure. This recursive process results in a chain of certificates, all of which
are subject to acceptance or rejection.

Certificate authorities vouch for the identity of others. This includes situations
where one certificate authority vouches for another. However, as a practical
matter, some certificate authorities are not subject to authentication. These
authorities vouch for themselves and sign their own certificates. When a
self-signed certificate is encountered during the authentication process, the
process has reached the decision point. If the system trusts the authority that
issued the self-signed certificate, it accepts the entire chain of certificates.
Otherwise, it rejects them all.

27.3.3 SSL Architecture
SSL, depicted in Figure 27-8, consists of four separate protocols:

988 o c i w e b . c o m

T A O S e c u r i t y

• The Handshake Protocol.

• The Change Cipher Spec Protocol.

• The Alert Protocol.

• The Record Protocol.

The Handshake Protocol establishes a secure session between two endpoints.
During the process, the handshake protocol:

• Negotiates the protocol version.

• Negotiates the cipher suite, the set of cryptographic algorithms used
during message exchange.

• Exchanges keys.

• Authenticates peers during the handshake process.

The record protocol processes packets, according to the cipher suite, as they
move between upper layer protocols and the transport layer. The alert protocol
reports important events such as pending connection closure and processing
errors. The change cipher spec protocol signals a change in the current cipher
suite.

SSL depends upon a lower level transport protocol to provide reliable message
exchange between endpoints. SSL does not have intrinsic support for transport
error detection and correction. TCP/IP is the most commonly used transport
protocol, although other protocols are sometimes used. TAO has a pluggable
protocol called SSLIOP that encapsulates SSL over TCP/IP.

The following sections describe each protocol’s role and present an example
SSL session.

Figure 27-8 SSL Architecture

o c i w e b . c o m 989

2 7 . 3 S e c u r e S o c k e t s L a y e r P r o t o c o l

27.3.3.1 Handshake Protocol
The handshake protocol’s role is to:

• Negotiate a protocol version.

• Negotiate a cipher suite.

• Authenticate peers.

• Establish seed data used to generate secret keys.

This section describes essential aspects of the process. The example session
presented later contains a detailed sequence diagram.

Client and server negotiations take the form of a client request followed by the
server’s selection. The client indicates the highest protocol version it is
capable of supporting and the server replies with the selected version. The
client sends the server a list of the cipher suites it is capable of supporting,
listing its preference first on the list, and the server responds with the selected
cipher suite. There are no rules that govern the server’s selection mechanism;
this is left to the implementers.

A cipher suite defines a combination of server authentication method, key
exchange method, digest algorithm, and bulk encryption algorithm. Cipher
suites are defined by the protocol specification, they are not arbitrary. A
session’s cipher suite informs the record protocol what protective measures to
apply to the packet stream between client and server. It is initially empty,
which indicates that no protective measures are applied. However, critical
information exchanged during negotiations between client and server is
protected using public-key cryptography techniques and therefore confidential
even when the cipher suite is empty.

To establish the bulk encryption keys the client and server first exchange two
chunks of random data. The client generates a chunk and sends it to the server,
and vice versa. Next, the client computes the pre-master secret, a new value
based on both random data chunks, and sends it to the server. Client and server
then compute the various encryption keys using both chunks of random data
and the pre-master secret. The resulting keys do not need to be exchanged
since client and server have the same seed data and use the same algorithms.

To protect against certain kinds of attack, client and server exchange MACs
that are computed over all messages exchanged during the handshake
protocol. This guarantees that none of the messages exchanged during the
handshake process can be altered without detection.

990 o c i w e b . c o m

T A O S e c u r i t y

27.3.3.2 Record Protocol
The record protocol applies protective measures to packets prior to their
transmission and reverses the process for received packets. Figure 27-9
depicts the downstream process, the protection of application packets moving
toward the transport layer.

The protocol first re-organizes application layer packets into limited-size
fragments. Packet boundaries are not preserved. A packet may be split into
multiple fragments or combined with other packets to form a single fragment.
A MAC is computed and appended to each fragment. The fragments are then
encrypted, a header is prefixed, and the resulting record is passed to the
transport layer.

Figure 27-9 Downstream Packet Processing

o c i w e b . c o m 991

2 7 . 3 S e c u r e S o c k e t s L a y e r P r o t o c o l

Records moving up from the transport layer, depicted in Figure 27-10, are
decrypted, authenticated, and passed to the appropriate upper layer protocol.

The record protocol does not differentiate between upper layer protocols with
respect to record protection. Protective measures, when in force, are applied to
all packets including those associated with one of the other SSL protocols.

The SSL specification allows records to be compressed prior to the encryption
step but does not specify any compression algorithms. Compression is not
discussed in this chapter because it is not supported in many SSL
implementations, although it is supported by OpenSSL.

27.3.3.3 Change Cipher Spec Protocol
The change cipher spec protocol consists of a single message. It is sent during
the handshake protocol after the session parameters have been negotiated. It
indicates that the sender will apply the protective measures specified by the
cipher suite to all subsequent messages.

Figure 27-10 Upstream Packet Processing

992 o c i w e b . c o m

T A O S e c u r i t y

27.3.3.4 Alert Protocol
The alert protocol serves two purposes. A close_notify warning signals its
receiver that the sender is closing the connection. All other messages indicate
that the sender encountered an error condition.

27.3.3.5 Example Session
Figure 27-11 depicts a typical SSL session:

1. ClientHello: the client initiates the handshake protocol by sending the
ClientHello message. This message indicates the highest protocol
version supported by the client, lists the cipher suites supported by the
client with the client’s preference appearing first, and contains a chunk of
random data.

2. ServerHello: the server responds to a ClientHello with a
ServerHello. This message contains the server’s selections for protocol
version and cipher suite. It also contains a chunk of random data.

3. Certificate (to client): the Certificate message contains a list of
ASN1-encoded certificates. The server’s certificate appears first. Each
subsequent certificate identifies the authority that issued the preceding
certificate. The server’s certificate is always sent to the client unless the
chosen cipher suite does not require it.

4. ServerHelloDone: this message indicates that the server has completed
this phase of the handshake protocol.

5. ClientKeyExchange: this message contains the pre-master secret or, for
some cipher suites, data needed to compute the pre-master secret.

6. ChangeCipherSpec (to server): this message indicates that all
subsequent messages will be protected according to the chosen cipher
suite.

7. Finished (to server): this message contains a MAC that was computed
over all preceding handshake messages.

8. ChangeCipherSpec (to client): this message indicates that all
subsequent messages will be protected according to the chosen cipher
suite.

9. Finished (to client): this message contains a MAC that was computed
over all preceding handshake messages.

A secure session is now established between client and server.

10. The client and server exchange application data.

11. Alert: close_notify: this message informs the server that the client
is closing the connection.

o c i w e b . c o m 993

2 7 . 3 S e c u r e S o c k e t s L a y e r P r o t o c o l

The connection is closed.

Figure 27-11 Example SSL Session

994 o c i w e b . c o m

T A O S e c u r i t y

27.4 Working with Certificates

To develop and test applications that use TAO’s security services, you will
need to create certificates. OpenSSL includes a tool called openssl for
creating, manipulating and inspecting keys, certificate requests, and
certificates. OpenSSL also includes a Perl script called CA.pl to facilitate
certain operations, including in particular those operations supporting the
creation and management of certificates. Of interest here are the methods for:

• Creating your own certificate authority.

• Generating certificate requests.

• Creating and signing certificates.

Certificates may appear in either ASN1 or Privacy Enhanced Mail (PEM)
format. CA.pl’s default behavior produces certificates in PEM format and all
certificates presented in this chapter appear in this format.

Note Some OpenSSL packages vary the name and/or location of this script slightly.
You will have to determine the location of the script in your installation of
OpenSSL.

In the examples that follow:

user input is presented in this font

system output is presented in this font

27.4.1 Environment Setup
openssl, and therefore CA.pl, use a configuration file to specify certain
options. The path to a suitable configuration file may be passed as an option to
many openssl commands. The configuration file can also be specified by an
environment variable called OPENSSL_CONF.

The source distribution includes a default version of the aforementioned
configuration file called openssl.cnf. The location of this file varies with
the installation. On UNIX and UNIX-like platforms, you may find it in the
ssl directory that appears in the path to CA.pl. On Windows, you will find it
in the release’s apps directory.

The examples assume use of the default configuration file and the
OPENSSL_CONF environment variable.

o c i w e b . c o m 995

2 7 . 4 W o r k i n g w i t h C e r t i f i c a t e s

27.4.2 Create Certificate Authority
To create a new local certificate authority use:

$ CA.pl -newca

Here is an example:

$ CA.pl -newca
CA certificate filename (or enter to create)CR
Making CA certificate ...
Using configuration from /usr/local/ssl/openssl.cnf
Generating a 1024 bit RSA private key
..............................++++++
....................++++++
writing new private key to './demoCA/private/cakey.pem'
Enter PEM pass phrase:taosecurity
Verifying password - Enter PEM pass phrase:taosecurity

You are about to be asked to enter information that will be incorporated into your
certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Missouri
Locality Name (eg, city) []:St. Louis
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Object Computing, Inc.
Organizational Unit Name (eg, section) []:TAO
Common Name (eg, YOUR name) []:John Smith
Email Address []:smith_j@ociweb.com
$

This command:

• Builds a local directory hierarchy,./demoCA, for use by the other
certificate authority commands.

• Creates the CA’s private key.

• Stores the CA’s private key in./demoCA/private/cakey.pem.

• Creates the CA’s self-signed certificate.

• Stores the CA’s certificate in./demoCA/cacert.pem.

996 o c i w e b . c o m

T A O S e c u r i t y

During this process, you will be prompted for the CA’s identity attributes and
a pass phrase to guard use of the CA’s certificate. You will be prompted for
the CA’s pass phrase each time you sign certificate requests.

You are now ready to create a create a certificate request.

27.4.3 Create Certificate Request
To create a new certificate request, use:

$ CA.pl -newreq

Here is an example:

$ CA.pl -newreq
Using configuration from /usr/local/ssl/openssl.cnf
Generating a 1024 bit RSA private key
....++++++
..........++++++
writing new private key to 'newreq.pem'
Enter PEM pass phrase:taosecurity
Verifying password - Enter PEM pass phrase:taosecurity

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Missouri
Locality Name (eg, city) []:St. Louis
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Object Computing, Inc.
Organizational Unit Name (eg, section) []:TAO
Common Name (eg, YOUR name) []:John Smith
Email Address []:smith_j@ociweb.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:corbasecurity
An optional company name []:OCI
Request (and private key) is in newreq.pem
$

This command:

• Generates a new private key.

o c i w e b . c o m 997

2 7 . 4 W o r k i n g w i t h C e r t i f i c a t e s

• Generates a new certificate request.

• Stores the certificate request and private key in newreq.pem.

During this process, you will be prompted for the user’s attributes and a pass
phrase to protect the user’s certificate. The completed request document will
appear similar to the following:

-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,CB2F8D7A7D2FFA06

FTVP97A35gWIuTIZctfEqP2JllwdswKttmjI6clPTyfWmTK3439CuXI7OFgX09ME
A1dG2EnFCWiMneVpx/GKan0g5vpefNYvC1O/JjkRtQSUwJO+xgLLdSk7pluuIA6b
uiUVaiCezvBsLYl9g9UWH9pKUsVbrtrICedIK5C+d97ed3A5GEZXEMf8+jU/FM5M
s4A+FT2Uq2SHj47xrTfBPcemYZjoTEUzfxrovevdqbCFLhf9FfMyODRe9y2fQp5g
yK8TGV5miPcPOoDqRTkspbq9Is3yFXXnIdT8JYQxgHpJzyQVed4G3zZYiPhM4kZG
Xy9lA6L+0NZUzRMALNJUqWxj2IIFnkRJ1VBC5meyO10aieqRLylr7JUzTQVA5xf/
YQfcciMugHAU0n4+uLVdehgnLmpolfa+EJh7rETxnUQyQrnrDvOucMYnFDmuYLoy
2SUri9OszuhXzX1P1TzfEcD/LASJpf/NAgHRXDn39D+MXnxAVdmZmY0xPVzmeCDz
MtmjhG++fujjOc9XpEIvvJ7e3Baq3xBVLFn7FhMZQUnrNRHyikCvh39WiE8eJl2I
e1GDLucuVscD4PD5WdMYdMbFnH6YaRFL0XrBETe8hvCn2oEXtUO4QxHARG2fw9if
4skWWcSg5PPejDxEBOQZwQwxO8tnF1BWOzDnkQHvc6HMowlvejvXY9ZC6cwTTnUG
NEcNJwUFRZ8s7ZErVzBOB6NAF4q+UUb6N+EQBcsfHYtyleuDwhulafjkXnXl3uc4
rXLdK9t2ufcWpnyLLZ1g/MZaTyCay6ddXntUs2DueHr0FOmAy8Iq8g==
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE REQUEST-----
MIICDjCCAXcCAQAwgZsxCzAJBgNVBAYTAlVTMREwDwYDVQQIEwhNaXNzb3VyaTES
MBAGA1UEBxMJU3QuIExvdWlzMR8wHQYDVQQKExZPYmplY3QgQ29tcHV0aW5nLCBJ
bmMuMQwwCgYDVQQLEwNUQU8xEzARBgNVBAMTCkpvaG4gU21pdGgxITAfBgkqhkiG
9w0BCQEWEnNtaXRoX2pAb2Npd2ViLmNvbTCBnzANBgkqhkiG9w0BAQEFAAOBjQAw
gYkCgYEAqxIMACmYKHipD8GB9PNbARx04Yt0MDm6q7shbU/i1qndGo8yYgYuDcG1
cxF0dm6PLLJzuz5XysuiIGBVzCD86b2qZxPq1yCaSjxgM9YMwAw61K3hxF4hwwWY
EPwBxzzJ9117ioo7yVHovcO2bpCuphhO/X1lUdwXdiGH8giPC3sCAwEAAaAyMBIG
CSqGSIb3DQEJAjEFEwNPQ0kwHAYJKoZIhvcNAQkHMQ8TDWNvcmJhc2VjdXJpdHkw
DQYJKoZIhvcNAQEEBQADgYEAcpg+VrzTdhVUE+buFwAZAc9LwHjs5xade9wU5lWp
sWbixoC6MP+UK9x6BQvjYMTWCEjXGm7IkHr34w6SWhXozTM+bn1AS+0vX2ezXMeU
jXtvWfNdTr2je56Xv9kS3e/CyQPclVGZTJThRJuFB4I2DoZt8PtyclT8AOX9+AcZ
dA4=
-----END CERTIFICATE REQUEST-----

The file must remain as is to serve as a certificate request. The file can also
serve as a private key in this form. However, the private key portion can be
copied into a separate file. (Lines delimiting the private key are required.)

You are now ready to sign the request and create a certificate.

998 o c i w e b . c o m

T A O S e c u r i t y

27.4.4 Sign Certificate Request and Issue Certificate
To sign a certificate request and issue a certificate, use:

$ CA.pl -sign

Here is an example:

$ CA.pl -sign
Using configuration from /usr/local/ssl/openssl.cnf
Enter PEM pass phrase:taosecurity
Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number: 1 (0x1)
 Validity
 Not Before: Sep 9 23:08:46 2005 GMT
 Not After : Sep 9 23:08:46 2006 GMT
 Subject:
 countryName = US
 stateOrProvinceName = Missouri
 localityName = St. Louis
 organizationName = Object Computing, Inc.
 organizationalUnitName = TAO
 commonName = John Smith
 emailAddress = smith_j@ociweb.com
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:
 AB:9E:C0:4C:75:2B:89:C3:2F:4F:D9:71:91:85:D1:A5:C5:D2:67:BB
 X509v3 Authority Key Identifier:
 keyid:BF:8B:5B:ED:36:97:84:40:C8:BA:C2:B1:CD:C4:55:37:8A:55:F1:7D
 DirName:/C=US/ST=Missouri/L=St. Louis/O=Object Computing, Inc.
 /OU=TAO/CN=John Smith/emailAddress=smith_j@ociweb.com
 serial:A1:D5:25:21:ED:7E:39:33

Certificate is to be certified until Sep 9 23:08:46 2006 GMT (365 days)
Sign the certificate? [y/n]: y

1 out of 1 certificate requests certified, commit? [y/n] y
Write out database with 1 new entries
Data Base Updated
Signed certificate is in newcert.pem

This command:

o c i w e b . c o m 999

2 7 . 4 W o r k i n g w i t h C e r t i f i c a t e s

• Processes the certificate request held in newreq.pem.

• Generates a new public key and certificate.

• Stores the certificate in the file./newcert.pem.

The completed certificate will appear similar to the following:

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 1 (0x1)
 Signature Algorithm: md5WithRSAEncryption
 Issuer: C=US, ST=Missouri, L=St. Louis, O=Object Computing, Inc.,
 OU=TAO, CN=John Smith/emailAddress=smith_j@ociweb.com
 Validity
 Not Before: Sep 9 23:08:46 2005 GMT
 Not After : Sep 9 23:08:46 2006 GMT
 Subject: C=US, ST=Missouri, L=St. Louis, O=Object Computing, Inc.,
 OU=TAO, CN=John Smith/emailAddress=smith_j@ociweb.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:ab:12:0c:00:29:98:28:78:a9:0f:c1:81:f4:f3:
 5b:01:1c:74:e1:8b:74:30:39:ba:ab:bb:21:6d:4f:
 e2:d6:a9:dd:1a:8f:32:62:06:2e:0d:c1:b5:73:11:
 74:76:6e:8f:2c:b2:73:bb:3e:57:ca:cb:a2:20:60:
 55:cc:20:fc:e9:bd:aa:67:13:ea:d7:20:9a:4a:3c:
 60:33:d6:0c:c0:0c:3a:d4:ad:e1:c4:5e:21:c3:05:
 98:10:fc:01:c7:3c:c9:f7:5d:7b:8a:8a:3b:c9:51:
 e8:bd:c3:b6:6e:90:ae:a6:18:4e:fd:7d:65:51:dc:
 17:76:21:87:f2:08:8f:0b:7b
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:
 AB:9E:C0:4C:75:2B:89:C3:2F:4F:D9:71:91:85:D1:A5:C5:D2:67:BB
 X509v3 Authority Key Identifier:
 keyid:BF:8B:5B:ED:36:97:84:40:C8:BA:C2:B1:CD:C4:55:37:8A:55:F1:7D
 DirName:/C=US/ST=Missouri/L=St. Louis/O=Object Computing,
Inc./OU=TAO/CN=John Smith/emailAddress=smith_j@ociweb.com
 serial:A1:D5:25:21:ED:7E:39:33

 Signature Algorithm: md5WithRSAEncryption
 57:5c:a1:20:14:64:88:d5:05:21:b1:8e:6a:32:28:5b:94:07:
 87:00:b6:1f:c6:00:71:47:a5:7b:7f:44:81:82:16:aa:8c:04:

1000 o c i w e b . c o m

T A O S e c u r i t y

 e4:03:70:b6:fc:5a:6a:9f:c3:27:bc:35:0d:e1:a5:79:22:ce:
 05:32:44:e1:cc:40:03:62:65:86:de:73:c3:e6:6c:e6:8d:f0:
 4d:dd:2c:65:fe:72:23:b0:4d:de:f2:a7:d0:41:4d:55:85:40:
 8f:08:4f:95:93:53:75:7a:21:34:5a:a8:83:ae:9a:da:10:ef:
 7e:d4:96:52:13:85:5e:52:db:cc:9d:a7:74:52:4e:05:6f:1d:
 b6:b3
-----BEGIN CERTIFICATE-----
MIID3zCCA0igAwIBAgIBATANBgkqhkiG9w0BAQQFADCBmzELMAkGA1UEBhMCVVMx
ETAPBgNVBAgTCE1pc3NvdXJpMRIwEAYDVQQHEwlTdC4gTG91aXMxHzAdBgNVBAoT
Fk9iamVjdCBDb21wdXRpbmcsIEluYy4xDDAKBgNVBAsTA1RBTzETMBEGA1UEAxMK
Sm9obiBTbWl0aDEhMB8GCSqGSIb3DQEJARYSc21pdGhfakBvY2l3ZWIuY29tMB4X
DTA1MDkwOTIzMDg0NloXDTA2MDkwOTIzMDg0NlowgZsxCzAJBgNVBAYTAlVTMREw
DwYDVQQIEwhNaXNzb3VyaTESMBAGA1UEBxMJU3QuIExvdWlzMR8wHQYDVQQKExZP
YmplY3QgQ29tcHV0aW5nLCBJbmMuMQwwCgYDVQQLEwNUQU8xEzARBgNVBAMTCkpv
aG4gU21pdGgxITAfBgkqhkiG9w0BCQEWEnNtaXRoX2pAb2Npd2ViLmNvbTCBnzAN
BgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAqxIMACmYKHipD8GB9PNbARx04Yt0MDm6
q7shbU/i1qndGo8yYgYuDcG1cxF0dm6PLLJzuz5XysuiIGBVzCD86b2qZxPq1yCa
SjxgM9YMwAw61K3hxF4hwwWYEPwBxzzJ9117ioo7yVHovcO2bpCuphhO/X1lUdwX
diGH8giPC3sCAwEAAaOCAS8wggErMAkGA1UdEwQCMAAwLAYJYIZIAYb4QgENBB8W
HU9wZW5TU0wgR2VuZXJhdGVkIENlcnRpZmljYXRlMB0GA1UdDgQWBBSrnsBMdSuJ
wy9P2XGRhdGlxdJnuzCB0AYDVR0jBIHIMIHFgBS/i1vtNpeEQMi6wrHNxFU3ilXx
faGBoaSBnjCBmzELMAkGA1UEBhMCVVMxETAPBgNVBAgTCE1pc3NvdXJpMRIwEAYD
VQQHEwlTdC4gTG91aXMxHzAdBgNVBAoTFk9iamVjdCBDb21wdXRpbmcsIEluYy4x
DDAKBgNVBAsTA1RBTzETMBEGA1UEAxMKSm9obiBTbWl0aDEhMB8GCSqGSIb3DQEJ
ARYSc21pdGhfakBvY2l3ZWIuY29tggkAodUlIe1+OTMwDQYJKoZIhvcNAQEEBQAD
gYEAV1yhIBRkiNUFIbGOajIoW5QHhwC2H8YAcUele39EgYIWqowE5ANwtvxaap/D
J7w1DeGleSLOBTJE4cxAA2Jlht5zw+Zs5o3wTd0sZf5yI7BN3vKn0EFNVYVAjwhP
lZNTdXohNFqog66a2hDvftSWUhOFXlLbzJ2ndFJOBW8dtrM=
-----END CERTIFICATE-----

This file can serve as a certificate in this form or the certificate portion can be
copied to a separate file. (Lines delimiting the certificate are required.)

27.4.5 Removing Key Pass Phrases
By default, keys are protected by the PEM pass phrase provided when the
certificate was created. This pass phrase must be supplied whenever an
application utilizing the key is launched. To run processes in the background,
remove the pass phrase as follows:

$ openssl rsa -in key-with-password.pem -out key-without-password.pem

The file key-with-password.pem holds a private key protected by a
password. The key with password removed is stored in the file
key-without-password.pem.

o c i w e b . c o m 1001

2 7 . 5 B u i l d i n g A C E a n d T A O S e c u r i t y L i b r a r i e s

27.4.6 Certificate Commands Summary
Environment variables:

• PATH includes directories containing openssl and CA.pl.

• OPENSSL_CONF specifies path to configuration file.

• openssl.conf is the default configuration file provided with the
OpenSSL source release.

Commands:

• CA.pl -newca establishes a new local certificate authority.

• CA.pl -newreq creates a new private key and certificate request.

• CA.pl -sign creates a new public key and a signed certificate.

• openssl rsa -in key-with-password.pem -out
key-without-password.pem removes the pass phrase from a private
key.

27.5 Building ACE and TAO Security Libraries

This section discusses construction of executables that use TAO’s security
features and the supporting libraries; libACE_SSL, libTAO_Security, and
libTAO_SSLIOP.

The ACE SSL library (libACE_SSL) wraps OpenSSL’s implementation of
SSL in a manner consistent with ACE’s Inter-Process Communication Service
Access Point (IPC_SAP) architecture and, consequently, TAO’s pluggable
protocol architecture. SSLIOP (libTAO_SSLIOP) is a secure communications
protocol, founded on the ACE SSL wrappers, which supports:

• Peer authentication.

• Message integrity.

• Message confidentiality.

TAO’s Security services library (libTAO_Security) provides security
aware applications with:

• Access to security attributes.

• A means to control message protection level.

1002 o c i w e b . c o m

T A O S e c u r i t y

• A means to control the establishment of trust between clients and servers.

OpenSSL is the foundation of TAO’s security service. It may already be
installed on your platform, particularly if you are working with a Linux
platform. However, on many other UNIX and UNIX-like platforms, and on
Windows platforms, you may need to obtain, build, and install OpenSSL
yourself. OpenSSL source is freely available from the OpenSSL web site:
<http://www.openssl.org>. The source release includes some general
instructions, the README file, and files with specific instructions for several
platforms, including the INSTALL file for UNIX-like platforms and the
INSTALL.W32 file for Windows platforms.

The following sections address:

• Building the security libraries.

• Testing the libraries.

• Building executables.

Note The instructions for building the security libraries have changed since
TAO 1.3a.

27.5.1 Building Security Libraries: UNIX Variants
ACE and TAO security libraries can be built individually or along with other
ACE and TAO libraries. The following settings support construction of the
security-related libraries and application executables:

• SSL_ROOT (in platform_macros.GNU or as an environment variable):
specifies the path to the OpenSSL installation directory.

• ssl (in platform_macros.GNU): indicates whether or not to build the
security-related libraries. Specifying ssl=1 causes the security-related
libraries to be built.

• ssl (in MPC’s default.features): must be set to 1 (ssl=1) for MPC
to generate project files to build SSL-related projects. See 4.3.2.3 for more
information on MPC’s feature file.

o c i w e b . c o m 1003

2 7 . 5 B u i l d i n g A C E a n d T A O S e c u r i t y L i b r a r i e s

For more information on these and other build settings, see Appendix A.

With these settings assigned correctly, you can build the security libraries
simply by building the normal TAO libraries. You can also build the TAO
libraries individually with the following commands:

cd $TAO_ROOT/orbsvcs/orbsvcs
make -f GNUmakefile.Security
make -f GNUmakefile.SSLIOP

libTAO_SSLIOP depends upon libTAO_Security, so be sure it is built
prior to building libTAO_SSLIOP.

27.5.2 Building Security Libraries: Microsoft Visual Studio
for Windows
TAO’s source release contains pre-defined project and workspace/solution
files for building ACE and TAO libraries, including those related to TAO’s
security service. In the %TAO_ROOT% directory, TAO_ACE.sln includes
projects needed to build the various security-related libraries.

The following settings support construction of the security-related libraries
and application executables:

• SSL_ROOT (environment variable): specifies the path to the OpenSSL
installation directory.

• ssl (in MPC’s default.features): must be set to 1 (ssl=1) for MPC
to generate project files to build SSL-related projects. See 4.3.2.3 for more
information on MPC’s feature file.

For more information on these and other build settings, see Appendix A.

The MPC-generated project settings establish the appropriate OpenSSL
include and library search paths based on the SSL_ROOT environment variable
(e.g., $(SSL_ROOT)/include, $(SSL_ROOT)/inc32, and
$(SSL_ROOT)/lib), so you do not need to add these locations to the Visual
Studio tools options settings.

To build the security libraries, open the TAO_ACE.sln solution file in Visual
Studio and simply build the SSLIOP project. Since the SSLIOP project
depends upon the SSL and Security projects, building this one project will

1004 o c i w e b . c o m

T A O S e c u r i t y

build all the necessary security libraries: ACE_SSL, TAO_Security, and
TAO_SSLIOP.

27.5.3 Testing the Security Libraries
Tests for TAO’s security services are located in
$TAO_ROOT/orbsvcs/tests/Security. README files describe each test
and provide other useful information such as instructions for running the test
manually. A perl script, run_test.pl, is provided to execute each test.
Makefiles and project files are provided in most, if not all, cases.

27.5.4 Building Security Unaware Executables
TAO’s support for security-unaware applications, i.e., the secure
communications protocol, is implemented in the TAO_SSLIOP library. Thus, a
security-unaware application must link with this library if the executable is
statically linked. Otherwise, no additional steps are required because the
library is loaded dynamically by the service configurator.

MPC projects for security-unaware applications can simply inherit from the
ssl base project. For example, here is the file for the SecurityUnawareApp
example in
$TAO_ROOT/orbsvcs/DevGuideExamples/Security/SecurityUnawareApp:

project(*Server): taoexe, portableserver, security, ssl {
 requires += exceptions
 Source_Files {
 Messenger_i.cpp
 MessengerServer.cpp
 }
}

project(*Client): taoexe, security, ssl {
 requires += exceptions
 Source_Files {
 MessengerC.cpp
 MessengerClient.cpp
 }
}

27.5.5 Building Security Aware Executables
TAO’s support for security aware applications that wish to set security policy
or access security context data at run time is implemented in the

o c i w e b . c o m 1005

2 7 . 6 S e c u r i t y U n a w a r e A p p l i c a t i o n

TAO_Security library and the TAO_SSLIOP library. OpenSSL libraries are
also required for security-aware applications that wish to access the security
attributes:

• For UNIX and UNIX-like platforms, the OpenSSL libraries are libssl
and libcrypto.

• For Windows platforms, the OpenSSL library is libeay32.

Library path environment variables must include paths to all but
TAO_SSLIOP. A path to TAO_SSLIOP is only required at compile time for
statically linked executables.

MPC projects for security aware applications can simply inherit from the
security and ssliop base projects. For example, here is the project file for
the ParticipatingApp example in
$TAO_ROOT/orbsvcs/DevGuideExamples/Security/ParticipatingApp:

project(*Server): orbsvcsexe, portableserver, security, ssliop {
 requires += exceptions
 Source_Files {
 Messenger_i.cpp
 MessengerServer.cpp
 }
}

project(ParticipatingApp_Client): orbsvcsexe, security, ssliop {
 requires += exceptions
 exename = MessengerClient

 Source_Files {
 MessengerC.cpp
 MessengerClient.cpp
 }
}

27.6 Security Unaware Application

Providing security for applications that do not take an active part in setting or
enforcing security policy is largely a matter of configuring the environment,
and configuring and installing TAO’s SSLIOP protocol. The sections that
follow explain how to do this:

• Describe how to set up the environment.

1006 o c i w e b . c o m

T A O S e c u r i t y

• Describe how to configure and load the SSLIOP protocol.

• Present relevant code examples.

27.6.1 Environment Setup
There are four separate environment variables that may be used by the SSL
libraries depending upon circumstances at run time:

• SSL_CERT_FILE: gives the pathname of a file containing one or more
certificates from certifying authorities.

When this variable is set, the named file is the source of all certifying
authority certificates. Refer to 27.6.1.1 for additional information.

A default value for SSL_CERT_FILE is defined by the macro
ACE_DEFAULT_SSL_CERT_FILE in $ACE_ROOT/ace/SSL/sslconf.h

• SSL_CERT_DIR: gives the pathname of a directory housing certificates
from one or more certifying authorities.

When this variable is set, the named directory is the source of all
certifying authority certificates. Refer to 27.6.1.1 for additional
information.

A default value for SSL_CERT_DIR is defined by the macro
ACE_DEFAULT_SSL_CERT_DIR in $ACE_ROOT/ace/SSL/sslconf.h.

• SSL_EGD_FILE: gives the pathname of a random data source generated
by the entropy-gathering daemon (EGD).

OpenSSL needs a source of random data. EGD is a perl script that
produces random data and delivers it via a UNIX domain socket. EGD is
widely used as a random data source, although it was not tested during the
writing of this chapter.

• SSL_RAND_FILE: gives the pathname of a data file holding state data
from SSL’s pseudo random number generator.

OpenSSL has its own pseudo-random number generator. When this
mechanism is used as the random data source, state information is stored
in the named file between invocations. OpenSSL’s pseudo-random
number source was not tested during the writing of this chapter.

All of the examples presented in this chapter employ only a single certifying
authority and therefore use the SSL_CERT_FILE environment variable to refer

o c i w e b . c o m 1007

2 7 . 6 S e c u r i t y U n a w a r e A p p l i c a t i o n

to the certifying authority’s certificate. No values were assigned to any of the
other environment variables.

27.6.1.1 Using Multiple Certificate Authorities
Authenticating a certificate when multiple certifying authorities are involved
requires access to several certificates. For example, suppose a principal named
Shannon obtains a certificate from a certifying authority named ACME
Certificate Co. In turn, ACME obtained its certificate from Certificates
Unlimited, Inc., which signs its own certificate and therefore acts as the root
certificate authority (refer to Figure 27-12).

To verify Shannon’s certificate, the server’s authentication routines need to
examine each certifying authority’s certificate. The certificates may be
concatenated into a single file, referred to by SSL_CERT_FILE, or they may
be housed in a common directory, referred to by SSL_CERT_DIR. When a
principal’s certificate is authenticated and SSL_CERT_FILE is set, the named
file is searched for certifying authority certificates. Otherwise, if
SSL_CERT_DIR is set, the named directory is searched.

To facilitate certificate directory searches, each file is named based upon a
hash code generated from the certificate holder’s subject name. For example,
the subject name:

C=US, ST=Missouri, L=St. Louis, O=Object Computing, Inc.,
 OU=TAO, CN=Certifying Authority/Email=ca@ociweb.com

yields a hash value of 53052543. The string “.0” is appended yielding a file
name of 53052543.0. A file by that name, which may contain the certificate
or may be a link to the certificate file, is placed in the certificate directory.

When authenticating a principal’s certificate:

• The issuing authority’s name is extracted from the certificate.

• The corresponding hash value is computed.

• The certificate is obtained from the certificate directory and authenticated.

1008 o c i w e b . c o m

T A O S e c u r i t y

The process continues until a trusted certificate is encountered or a required
certificate cannot be found.

Figure 27-12 Certificate Authentication Chain

o c i w e b . c o m 1009

2 7 . 6 S e c u r i t y U n a w a r e A p p l i c a t i o n

27.6.2 Configuring and Loading SSLIOP
The use of SSLIOP is initialized by using the Service Configuration
framework to load a SSLIOP factory. The SSLIOP factory initialization is
tuned by way of the arguments listed in Table 27-2

As with all pluggable protocols, the configured SSLIOP factory must be
registered with the default or advanced resource factory (see 18.2.6, “Protocol

Table 27-2 SSLIOP Factory Options

Option Section Description

-SSLAcceptTimeout seconds 27.10.1
Specify the amount of time that a
SSLIOP acceptor will wait to complete
the SSL handshake

-SSLAuthenticate (none |
client | server |
server_and_client)

27.10.2
Specify the authentication conducted as
secure sessions are established between
client and server.

-SSLCAFile file 27.10.3 Supply a specific file for Certificate
Authority info.

-SSLCAPath directory 27.10.4 Supply a directory containing possibly
several arbitrary CA files.

-SSLCertificate file 27.10.5 Supply the authentication certificate.

-SSLCheckHost 27.10.6 Cause the local endpoint to perform host
name verification.

-SSLCipherList list 27.10.7 Supply the list or cipher types for SSL.

-SSLDHParams file 27.10.8 gives the pathname for Diffie-Hellman
cipher parameters.

-SSLNoProtection 27.10.9 Enable support for plain IIOP as well as
SSLIOP connections.

-SSLPassword prompt 27.10.10
Enable the use of password protected
private keys by supplying the means to
obtain a password.

-SSLPrivateKey file 27.10.11 Supply the private encryption key.

-SSLrand file 27.10.12 Specify the file containing the SSL
random seed.

-SSLServerCipherOrder 27.10.13 Set SSL to use the server’s cipher
preference.

-SSLVersionList list 27.10.14 Constrains the list of cipher versions
allowed.

-verbose | -v 27.10.15 Enables SSLIOP-specific debugging.

1010 o c i w e b . c o m

T A O S e c u r i t y

Factories”) to be available for use by the ORB. Unlike other protocols,
SSLIOP is derived from IIOP so the IIOP factory does not also need to be
defined.

27.6.3 Security Unaware Application Example
To demonstrate an application that is protected via TAO’s security service
without the application’s direct involvement, we configure the Messenger
server and Messenger client from 3.3 so that they:

• Authenticate their peers.

• Provide message confidentiality.

• Provide message integrity.

The full source code and configuration files for this example can be found in
$TAO_ROOT/orbsvcs/DevGuideExamples/Security/SecurityUnawareApp.

The examples that follow require:

• A certifying authority’s certificate named cacert.pem.

• A certificate, signed by the certifying authority, and its corresponding
private key, respectively named servercert.pem and serverkey.pem.

• A client certificate, signed by the certifying authority, and its
corresponding private key respectively named clientcert.pem and
clientkey.pem.

• The environment variable SSL_CERT_FILE containing the path to the
certifying authority’s certificate.

Configuring the server is easily accomplished with the service configuration
directives found in Figure 27-13. These directives are placed in a service

configuration file, here called server.conf, which is used to configure the
Messenger server upon invocation as follows:

$ MessengerServer -ORBSvcConf server.conf

dynamic SSLIOP_Factory Service_Object * \
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() "-SSLAuthenticate \
SERVER_AND_CLIENT -SSLPrivateKey PEM:serverkey.pem \
-SSLCertificate PEM:servercert.pem"

static Resource_Factory "-ORBProtocolFactory SSLIOP_Factory"

Figure 27-13 Security Unaware Server-side svc.conf

o c i w e b . c o m 1011

2 7 . 6 S e c u r i t y U n a w a r e A p p l i c a t i o n

Enter PEM pass phrase:
IOR written to file Messenger.ior

In this example the pass phrase has not been stripped from the private key.
Consequently, the user must type the pass phrase each time the server is
started.

Invoking the Messenger client without configuring it to use SSLIOP causes an
exception:

$ MessengerClient
Uncaught CORBA exception: NO_PERMISSION (IDL:omg.org/CORBA/NO_PERMISSION:1.0)
$

The exception indicates that the client does not have permission to invoke the
requested operation. Configuring the client is also easily accomplished with
the service configuration directives found in Figure 27-14.

These directives are placed in a separate service configuration file, which we
call client.conf, used to configure the Messenger client upon invocation:

$ MessengerClient -ORBSvcConf client.conf
Enter PEM pass phrase:
message was sent
$

The client now reports that the message was sent and the server prints the
message:

Message from: Chief of Security
Subject: New Directive
Message: Implementing security policy now!

Failing to name the certifying authority’s certificate via the SSL_CERT_FILE
environment variable is a common mistake, and results in a different
exception:

$ MessengerClient -ORBSvcConf client.conf

dynamic SSLIOP_Factory Service_Object * \
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLAuthenticate SERVER_AND_CLIENT \
-SSLPrivateKey PEM:clientkey.pem \
-SSLCertificate PEM:clientcert.pem"

static Resource_Factory "-ORBProtocolFactory SSLIOP_Factory"

Figure 27-14 Security Unaware Client-side svc.conf

1012 o c i w e b . c o m

T A O S e c u r i t y

Enter PEM pass phrase:
ACE_SSL (784|1040) error code: 336134278 - error:14090086:SSL
routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed
Uncaught CORBA exception: TRANSIENT (IDL:omg.org/CORBA/TRANSIENT:1.0)
$

This exception is less helpful, indicating no more than a problem with a
transient object reference. The error message from the ACE SSL wrappers is
more helpful in that it indicates an error related to certificate authentication. In
the case at hand, authentication of the server’s certificate failed because the
certifying authority’s certificate was unknown to the client.

However, if the client application is concerned only with message
confidentiality and integrity, authentication of the server can be disabled by
modifying the client’s service configuration as shown in Figure 27-15.

In this configuration, the client no longer requires authentication of the server,
so the absence of the certifying authority’s certificate is of no consequence, at
least so far as the client is concerned. The server’s configuration still calls for
authentication of peers so the server’s environment must provide access to the
certifying authority’s certificate.

27.7 Security Policy Controlling Application

Applications can control the message protection level and the extent to which
the ORB authenticates its peers. The level of message protection is controlled
by the Quality of Protection policy. The extent to which an ORB authenticates
its peers is controlled by the Establish Trust policy.

The following sections:

• Describe the Quality of Protection policy.

• Describe the Establish Trust policy.

• Present code examples that demonstrate the use of these policies.

dynamic SSLIOP_Factory Service_Object * \
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLAuthenticate NONE -SSLPrivateKey PEM:clientkey.pem \
-SSLCertificate PEM:clientcert.pem"

Figure 27-15 Client-side svc.conf for confidentiality and integrity only

o c i w e b . c o m 1013

2 7 . 7 S e c u r i t y P o l i c y C o n t r o l l i n g A p p l i c a t i o n

27.7.1 Controlling Message Protection
The SecQOPPolicy permits control of the Quality of Protection, and carries a
value of type Security::QOP. The Security module gives the following
type definition:

 module Security {
 // other definitions omitted
 enum QOP {
 SecQOPNoProtection,
 SecQOPIntegrity,
 SecQOPConfidentiality,
 SecQOPIntegrityAndConfidentiality
 };
 };

Each value represents a different level of protection:

• SecQOPNoProtection: disables all message protection mechanisms.
Consequently, messages are transmitted in plaintext.

• SecQOPIntegrity: enables mechanisms that deter tampering with
messages in transit and support the detection of messages that have been
tampered with in some way.

• SecQOPConfidentiality: enables mechanisms that prevent a
message's disclosure to all but its intended recipients.

• SecQOPIntegrityAndConfidentiality: enables both integrity and
confidentiality protection mechanisms.

SSL does not support message integrity and confidentiality separately. Thus,
the only practical values for SecQOPPolicy are SecQOPNoProtection and
SecQOPIntegrityAndConfidentiality. The other values have no effect.

27.7.2 Controlling Peer Authentication
The SecEstablishTrustPolicy permits control of the Establish Trust
policy, and carries a value of type Security::EstablishTrust. The
Security module gives the type definition for EstablishTrust as follows:

 module Security {
 struct EstablishTrust {
 boolean trust_in_client;
 boolean trust_in_target;
 };
 // all other definitions omitted

1014 o c i w e b . c o m

T A O S e c u r i t y

 };

EstablishTrust::trust_in_client specifies whether or not an ORB
authenticates its peers when acting in the server role.
EstablishTrust::trust_in_target specifies whether or not an ORB
authenticates its peers when acting in the client role.

27.7.3 Security Policy Controlling Application Examples
We continue with the Messenger client and server to demonstrate security
policies. Full source code and configuration files for this example can be
found in
$TAO_ROOT/orbsvcs/DevGuideExamples/Security/PolicyControl
lingApp.

We use the configurations shown in Figure 27-16 and Figure 27-17 to devise a
server that authenticates its peers, without regard to its role, and accepts
requests via IIOP as well as SSLIOP.

The client, as configured, issues all requests via SSLIOP but does not
authenticate its peers.

Let us assume, however, that the Messenger client requires the Messenger
server to be authenticated, after which it transmits messages in the clear. To
accomplish this, message protection is disabled and peer authentication is
enabled when operating as a client.

The client first obtains a reference to the Messenger server:

dynamic SSLIOP_Factory Service_Object* \
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLNoProtection -SSLAuthenticate SERVER_AND_CLIENT \
-SSLPrivateKey PEM:serverkey.pem -SSLCertificate \
PEM:servercert.pem"

static Resource_Factory "-ORBProtocolFactory SSLIOP_Factory"

Figure 27-16 Policy Controlling Application Server-side svc.conf

dynamic SSLIOP_Factory Service_Object* \
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLAuthenticate NONE -SSLPrivateKey PEM:clientkey.pem \
-SSLCertificate PEM:clientcert.pem"

static Resource_Factory "-ORBProtocolFactory SSLIOP_Factory"

Figure 27-17 Policy Controlling Application Client-side svc.conf

o c i w e b . c o m 1015

2 7 . 7 S e c u r i t y P o l i c y C o n t r o l l i n g A p p l i c a t i o n

CORBA::Object_var obj = orb->string_to_object("file://Messenger.ior");

Next, the client constructs a Security::SecQOPPolicy to disable message
protection:

Security::QOP qop = Security::SecQOPNoProtection;

CORBA::Any no_protection;
no_protection <<= qop;

CORBA::Policy_var policy =
orb->create_policy (Security::SecQOPPolicy, no_protection);

Next, the client creates a Security::SecEstablishTrustPolicy to
enable authentication of servers:

Security::EstablishTrust establish_trust;
establish_trust.trust_in_client = false;
establish_trust.trust_in_target = true;

CORBA::Any want_trust;
want_trust <<= establish_trust;

CORBA::Policy_var policy2 =
orb->create_policy (Security::SecEstablishTrustPolicy, want_trust);

The client now assembles a policy list and uses it to create a new object
reference that has the desired policies:

CORBA::PolicyList policy_list (2);
policy_list.length (2);
policy_list[0] = CORBA::Policy::_duplicate (policy.in ());
policy_list[1] = CORBA::Policy::_duplicate (policy2.in ());

CORBA::Object_var object =
obj->_set_policy_overrides (policy_list, CORBA::SET_OVERRIDE);

Finally, the client narrows the new object reference to the appropriate type:

Messenger_var messenger = Messenger::_narrow(object.in());

Here is the complete client for this example:

#include "MessengerC.h"
#include "orbsvcs/SecurityC.h"

1016 o c i w e b . c o m

T A O S e c u r i t y

int main(int argc, char* argv[]) {
try {

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::Object_var obj = orb->string_to_object("file://Messenger.ior");

// downgrade to no message protection
Security::QOP qop = Security::SecQOPNoProtection;
CORBA::Any no_protection;
no_protection <<= qop;

CORBA::Policy_var policy =
orb->create_policy (Security::SecQOPPolicy, no_protection);

// upgrade to authenticate servers
Security::EstablishTrust establish_trust;
establish_trust.trust_in_client = false;
establish_trust.trust_in_target = true;
CORBA::Any want_trust;
want_trust <<= establish_trust;
CORBA::Policy_var policy2 =

orb->create_policy (Security::SecEstablishTrustPolicy, want_trust);

// prepare to create new object reference
// having the desired policies
CORBA::PolicyList policy_list (2);
policy_list.length (2);
policy_list[0] = CORBA::Policy::_duplicate (policy.in ());
policy_list[1] = CORBA::Policy::_duplicate (policy2.in ());

// create the new object reference and
// narrow to appropriate type
CORBA::Object_var object =

obj->_set_policy_overrides (policy_list, CORBA::SET_OVERRIDE);
Messenger_var messenger = Messenger::_narrow(object.in());

CORBA::String_var message =
CORBA::string_dup("Implementing security policy now!");

messenger->send_message(
"Chief of Security", "New Directive", message.inout());

}
catch (CORBA::Exception& ex) {

ex._tao_print_exception("Client: main block");
}
return 0;

}

For the next example, we change the server and client configurations to those
shown in Figure 27-18 and Figure 27-19, respectively.

o c i w e b . c o m 1017

2 7 . 7 S e c u r i t y P o l i c y C o n t r o l l i n g A p p l i c a t i o n

With these changed configurations, the client must upgrade the message
protection policy, instead of downgrading as demonstrated by the previous
example, because the server no longer accepts requests via IIOP. The server
now enforces message protection on all requests.

Here is the relevant change to the client code:

Security::QOP qop = Security::SecQOPIntegrityAndConfidentiality;
CORBA::Any want_protection;
want_protection <<= qop;
CORBA::Policy_var policy =

orb->create_policy (Security::SecQOPPolicy, want_protection);

The other code remains as is. Here is the complete example:

#include "MessengerC.h"
#include "orbsvcs/SecurityC.h"

int main(int argc, char* argv[])
{

try {
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::Object_var obj =

orb->string_to_object("file://Messenger.ior");

// upgrade to message protection
Security::QOP qop = Security::SecQOPIntegrityAndConfidentiality;
CORBA::Any want_protection;
want_protection <<= qop;
CORBA::Policy_var policy =

dynamic SSLIOP_Factory Service_Object* \
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLAuthenticate SERVER_AND_CLIENT \
-SSLPrivateKey PEM:serverkey.pem \
-SSLCertificate PEM:servercert.pem"

static Resource_Factory "-ORBProtocolFactory SSLIOP_Factory"

Figure 27-18 Policy Controlling and Enforcing Server-side svc.conf

dynamic SSLIOP_Factory Service_Object* \
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLNoProtection -SSLAuthenticate NONE \
-SSLPrivateKey PEM:clientkey.pem \
-SSLCertificate PEM:clientcert.pem"

static Resource_Factory "-ORBProtocolFactory SSLIOP_Factory"

Figure 27-19 Policy Controlling and Enforcing Client-side svc.conf

1018 o c i w e b . c o m

T A O S e c u r i t y

orb->create_policy (Security::SecQOPPolicy, want_protection);

// upgrade to authenticate servers
Security::EstablishTrust establish_trust;
establish_trust.trust_in_client = false;
establish_trust.trust_in_target = true;
CORBA::Any want_trust;
want_trust <<= establish_trust;

CORBA::Policy_var policy2 =
orb->create_policy (Security::SecEstablishTrustPolicy, want_trust);

// prepare to create new object reference
// having the desired policies
CORBA::PolicyList policy_list (2);
policy_list.length (1);
policy_list[0] = CORBA::Policy::_duplicate (policy.in ());
policy_list.length (2);
policy_list[1] = CORBA::Policy::_duplicate (policy2.in ());

// create the new object reference and
// narrow to appropriate type
CORBA::Object_var object =

obj->_set_policy_overrides (policy_list, CORBA::SET_OVERRIDE);
Messenger_var messenger = Messenger::_narrow(object.in());
CORBA::String_var message =

CORBA::string_dup("Implementing security policy now!");
messenger->send_message("Chief of Security",

"New Directive",
message.inout()

);
}
catch (CORBA::Exception& ex) {

ex._tao_print_exception("Client: main block");
}
return 0;

}

27.8 Security Policy Enforcing Application

An application can take some responsibility for ensuring compliance with
security policies during its operation. An application cannot take complete
responsibility because, as was discussed previously, there are many
contributing factors outside a software application’s control. To contribute
towards compliance with security policies, an application needs access to
security context information at run time.

o c i w e b . c o m 1019

2 7 . 8 S e c u r i t y P o l i c y E n f o r c i n g A p p l i c a t i o n

TAO’s implementation currently only offers a proprietary interface that
provides access to security context information during secure operation
invocations:

• SSLIOP::Current is a TAO-specific extension to the security
specification. It provides access to the certificate and the certificate
verification chain associated with a secure invocation’s initiator. It also
provides the means to determine whether or not the current invocation is
taking place within a secure session.

The sections that follow describe this interfaces and present code examples
demonstrating its use. Full source code and configuration files for this
example can be found in
$TAO_ROOT/orbsvcs/DevGuideExamples/Security/ParticipatingApp.

Note The forthcoming SecurityLevel3 module also offers a Current which would
provide similar information as to that provided in the now-obsolete
SecurityLevel1 and SecurityLevel2 interfaces.

27.8.1 SSLIOP::Current
The module SSLIOP defines the SSLIOP::Current interface and associated
types. The relevant portions of this module are:

module SSLIOP {

// portions omitted
typedef sequence<octet> ASN_1_Cert;
typedef sequence<ASN_1_Cert> SSL_Cert;

local interface Current : CORBA::Current {
exception NoContext {};

ASN_1_Cert get_peer_certificate () raises (NoContext);
SSL_Cert get_peer_certificate_chain () raises (NoContext);
boolean no_context ();

};
};

An ASN_1_Cert is a sequence of octets. Certificates are encoded using
ASN1’s distinguished encoding rules (DER). The OpenSSL library includes
functions for converting certificates from this format to OpenSSL’s internal
format and routines for manipulating certificates once they are in the internal
format.

1020 o c i w e b . c o m

T A O S e c u r i t y

The operation get_peer_certificate() returns the peer’s certificate in
ASN1 DER format. The operation get_peer_certificate_chain()
returns the sequence of certificates used to validate the initiating peer’s
certificate; the chain does not include the originating principal’s certificate.
These operations are available only during a secure invocation and only at the
target. Consequently, peer always refers to the operation’s initiator, i.e., to the
client.

The operation no_context() indicates whether or not the current operation
was invoked via a secure session. Invoking the other operations outside the
scope of a secure invocation results in a SSLIOP::Current::NoContext
exception.

27.8.2 Security Policy Enforcing Application Examples
For the first example, the Messenger server will now indicate whether or not a
message was delivered via a secure invocation. The new message format is:

SECURE message from: Chief of Security
Subject: New Directive
Message: Implementing security policy now!

We use SSLIOP::Current::no_context() to determine the nature of the
invocation, secure or not secure. Several changes are necessary to provide this
capability.

First, the Messenger_i servant needs a reference to SSLIOP::Current that
is accessible during the invocation. For that purpose, we add an
SSLIOP::Current_var attribute to the Messenger server object:

#include <orbsvcs/SSLIOPC.h>
#include "MessengerS.h"

class Messenger_i : public virtual POA_Messenger {
public:

Messenger_i (
SSLIOP::Current_ptr ssliop_current

);

virtual ~Messenger_i (void);

virtual CORBA::Boolean send_message (
const char* user_name,
const char* subject,
char*& message

o c i w e b . c o m 1021

2 7 . 8 S e c u r i t y P o l i c y E n f o r c i n g A p p l i c a t i o n

);

protected:
SSLIOP::Current_var ssliop_current_;

};

A reference to SSLIOP::Current is passed to the Messenger_i servant
upon construction and stored in ssliop_current_:

#include "Messenger_i.h"
#include <iostream>

Messenger_i::Messenger_i (
SSLIOP::Current_ptr ssliop_current

)
: ssliop_current_(SSLIOP::Current::_duplicate(ssliop_current))
{
}

Now the Messenger server’s main function must obtain a reference to
SSLIOP::Current to pass to the Messenger_i servant’s constructor. A
reference to SSLIOP::Current is obtained via the interface
CORBA::ORB::resolve_initial_references(). “SSLIOPCurrent” is
the name of the SSLIOP::Current object.

obj = orb->resolve_initial_references ("SSLIOPCurrent");
SSLIOP::Current_var ssliop_current =

SSLIOP::Current::_narrow (obj.in ());
PortableServer::Servant_var<Messenger_i> messenger_servant =
 new Messenger_i(ssliop_current.in());

Finally, the message output function uses the boolean operation
SSLIOP::Current::no_context() to select a message format:

CORBA::Boolean Messenger_i::send_message (
const char* user_name,
const char* subject,
char*& message

)
{

if (ssliop_current_->no_context())
std::cout << "Message from: " << user_name << std::endl;

else
std::cout << "SECURE message from: " << user_name << std::endl;

std::cout << "Subject: " << subject << std::endl;

1022 o c i w e b . c o m

T A O S e c u r i t y

std::cout << "Message: " << message << std::endl;
std::cout << std::endl;
return true;

}

For the second example, we introduce a new operation called shutdown()
that stops the Messenger server. However, we only allow authenticated users
to shut down the Messenger service. Therefore, make sure that all invocations
of shutdown() occur within a secure session by examining the return value
of SSLIOP::Current::no_context().

Here is the new interface definition:

interface Messenger {
boolean send_message (in string user_name,
 in string subject,
 inout string message);

void shutdown (in string user_name);
};

The ORB is shut down via the operation CORBA::ORB::shutdown(). The
Messenger_i servant now needs a reference to the ORB as well as a
reference to SSLIOP::Current.

Here is the updated Messenger_i servant header file:

#include <orbsvcs/SSLIOPC.h>
#include "MessengerS.h"

class Messenger_i : public virtual POA_Messenger {
public:

Messenger_i (
CORBA::ORB_ptr orb,
SSLIOP::Current_ptr ssliop_current

);

virtual ~Messenger_i (void);

virtual CORBA::Boolean send_message (
const char* user_name,
const char* subject,
char*& message

);

virtual void shutdown (
const char* user_name

o c i w e b . c o m 1023

2 7 . 8 S e c u r i t y P o l i c y E n f o r c i n g A p p l i c a t i o n

);

protected:
CORBA::ORB_var orb_;
SSLIOP::Current_var ssliop_current_;

};

Now the implementation changes. First the constructor:

Messenger_i::Messenger_i (
CORBA::ORB_ptr orb,
SSLIOP::Current_ptr ssliop_current

)
: orb_(CORBA::ORB::_duplicate(orb)),
 ssliop_current_(SSLIOP::Current::_duplicate(ssliop_current))
{
}

And the shutdown() operation:

void Messenger_i::shutdown (
const char* user_name

)
{

if (! (ssliop_current_->no_context())) {
std::cout << "Shutdown command from: " << user_name << std::endl;
std::cout << "Status: User authenticated." << std::endl;
std::cout << "Action: Sever shutdown in progress..."
 << std::endl;
std::cout << std::endl;

orb_->shutdown (0);
}
else {

std::cout << "Shutdown command from: " << user_name << std::endl;
std::cout << "Status: User *NOT* authenticated."
 << std::endl;
std::cout << "Action: Ignored." << std::endl;
std::cout << std::endl;

}
}

After the servant calls CORBA::ORB::shutdown(), CORBA::ORB::run()
returns in main. We announce the service is shut down and clean up before
exiting. Here are the changes to the main function:

#include "Messenger_i.h"

1024 o c i w e b . c o m

T A O S e c u r i t y

#include <iostream>

int
main(int argc, char* argv[]) {

try {

// Not shown:
// Init the ORB,
// get and activate the Root POA

obj =
orb->resolve_initial_references ("SSLIOPCurrent");

SSLIOP::Current_var ssliop_current =
SSLIOP::Current::_narrow (obj.in ());

PotrableServer::Servant_var<Messenger_i> messenger_servant =
 new Messenger_i(orb.in(), ssliop_current.in());

// Not shown:
// activate the messenger servant,
// create and export a Messenger
// object reference

orb->run();
poa->destroy (true, true);
orb->destroy ();

std::cout << "Messenger Server is shut down!"
 << std::endl;
std::cout << std::endl;

}

// Not shown:
// exception handling

return 0;
}

The Messenger service still handles message requests submitted in the clear
by unauthenticated clients, but it will not process a shutdown request unless it
is submitted via a secure session:

 Message from: Chief of Security
 Subject: New Directive
 Message: Terminating Messenger service!

 Shutdown command from: Chief of Security

o c i w e b . c o m 1025

2 7 . 8 S e c u r i t y P o l i c y E n f o r c i n g A p p l i c a t i o n

 Status: User *NOT* authenticated.
 Action: Ignored.

Here is the complete implementation for Messenger::shutdown():

void Messenger_i::shutdown (const char* user_name)
{

if (! (ssliop_current_->no_context())) {
// client has been authenticated

std::cout << "Shutdown command from: " << user_name << std::endl;
std::cout << "Status: User authenticated." << std::endl;
std::cout << "Action: Sever shutdown in progress..."
 << std::endl;
std::cout << std::endl;

orb_->shutdown (0);
}
else {

// requester has not been authenticated

std::cout << "Shutdown command from: " << user_name << std::endl;
std::cout << "Status: User *NOT* authenticated."
 << std::endl;
std::cout << "Action: Ignored." << std::endl;
std::cout << std::endl;

}
}

Here is the complete Messenger server’s main function:

#include "Messenger_i.h"
#include <iostream>
#include <fstream>

int main(int argc, char* argv[])
{

try {

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa =

PortableServer::POA::_narrow(obj.in());
PortableServer::POAManager_var mgr =

poa->the_POAManager();
mgr->activate();

obj = orb->resolve_initial_references ("SSLIOPCurrent");

1026 o c i w e b . c o m

T A O S e c u r i t y

SSLIOP::Current_var ssliop_current =
SSLIOP::Current::_narrow (obj.in ());

PortableServer::Servant_var<Messenger_i> messenger_servant =
 new Messenger_i(orb.in(),
 security_current.in(),
 ssliop_current.in());

PortableServer::ObjectId_var oid =
poa->activate_object(messenger_servant.in());

CORBA::Object_var messenger_obj =
poa->id_to_reference(oid.in());

CORBA::String_var str =
orb->object_to_string(messenger_obj.in());

std::ofstream iorFile("Messenger.ior");
iorFile << str.in() << std::endl;
iorFile.close();

std::cout << "IOR written to file Messenger.ior" << std::endl;

orb->run();
poa->destroy (true, true);
orb->destroy ();

std::cout << "Messenger Server is shut down!"
 << std::endl
 << std::endl;

}
catch(const CORBA::Exception& ex) {

ex._tao_print_exception("Server Error: main block");
return 1;

}

return 0;
}

27.9 Mixed Security Model Applications

Occasionally, an application may need to apply strict security for access to
most objects, while exempting access to some. Or may need the inverse,
applying weak security for most objects, while restricting access to some.

This can be achieved using the SercurityLevel2::AccessDecision
object provided as part of the TAO security library. It is a local object, who’s
interface is described in the CORBA Security Service specification, version
1.8. The formal interface has a single operation, access_allowed() used by

o c i w e b . c o m 1027

2 7 . 9 M i x e d S e c u r i t y M o d e l A p p l i c a t i o n s

the infrastructure to determine if a given request may be delivered to a
particular object. TAO extends the interface to facilitate the configuration of
the AccessDecision object.

From SecurityLevel2.idl, the interface for TAO’s AccessDecision object is
shown here:
module SecurityLevel2 {

local interface AccessDecision {
boolean access_allowed (

in SecurityLevel2::CredentialList cred_list,
in Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name

);
};

};

The CORBA compliant interface presents two challenges to TAO. The first is
general, there has to be a way to inform the AccessDecision object how do
decide about specific invocations. The second is really a TAO-specific
challenge, brought on by a performance optimization in the CDR marshalling
code. TAO does not initialize the bytes of padding that result from buffer
alignment. Thus two object references may point to the same object, but they
cannot be compared using a simple byte-wise comparison function.

To address these challenges, a TAO-specific extension to the AccessDecision
interface is provided.
module TAO {

module SL2 {
local interface AccesDecision : SecurityLevel2::AccessDecision {

boolean access_allowed_ex (
in ::CORBA::ORBid orb_id,
in ::CORBA::OctetSeq adapter_id,
in ::CORBA::OctetSeq object_id,
in SecurityLevel2::CredentialList cred_list,
in CORBA::Identifier operation_name

);

attribute boolean default_decision;

void add_object(
in ::CORBA::ORBid orb_id,
in ::CORBA::OctetSeq adapter_id,
in ::CORBA::OctetSeq object_id,
in boolean allow_insecure_access

);
void remove_object(

1028 o c i w e b . c o m

T A O S e c u r i t y

in ::CORBA::ORBid orb_id,
in ::CORBA::OctetSeq adapter_id,
in ::CORBA::OctetSeq object_id

);
};

};
};

The first challenge is addressed by providing accessor operations in the TAO
specific extension. These allow an application to easily identify particular
objects on which the AccessDecision is to decide, as well as a way to supply a
default decision for any object not explicitly added.

The challenge of unambiguously identifying a target object is addressed by
supplying the specific ORB, object adapter, and object identifiers. These can
be safely compared against reference values.

27.9.1 Using the AccessDecision Object
Server applications may use the AccessDecision object’s interface to add or
remove objects, and set the default decision value. The SSLIOP invocation
interceptor is responsible for calling the access_allowed_ex() operation.
A reference to the AccessDecision object is obtained through the security
manager interface. That interface returns the CORBA compliant base type
object, which must then be narrowed to a TAO-specific object for
initialization.
{

CORBA::Object_var obj = orb->resolve_initial_references
(“SecurityLevel2:SecurityManger”);
SecurityLevel2::SecurityManager_var sl2sm =

SecurityLevel2::SecurityManager::_narrow(obj.in)
SecurityLevel2::AccessDecision_var ad = sl2sm->access_decision()
TAO::SL2::AccessDecision_var tao_ad =

TAO::SL2::AccessDecision::_narrow(ad.in);

Once obtained, the server is able to supply specific object references which
may allow more or less restrictive access. There are two configuration options
with the TAO AccessDecision interface. Applications can set the default
decision, which is initially set to deny all requests. Applications can also
supply objects which are to be evaluted separate from the default.

The access being decided is less secure than what is configured for the
endpoint. There are two scenarios to consider, either allow most to be
accessed freely and require a higher level of security for some, or allow some
to be accessed freely and require a higher level of security for the rest. To

o c i w e b . c o m 1029

2 7 . 1 0 S S L I O P F a c t o r y O p t i o n s

achieve the first case, set the default decision attribute to true, and then add the
specific objects to be secured individually. To achieve the second case allow
the default decision to remain false, and then add the specific objects for open
access.

Supplying objects for special consideration to the AccessDecision object is
done via the add_object() operation. This requires the 3-tuple of ORB id,
POA id, and object ID relative to the POA. Continuing with the example
above, here we show adding some object to the AccessDecision object.

CORBA::String_var orbid = orb->id();
CORBA::OctetSeq_var poaid = my_poa->id();
PortableServer::ObjectId_var oid = my_poa->reference_to_id(my_ref.in())
tao_ad->add_object (orbid.in(), poaid.in(), oid.in(), true);
tao_ad->default_decision(false)

Once added, the object reference may be published via any ordinary means,
and the application no longer has to consider the AccessDecision object,
unless it wishes to later remove the object reference without terminating the
server.

27.10 SSLIOP Factory Options

The remainder of this chapter describes the individual options interpreted by
the default SSLIOP factory. These options are applied to the default SSLIOP
factory by the service configurator as described in 27.6.2.

27.10.1 SSLAcceptTimeout duration
Description This option specifies the amount of time in seconds, as a floating point value,

that SSLIOP will wait to complete the SSL handshake. For more information,
see 27.3.3.1, “Handshake Protocol” on page 989.

The default time out duration is 10 seconds.

Impact The SSL handshake includes a TCP handshake, so the timeout value should
take this the TCP handshake duration into account.

See Also 27.6.2, 27.6.3, 27.3.3.1

1030 o c i w e b . c o m

T A O S e c u r i t y

Example dynamic SSLIOP_Factory Service_Object*
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLAcceptTimeout 15.0"

27.10.2 SSLAuthenticate which

Description This option specifies the level of peer authentication conducted as secure
sessions are established between a client and a server.

Impact This option impacts the authentication required to participate in a secure
session.

See Also 27.6.2, 27.6.3, 27.7.3

Example dynamic SSLIOP_Factory Service_Object*
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLAuthenticate SERVER_AND_CLIENT"

27.10.3 SSLCAFile FORMAT:filename

Description Use this option to provide a file that contains an X.509 formatted trusted
certificate chain.

The environment variable SSL_CERT_FILE is checked if no -SSLCAFile
option is supplied.

Values for which

NONE (default) Disable peer authentication.

SERVER Client process will authenticate peers.

CLIENT
Server process will authenticate peers. The SSL protocol
causes this setting to be equivalent to
SERVER_AND_CLIENT.

SERVER_AND_CLIENT Client and Server processes will authenticate peers.

Valuesfor FORMAT

ASN1 ASN.1, Abstract Syntax Notation

PEM Privacy Enhanced Mail

o c i w e b . c o m 1031

2 7 . 1 0 S S L I O P F a c t o r y O p t i o n s

Example dynamic SSLIOP_Factory Service_Object*
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLCertificate PEM:cert.pem -SSLCAFile PEM:ca.pem"

27.10.4 SSLCAPath directory
Description Use this option to provide a directory that contains one or more files that

include PEM encoded trusted certificate chains.

The environment variable SSL_CERT_PATH is checked if no -SSLCAPath
option is supplied.

Note Older versions of OpenSSL do not correctly process this value.

See Also 27.3.2, 27.4.2

Example dynamic SSLIOP_Factory Service_Object*
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLCertificate PEM:cert.pem -SSLCAPath /ssl/ca"

27.10.5 SSLCertificate FORMAT:filename

Description This option specifies the path to the certificate used by the principal and the
format used to encode the data.

See Also 27.6.2, 27.6.3

Example dynamic SSLIOP_Factory Service_Object*
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLCertificate PEM:client_cert.pem"

27.10.6 SSLCheckHost
Description This option is used to enable another level of verification. The actual host

name of the peer is checked against specific host names or domain names
listed in the peer’s certificate.

Valuesfor FORMAT

ASN1 ASN.1, Abstract Syntax Notation

PEM Privacy Enhanced Mail

1032 o c i w e b . c o m

T A O S e c u r i t y

Impact The connection is terminated if the peer’s host name cannot be determined,
certificates were not exchanged, the peer’s certificate does not include host or
domain names, or if the version of the SSL implementation does not support
the check host feature.

Example dynamic SSLIOP_Factory Service_Object*
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLCheckhost -SSLAuthenticate SERVER"

27.10.7 SSLCipherList list
Description Supply a comma separated list of ciphers to the SSL implementation via a call

to SSL_CTX_set_cipher_list(). Refer to documentation on that function
for a description of acceptable cipher names.

Example dynamic SSLIOP_Factory Service_Object*
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLCipherList DSS,SHA"

27.10.8 SSLDHparams FORMAT:filename

Description This option specifies the path to the Diffie-Hellman cipher parameters.

A Diffie-Hellman cipher (anonymous or otherwise) requires these parameters.
Typically, a PEM-encoded DSA certificate includes a DH parameters section.
However, because the Anonymous Diffie-Hellman (ADH) cipher uses no
certificates, you must use this option (typically on the server side) for ADH.

Impact If you use the -SSLDHparams option together with -SSLCertificate,
SSLIOP uses the parameters specified by this option.

Note SSLIOP only recognizes the PEM encoding, and gives an error if you specify
ASN1

See Also 27.6.2, 27.6.3

Example dynamic SSLIOP_Factory Service_Object*
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \

Valuesfor FORMAT

ASN1 ASN.1, Abstract Syntax Notation

PEM Privacy Enhanced Mail

o c i w e b . c o m 1033

2 7 . 1 0 S S L I O P F a c t o r y O p t i o n s

"-SSLCertificate PEM:client_cert.pem \
 -SSLDHParams PEM:dhparams.pem"

27.10.9 SSLNoProtection
Description This option is used to enable the support of insecure IIOP connections along

side SSL secured connections. It is equivalent to specifying DEFAULT:eNULL
for the SSL cipher list.

When -SSLNoProtection is specified for server ORBs, the server will
accept plain IIOP connections as well as SSLIOP connections. Without it, the
server will reject plain IIOP traffic.

Clients configured with -SSLNoProtection will use IIOP whenever
allowed, permitting it to use both clear and secure services. If a server
supports both IIOP and SSLIOP, the configured client will use IIOP.

Specifying -SSLNoProtection allows insecure IIOP requests to be sent and
received by ORBs.

See Also 27.6.2, 27.7.3

Example dynamic SSLIOP_Factory Service_Object*
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLNoProtection"

27.10.10 SSLPassword KIND:value

Description Enables the distribution of password protected private keys while providing
deployment flexibility. A password protected key may be used without this

Values for KIND:value

prompt:[string] The value is a password entry prompt on the app’s terminal
device. If value is omitted then “Enter Password” is used

file:path The value is a path to a file containing only a password as a
clear text string. There is no default file name.

env:[var name]
The value is an environment variable containing the
password as a clear text string. The default variable name it
TAO_PEM_PASSWORD.

string A string not preceded by one of the above kind values is used
as the password itself.

1034 o c i w e b . c o m

T A O S e c u r i t y

option, in which case the SSL library’s default password entry mechanism is
used.

Usage A prompt string containing spaces must be quoted. The quotes must surround
the entire argument for -SSLPassword.

Any password kind beside the user prompt involves externalizing a clear text
password.

Example dynamic SSLIOP_Factory Service_Object*
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLPassword ‘prompt:Enter client key password’
-SSLPrivateKey PEM:client_key.pem"

27.10.11 SSLPrivateKey FORMAT:filename

Description This option specifies the type of private key, either PEM or ASn1, and the
pathname of the private key used by the principal.

See Also 27.6.2, 27.6.3

Example dynamic SSLIOP_Factory Service_Object*
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLPrivateKey PEM:client_key.pem"

27.10.12 SSLRand filename
Description This option provides a path to the seed file used by SSL. Refer to your SSL

library documentation for details on the contents of the file.

The environment variable SSL_RAND_FILE is checked if -SSLRand is not
supplied.

Valuesfor FORMAT

ASN1 ASN.1, Abstract Syntax Notation

PEM Privacy Enhanced Mail

o c i w e b . c o m 1035

2 7 . 1 0 S S L I O P F a c t o r y O p t i o n s

27.10.13 SSLServerCipherOrder
Description Set the SSL CTX option SSL_OP_CIPHER_SERVER_PREFERENCE to have the

server use its cipher list rather than the default behavior of selecting from the
client’s cipher list.

Example dynamic SSLIOP_Factory Service_Object*
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLCipherList DSS,SHA -SSLServerCipherOrder"

27.10.14 SSLVersionList list
Description For newer versions of OpenSSL this option is an alternative to crafting a

cipher list excluding compromised SSL or TLS versions, or including them as
necessary for compatibility with older peers.

Usage By default, OpenSSL will include SSLv2, SSLv3, TLSv1, TLSv1.1 and
TLSv1.2 in its set of ciphers. Provide this option with a comma separated
subset list.

Example dynamic SSLIOP_Factory Service_Object*
TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() \
"-SSLVersionList sslv3,tlsv1.2"

27.10.15 verbose
Description This option enables debug output during loading of the SSLIOP factory.

Usage The default behavior is equivalent to not specifying this option, i.e., no
debugging messages get printed.

Impact Specifying this option prints messages equivalent to passing
-ORBDebugLevel 1 on the command line. Note that you cannot use
-ORBDebugLevel to get the same effect, because protocol factories get
loaded before -ORBDebugLevel gets processed.

1036 o c i w e b . c o m

T A O S e c u r i t y

o c i w e b . c o m 1037

CHAPTER 28

Implementation Repository

28.1 Introduction

The TAO Implementation Repository (ImR) is a service which allows indirect
invocation of CORBA operations. Instead of connecting to a server, clients
initially connect to the ImR. The ImR will then optionally start the appropriate
server if the server is not running, and then provide the address of the server to
the client so that subsequent requests will go to this server.

Indirectly binding with the server in this manner can be useful in minimizing
the changes needed to accommodate server or object migration, allow for
automatic server start-up, and help in load balancing.

Chapter 3 demonstrated how a client uses an object reference to establish a
connection with a server. Generally, when a server receives a request, it has to
associate the request with one of its servants for processing. The process of a
server opening a connection and associating the object reference with a
servant is known as binding. TAO servers support both direct and indirect
binding.

A variant of the Implementation Repository, discussed in 28.12.2, is available
that provides a fault tolerant implementation which supports replication of

1038 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

state between dual redundant servers, transparent and seamless failover for
clients.

Note The TAO ImR can also manage servers that use JacORB, an open source Java
implementation of CORBA. See 28.14 for further information.

28.1.1 Direct Binding
When using direct binding, the server address and an object key are embedded
in an object’s IOR, which in URL form might look something like:

corbaloc:iiop:1.2@host:port/object_key

The first time a client invokes an operation on the object, the client ORB
extracts the address from this IOR and uses it to connect to a server. The client
ORB uses this connection to send requests to the server, and the server ORB
uses the object key to locate a servant for the request.

28.1.2 Indirect Binding
When using indirect binding, the ImR address is substituted for the actual
server address in the IOR. When the TAO ImR receives a client request it
extracts the POA name from the object key, and uses it to find a matching
registered server IOR. The ImR then responds with a LOCATION_FORWARD
message which instructs the client to repeat the request using the new IOR.
Subsequent client requests using the same object reference continue to use the
established server connection, and the ImR is not involved.

Note It is possible for a client to create another connection. For example, upon
receiving a COMM_FAILURE exception, a client may decide to retry by
invoking the operation again. The ImR will again forward the client to the
registered server if possible.

Throughout this chapter, a POA that uses a PERSISTENT lifespan policy and a
USER_ID object id assignment policy is referred to as a persistent POA, and
an object that is registered with a persistent POA is referred to as a persistent
object. In TAO all persistent POAs are registered with the ImR upon POA
creation if the -ORBUseImR 1 option is specified at ORB initialization. The

o c i w e b . c o m 1039

2 8 . 2 N e w f o r p a t c h e d O C I T A O 2 . 2 a

TAO_USE_IMR environment variable controls the default value for this setting.
Furthermore, any object references use indirect binding.

Keep in mind that there is a performance penalty for the first indirect request.
If there are a large number of client requests the interaction with the ImR may
become a bottleneck in the system.

Frequently this documentation uses the terms POA and server
interchangeably, because the ImR treats each registered POA as a separate
server. However, each server is capable of hosting multiple persistent POAs,
each of which may contain multiple indirect object references.

The ImR supports the ability to launch server processes on demand. Without
the ImR all servers must be running prior to any client request. This can result
in performance problems, especially for large systems, since servers consume
system resources even in their idle states.

The CORBA specification deliberately avoids standardizing the ImR
behavior, mentioning only that indirect binding should be supported, and
providing the LOCATION_FORWARD mechanism. This is sufficient to provide
portability from the client perspective, but any server/ImR interaction
described in this chapter is specific to TAO.

Note More information about binding and the ImR can be found in Chapter 14 of
Advanced CORBA Programming with C++. TAO’s ImR implementation was
originally based on the one described in that book.

28.2 New for patched OCI TAO 2.2a

There are new capabilities available in the ImR that are not available in the
base level of OCI TAO 2.2a.

Patch level 4 refined the behavior of the Implementation Repository when
dealing with servers registered for manual start mode. A new locator
command line option -lockout overrides the behavior when a server fails to
start after the specified number of restart attempts. When -lockout is absent,
the locator counts retries for a single engagement. When supplied, if any
engagement runs out of restart attempts, user intervention is required to reset
the server’s restart counter. In either case, the counter is reset upon a
successful start of the server.

1040 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

Patch level 1 added new tao_imr utility commands that give more control
over the life cycle of registered servers.

First is a command to identify groups of POAs as being members of the same
server application. The new command is link ensures that the ImR will not
start more than one instance of a server even if it received concurrent requests
for different POAs. Linking POAs also means that a command line, working
directory, etc. need only be entered once for all POAs, removing the
possibility of inconsistent start up options.

Second is a command to send an explicit termination signal to a server
process. This command is kill and takes an optional signal number. This is
useful if a server is unresponsive to a shutdown command. Shutdown is a
cooperative action, the ImR sends a CORBA request to the server to shut
down that has to be acted on. If the server is in a state where it cannot process
that request, it will not shut down. The kill command is implemented by the
activator, so obviously it is only available when the ImR activator is running
and was used to launch the server.

The behavior of the list command is slightly different in the patch 1 release.
The difference is in how servers that are running but not completely ready to
use are reported when list -a is used. Before patch 1, these servers were not
listed as being alive. Now they are shown as being alive but with the qualifier
(maybe) added to the server name. Server aliveness is a tri-state value. A
server is definitely alive if it is ready to handle requests. It is definitely not
alive if the process cannot be contacted. It is maybe alive if the server process
may be contacted, but it isn’t ready to handle requests.

28.3 The Operation of the ImR

ImR requires that an IOR it works with live beyond the server that created the
IOR. Therefore, the IOR must be created using a POA with the PERSISTENT
life span policy. If the server’s ORB was initialized using –ORBUseIMR 1 (or
with TAO_USE_IMR set to 1), then the persistent POA registers itself, upon
creation, with the ImR. If a server has more than one persistent POA, each is
registered as a separate server within the ImR. For each persistent POA, the
following information is registered:

• Server Name

• Address

o c i w e b . c o m 1041

2 8 . 3 T h e O p e r a t i o n o f t h e I m R

• ServerObject

The Server Name takes one of two forms. If the server’s ORB is initialized
with the -ORBServerID option, it is of the form server_id:poa_name. If the
server ID is not specified, it is simply the POA name. Either way the POA
name must match that of the registered server.

The TAO-specific ServerObject is a simple object which is activated in the
Root POA, and supports shutdown() and ping() operations.

The address is actually stored as the first part of the ServerObject IOR in
URL format. (e.g., corbaloc:iiop:1.2@127.0.0.1:8888/)

The server must be able to find the ImR to register this information. If an
Activator starts the server (see 28.5.1), then this happens automatically.
Otherwise, the server can locate the ImR by either passing the -ORBInitRef
ImplRepoService=... option, setting the ImplRepoServiceIOR
environment variable, or using the IOR multicast feature. These methods are
used to allow servers, Activators, and the ImR utility to find the ImR.

Additionally the ImR maintains the following information about each
registered server:

• Activation mode (discussed in 28.6).

• Start-up command

• Environment variables

• Working directory

• Start retry limit

Most of the above information is registered using the tao_imr utility, or read
from persistent storage when the ImR is started. The start-up command,
working directory, and environment variables are optional. However, a
start-up command is required for the ImR to start a server process. The ImR
uses the Start Retry Limit to automatically reattempt starting a server if it fails
to start the first time. How this limit is interpreted depends on the presence of
the -lockout argument on the ImR locator command line. By default the
retry limit is considered for each engagement of the ImR. An engagement
being an explicit start command via the tao_imr utility, or an implicit start
request resulting from a client locate request. When the limit is exceeded, a
TRANSIENT exception is thrown back to the requestor and the engagement is
cleared. The requestor, or another, may try again.

1042 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

 When -lockout is an ImR locator command line argument, exceeding the
retry limit prevents any future attempts to start the target server until some
user intervention. This may be using some other means of externally starting
the server or using the tao_imr utility to update the server entry, resetting the
retry count.

Any server started with the -ORBUseIMR 1 command line argument will
notify the ImR of its availability even if no record for that server exists in the
ImR. In that case, the ImR creates an entry with NORMAL activation mode, and
no start-up options. This can be modified later using the tao_imr utility if
necessary.

The ImR server registry is indexed by persistent POA name, so no two servers
using the same ImR may use the same persistent POA name. To differentiate
instances of servers that have the same persistent POA, the server instances
must use -ORBServerId <serverid>. In this case, the server is referenced
using "serverid:poa name" in various tao_imr commands.

If a server dies unexpectedly while communicating with a client, then the
client may get a COMM_FAILURE exception. If the client simply re-attempts the
operation, then it is once again directed through the ImR, which results in a
TRANSIENT exception unless start-up information is registered for the server.

Note The ping() operation described in 28.5 is disabled if no start-up information
is registered, because the ImR would only return a TRANSIENT exception
anyway.

28.3.1 Basic Indirection
When a server is already running, the steps involved in a client sending
requests to a server using the ImR are as follows:

1. Client sends a request to ImR.

2. ImR looks up the server, and sees that it is running.

3. ImR sends LOCATION_FORWARD reply to Client.

4. Client sends request to Server.

5. Server sends reply to Client.

o c i w e b . c o m 1043

2 8 . 4 B a s i c I n d i r e c t i o n E x a m p l e

Note The client will continue to use the new address for future invocations until a
COMM_FAILURE or TRANSIENT exception occurs, after which the client will
revert to the address of the ImR until forwarded again.

28.4 Basic Indirection Example

The following example illustrates how to achieve indirect binding without the
ability to start the servers on demand. The source code for this example can be
found in $TAO_ROOT/orbsvcs/DevGuideExamples/ImplRepo/Basic.

28.4.1 Create the Server
We use a slightly modified version of our typical MessengerServer for this
example. The only change we have to make is to use a persistent POA. The
Messenger_i.h and Messenger_i.cpp files remain unchanged.

28.4.1.1 MessengerServer.cpp
#include "Messenger_i.h"
#include <iostream>
#include <fstream>

PortableServer::POA_ptr createPersistentPOA (
 PortableServer::POA_ptr root_poa, const char* poa_name)
{

 CORBA::PolicyList policies(2);
 policies.length(2);

 policies[0] = root_poa->create_lifespan_policy (
 PortableServer::PERSISTENT);
 policies[1] = root_poa->create_id_assignment_policy (
 PortableServer::USER_ID);

 PortableServer::POAManager_var mgr = root_poa->the_POAManager();
 PortableServer::POA_var poa = root_poa->create_POA (
 poa_name, mgr.in(), policies);

 policies[0]->destroy();
 policies[1]->destroy();

 return poa._retn();
}

1044 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

void writeIORFile(const char* ior)
{
 std::ofstream out("Messenger.ior");
 out << ior << std::endl;
}

int main(int argc, char* argv[])
{
 try {
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var root_poa = PortableServer::POA::_narrow(obj.in());
 PortableServer::POAManager_var mgr = root_poa->the_POAManager();

 const char* poa_name = "MessengerService";

 PortableServer::POA_var poa = createPersistentPOA(root_poa.in(), poa_name);

 PortableServer::Servant_var<Messenger_i> servant = new Messenger_i;

 CORBA::ObjectId_var object_id = PortableServer::string_to_ObjectId("object");

 poa->activate_object_with_id(object_id.in(), servant.in());

 obj = poa->id_to_reference(object_id.in());
 CORBA::String_var ior = orb->object_to_string(obj.in());

 writeIORFile(ior.in());

 mgr->activate();

 std::cout << "Messenger server ready." << std::endl;

 orb->run();

 std::cout << "Messenger server shutting down." << std::endl;

 root_poa->destroy(true,true);
 orb->destroy();

 return 0;
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "Server main() Caught Exception " << ex << std::endl;
 }
 return 1;
}

o c i w e b . c o m 1045

2 8 . 4 B a s i c I n d i r e c t i o n E x a m p l e

28.4.1.2 MessengerClient.cpp
#include "MessengerC.h"
#include <iostream>

int main(int argc, char* argv[])
{
 try {
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 CORBA::Object_var obj = orb->string_to_object("file://Messenger.ior");

 Messenger_var messenger = Messenger::_narrow(obj.in());
 if (is_nil(messenger.in())) {
 std::cerr << "Unable to get a Messenger reference." << std::endl;
 return 1;

 CORBA::String_var message = CORBA::string_dup("Hello!");
 messenger->send_message("TAO User", "TAO Test", message.inout());
 std::cout << "message was sent" << std::endl;
 std::cout << "Reply was : " << message.in() << std::endl;

 return 0;
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "Client main() Caught Exception: " << ex << std::endl;
 }
 return 1;
}

28.4.2 Run the Example
Now that we have a modified version of our server we can start several
command windows, and demonstrate how it works.

1. Start the tao_imr_locator

For simplicity, we set the ImplRepoServiceIOR environment variable,
which allows applications, such as our server and the tao_imr utility, to find
the ImR without the need to supply lengthy –ORBInitRef options on the
command line. Alternatively we could start the ImR with -m to allow clients
to find it using multicast service discovery.

$ ImplRepoServiceIOR=corbaloc::localhost:8888/ImR; export ImplRepoServiceIOR
$ cd $TAO_ROOT/orbsvcs/ImplRepo_Service
$./tao_imr_locator –ORBListenEndpoints iiop://:8888
Implementation Repository: Running
 Ping Interval : 10000ms

1046 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

 Startup Timeout : 60s
 Persistence : Disabled
 Multicast : Disabled
 Debug : 1
 Locked : False

2. Start the Server

We start the server, passing –ORBUseIMR 1, so that it registers itself with the
ImR. Alternatively, we could have set the TAO_USE_IMR environment
variable to make this the default.

$ MessengerServer –ORBUseIMR 1
Messenger server ready.

The ImR output shows that our server was automatically registered.

ImR: Server MessengerService is running at corbaloc:iiop:1.2@192.168.1.10:1323/
ImR: Auto adding NORMAL server:<MessengerService>

3. Run the Client

$MessengerClient
message was sent
Reply was : A reply.

The ImR output shows that it forwarded the client to our server.

ImR: Forwarding invocation on <MessengerService> to
<corbaloc:iiop:1.2@192.168.1.10:1323/…NUP…MessengerService…object>

(Some parts of the IOR above replaced with ellipsis for brevity)

The server output shows a successful invocation.

Message from: TAO User
Subject: TAO Test
Message: Hello!

28.5 Server Start-up

The exact conditions under which the ImR decides to start a server are
determined by the Activation Mode described in 28.5.1, but typically the ImR

o c i w e b . c o m 1047

2 8 . 5 S e r v e r S t a r t - u p

starts a server if it is not registered as running, or if the server cannot be
pinged successfully. Once the server has been started, the ImR waits for the
server to register its running information, which includes a ServerObject
and a partial IOR. Multiple simultaneous client invocations are supported, and
each blocks, waiting on the server to register this information. Each persistent
POA in the server is treated as a separate server registration within the ImR
unless they are linked via the tao_imr link command. POAs register with
the ImR as soon as they are created.

Once the server registers its running information, the ImR wakes one of the
waiting client operations, and uses it to ping the server to ensure that it is
really running. The result of the ping determines whether the server is running,
not running, or is in an indeterminate state.

• Running

If the server is running, or if the start-up retry count has been exceeded,
then all clients are awakened and forwarded to the server. By connecting
the clients to the server if the retry count was exceeded the clients can get
the appropriate error status directly from the server.

• Not Running

If the server is not running, then the whole start-up process is repeated if a
start-up retry count is configured for the server.

• Indeterminate

If the status cannot be determined, the ping repeats a fixed number of
times with an increasing delay between subsequent attempts.

To more efficiently handle multiple client requests, the ping() operation has
a defined interval (see the -v command line option) that is passed to the ImR at
start-up. If a ping has successfully completed within the specified interval,
then the server is assumed to be running.

The ping() operation has a very short timeout configured (see the -g
command line option), and a timeout is considered proof that the server is
running. A well-written server should avoid activating the POA Manager until
the server is actually ready to handle requests.

In some instances, a server may not register its running status with the ImR
within the allowed start-up time. (See the –t command line option for the
ImR.) This is treated as a start-up failure, and start-up may be retried as
described previously.

1048 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

If the start-up retry count is exceeded then a server becomes locked, and the
ImR will not attempt to start that server again. Instead it immediately returns a
TRANSIENT exception to any waiting clients. You can reset the start-up retry
count using the tao_imr utility.

If a server dies unexpectedly while communicating with a client, then the
client may get a COMM_FAILURE exception. If the client simply reattempts
the operation, then it is once again directed through the ImR, which may allow
the ImR to restart the server. However, if the server was pinged successfully
within the configured ping interval, then the client may be redirected to the
dead server, and receive a TRANSIENT.

28.5.1 Using An Activator
The ImR has the ability to start servers using a separate process called the ImR
Activator. The Activator is a simple program that runs on the same machine as
a server, and is capable of spawning processes. The ImR sends the command
line, working directory, and environment variables to the Activator which uses
this information to start the server. The Activator returns immediately, and
does not maintain any kind of ownership of the launched processes.

Note On UNIX and UNIX-like platforms the Activator can monitor the launched
processes for cleanup purposes, and can optionally notify the ImR when
processes die.

The Activator automatically sets the ImplRepoServiceIOR and
TAO_USE_IMR environment variables for all spawned processes. This means
that servers started by the Activator do not need to pass -ORBUseIMR 1, nor
do they have to specify an -ORBInitRef ImplRepoService=... option.

A server started by the Activator typically responds to the first ping with a
TRANSIENT exception indicating that the POA is in a holding state, because
the POA Manager has not been activated. This causes the ImR to retry the
ping. This second ping typically times out, which is treated as a successful
ping. This is because you do not get a second TRANSIENT exception unless
orb->run() has been called, or another request is sent from the server.

The steps involved in a client being able to connect to a non-running server
using an ImR and Activator are given below.

The first task is to activate the server using the Activator:

o c i w e b . c o m 1049

2 8 . 5 S e r v e r S t a r t - u p

1. Client sends a request to ImR.

2. ImR looks up the server, and sees it is not running.

3. ImR sends a start request to ImR Activator.

4. Activator starts the Server.

5. Activator sends a start reply to ImR.

6. Server sends a running request to ImR.

7. ImR sends a ping() request to Server.

8. Server sends a ping() reply to ImR.

With the server waiting for requests the ImR can then inform the client to send
requests to the server:

1. ImR sends a Location Forward reply to client.

2. ImR sends a running reply to Server.

3. Client sends a request to Server.

4. Server sends a reply to Client.

Note Future versions of the ImR may change the POA implementation so that the
server registers its running information when the POA Manager is activated
instead of when the POA is created. This would eliminate steps #7 and #8
above, because registration of running information will be treated as a
successful ping.

28.5.2 Activator Example
The basic indirection example was enough to demonstrate the primary usage
of the ImR, but often the ImR is also used to automatically start servers as
needed. This example illustrates the use of the ImR and ImR Activator to start
servers on demand. For this to work, an ImR Activator must be started and
running on the same host as the server. We must also register a valid
command line for our server using the tao_imr utility.

Our source code remains unchanged from the example in 28.4. However, the
script to run the example is different and can be found in
$TAO_ROOT/orbsvcs/DevGuideExamples/ImplRepo/Activator.

28.5.2.1 Run the Example

1. Start the tao_imr_locator

1050 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

$ ImplRepoServiceIOR=corbaloc::localhost:8888/ImR; export ImplRepoServiceIOR
$ cd $TAO_ROOT/orbsvcs/ImplRepo_Service
$./tao_imr_locator –ORBListenEndpoints iiop://:8888
Implementation Repository: Running
 Ping Interval : 10000ms
 Startup Timeout : 60s
 Persistence : Disabled
 Multicast : Disabled
 Debug : 1
 Locked : False

2. Start an Activator

The activator must be started on the same host on which we want to run the
server.

$ $TAO_ROOT/orbsvcs/ImplRepo_Service/tao_imr_activator
ImR Activator: Starting MYHOST
ImR Activator: Registered with ImR.

The ImR output shows that our activator registered correctly.

ImR: Activator registered for MYHOST.

3. Register the server

We assume $ACE_ROOT/bin, where the tao_imr utility is located, is in your
PATH. We accept the defaults for the Activator name, and other start-up
options. The server’s command line does not require the -ORBUseIMR 1 or
-ORBInitRef ImplRepoService=corbaloc::localhost:8888/ImR
options, because these will be supplied automatically by the Activator.

$ tao_imr add MessengerService –c "MessengerServer"
Successfully updated <MessengerService>.

The ImR output shows that we added the server.

ImR: Add/Update server <MessengerService>

4. Run the Client

In our example, the client relies on the existence of a file named
messenger.ior that contains the Messenger object’s IOR. You must either
run the server once to generate the file, or use the file created in the basic
indirection example.

o c i w e b . c o m 1051

2 8 . 6 A c t i v a t i o n M o d e s

$ MessengerClient
message was sent
Reply was : A reply.

The ImR output shows that it forwarded the client to our server.

ImR: Starting server <MessengerService>. Attempt 1/1.
ImR: Waiting for <MessengerService> to start...
ImR: Server MessengerService is running at corbaloc:iiop:1.2@192.168.1.10:1323/.
ImR: Forwarding invocation on <MessengerService> to
<corbaloc:iiop:1.2@192.168.1.10:1323/…NUP…MessengerService…object>

(Some parts of the IOR above replaced with ellipsis for brevity.)

The ImR Activator output shows that it successfully started the server.

ImR Activator: Successfully started <MessengerService>.

The server output shows a successful invocation.

Message from: TAO User
Subject: TAO Test
Message: Hello!

28.6 Activation Modes

The ImR supports registering servers with one of four different activation
modes. These affect how a server is started, and have no meaning if a server is
not startable. For a server to be startable, it must have a registered command
line and Activator name, and the corresponding Activator must be registered
and running.

Note If a server registers itself automatically then no Activator or command line
will be associated.

You must configure the activation mode using the tao_imr add or update
command. Alternatively, you may stop the ImR, edit the XML or Windows
registry persistent data manually, then start the ImR to initiate the changes.

1052 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

The ImR has the ability to start a server on demand, at ImR start-up, or in
response to commands from the tao_imr utility.

Valid activation modes are:

• normal

The common usage of the ImR is to have it automatically start any servers
as needed for incoming client requests. This mode also allows servers to
be manually started using the tao_imr start command.

• auto_start

This behaves exactly like normal mode, except that the ImR attempts to
start the server as the ImR itself is started. You can also use the tao_imr
autostart command to manually start these servers.

• manual

This prevents the server from starting automatically as the result of an
incoming client request. You must use the tao_imr start command to
start the server, or start the server manually using some other mechanism.

• per_client

The name of this mode can be misleading, because the ImR does not
actually keep track of which clients have attempted to use a server. Instead
this simply means that a new server will be spawned for each incoming
request to the ImR. Once a client has been forwarded by the ImR to an
actual server, the client will continue to use this connection for future
communications until a TRANSIENT or COMM_FAILURE exception occurs.
In this case, the client will make a connection back to the ImR, and the
process will repeat.

Note It is possible for a client to make a second connection using the indirect object
reference, and this will cause the ImR to launch another server. For this
reason, per_client activation should be used with care.

Note See 28.7 for special steps that must be taken to use per_client activation
with an IOR Table.

o c i w e b . c o m 1053

2 8 . 7 U s i n g t h e I m R a n d t h e I O R T a b l e

28.7 Using the ImR and the IOR Table

The IOR Table described in Chapter 13 can also be used in servers that use the
ImR. Recall that using the IOR Table costs an additional level of indirection
with most servers. The first time a client accesses the server, it is forwarded by
the IOR Table back to the server itself using the bound IOR. When combined
with the ImR, the result is two levels of indirection. First the client is
forwarded by the ImR to the server, and then the server forwards the client
back to itself using the IOR Table.

Servers which use the ImR always change all object references associated
with persistent POAs to point to the ImR (i.e., indirect binding). This needs to
be done in case the server later terminates and needs to be restarted. In this
case the IOR registered in the IOR Table points at the ImR, which causes
another level of indirection. To avoid this extra cost, you can use a TAO
specific function to create a direct bound object reference for use in the IOR
Table.

TAO_Root_POA* tpoa = dynamic_cast<TAO_Root_POA*>(poa.in());
CORBA::Object_var obj = tpoa->id_to_reference_i(id, false);
CORBA::String_var ior = orb->object_to_string(obj.in());

You must use this code for per_client activation, or two servers will be
started for each client invocation.

The tao_imr utility can be used to generate IORs for any registered server
even if the server is not running. It simply constructs a corbaloc object URL
using a simple object key passed as an argument. (e.g.,
corbaloc:iiop:1.2@127.0.0.1:8888/MyPOA). For this to work, you
must register the simple key with the IOR Table in your server.

You can also bind multiple IORs to simple object keys for each persistent
POA. Simply use a forward slash ‘/’ to separate the POA name from the object
key.

iorTable->bind("MessengerService/Messenger1", ior1);
iorTable->bind("MessengerService/Messenger2", ior2);

This is accessed using an object URL such as:

corbaloc:iiop:1.2@127.0.0.1:8888/MessengerService/Messenger1

1054 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

This object URL can be generated using the following tao_imr command:

tao_imr ior MessengerService/Messenger1

For the best performance, you should avoid use of the IOR Table due to the
extra level of indirection it introduces. To ensure that clients always access
your server in the most efficient way possible, do not register anything with
the IOR Table. This forces clients to use IORs, or object URLs with full object
keys.

To ensure that your object references are always valid, you must be sure to
start the server on a consistent endpoint. For example:

–ORBListenEndpoints iiop://:9999

To make the IORs more human-readable, you may also want to use the
-ORBObjRefStyle URL option (see 17.13.52).

28.7.1 The Steps in Using an IOR Table
When a client sends a request the ImR that will become fulfilled by a server
using an IOR Table that is already running, the following steps are taken to
allow the client to send a request to the server:

1. Client sends a request to ImR.

2. ImR looks up the server, and sees that it is running.

3. ImR sends a ping() request to Server.

4. Server sends a ping() reply to ImR.

5. ImR sends a Location Forward reply to Client.

6. Client sends a request to Server.

7. Server sends a Location Forward reply to Client.

8. Client sends a request to Server.

9. Server sends a reply to Client.

28.8 ImR and IOR Table Example

We modify our first example to show how to support an IOR Table. We also
show how to register more than one object in a persistent POA, and we expose

o c i w e b . c o m 1055

2 8 . 8 I m R a n d I O R T a b l e E x a m p l e

these objects using simple URLs. The source code for this example can be
found in
$TAO_ROOT/orbsvcs/DevGuideExamples/ImplRepo/IORTable.

28.8.1 Create the Server
We modify our existing MessengerServer.cpp to support our new
requirements.

28.8.1.1 MessengerServer.cpp
#include "Messenger_i.h"
#include <tao/PortableServer/POA.h>
#include <tao/IORTable/IORTable.h>
#include <iostream>
#include <fstream>

PortableServer::POA_ptr createPersistentPOA(
 PortableServer::POA_ptr root_poa, const char* poa_name)
{

 CORBA::PolicyList policies(2);
 policies.length(2);

 policies[0] = root_poa->create_lifespan_policy (
 PortableServer::PERSISTENT);
 policies[1] = root_poa->create_id_assignment_policy (
 PortableServer::USER_ID);

 PortableServer::POAManager_var mgr = root_poa->the_POAManager();
 PortableServer::POA_var poa = root_poa->create_POA (
 poa_name, mgr.in(), policies);

 policies[0]->destroy();
 policies[1]->destroy();

 return poa._retn();
}

void writeIORFile(const char* ior, const char* name)
{
 std::ofstream out(name);
 out << ior << std::endl;
}

int main (int argc, char *argv[])
{
 try {

1056 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var root_poa = PortableServer::POA::_narrow(obj.in());

 PortableServer::POAManager_var mgr = root_poa->the_POAManager();

 const char* poa_name = "MessengerService";

 PortableServer::POA_var poa = createPersistentPOA (root_poa.in(), poa_name);

 PortableServer::Servant_var<Messenger_i> servant1 = new Messenger_i;
 PortableServer::Servant_var<Messenger_i> servant2 = new Messenger_i;

 CORBA::ObjectId_var id1 = PortableServer::string_to_ObjectId("Messenger1");
 poa->activate_object_with_id(id1.in(), servant1.in());
 CORBA::ObjectId_var id2 = PortableServer::string_to_ObjectId("Messenger2");
 poa->activate_object_with_id(id2.in(), servant2.in());

 obj = poa->id_to_reference(id1.in());
 CORBA::String_var ior1 = orb->object_to_string(obj.in());
 obj = poa->id_to_reference(id2.in());
 CORBA::String_var ior2 = orb->object_to_string(obj.in());

 TAO_Root_POA* tpoa = dynamic_cast<TAO_Root_POA*>(poa.in());
 obj = tpoa->id_to_reference_i(id1.in(), false);
 CORBA::String_var direct_ior1 = orb->object_to_string(obj.in());

 obj = orb->resolve_initial_references("IORTable");
 IORTable::Table_var ior_table = IORTable::Table::_narrow(obj.in());
 ior_table->bind("MessengerService/Messenger1", direct_ior1);
 // Bind using an indirect reference.
 ior_table->bind("MessengerService/Messenger2", ior2);

 writeIORFile(ior1.in(), "Messenger1.ior");
 writeIORFile(ior2.in(), "Messenger2.ior");

 mgr->activate();

 std::cout << "Messenger server ready." << std::endl;

 orb->run();

 std::cout << "Messenger server shutting down." << std::endl;

 root_poa->destroy(true,true);
 orb->destroy();

 return 0;
 }

o c i w e b . c o m 1057

2 8 . 8 I m R a n d I O R T a b l e E x a m p l e

 catch (CORBA::Exception& ex) {
 std::cerr << "Server main() Caught Exception" << ex << std::endl;
 }
 return 1;
}

28.8.1.2 MessengerClient.cpp
#include "MessengerC.h"
#include <ace/SString.h>
#include <iostream>

int main (int argc, char* argv[])
{
 try {
 if (argc <= 1) {
 std::cerr << "Error: Must specify the name of an IOR file." << std::endl;
 return 1;
 }
 ACE_CString ior = "file://";
 ior += argv[1];

 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 CORBA::Object_var obj = orb->string_to_object(ior.c_str());

 Messenger_var messenger = Messenger::_narrow(obj.in());
 if (CORBA::is_nil(messenger.in())) {
 std::cerr << "Unable to get a Messenger reference." << std::endl;
 return 1;
 }

 CORBA::String_var message = CORBA::string_dup("Hello!");
 messenger->send_message("TAO User", "TAO Test", message.inout());
 std::cout << "message was sent" << std::endl;
 std::cout << "Reply was : " << message.in() << std::endl;

 return 0;
 }
 catch (CORBA::Exception& ex) {
 std::cerr << "Client main() Caught Exception: " << ex << std::endl;
 }
 return 1;
}

1058 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

28.8.2 Run the Example
Now that we have a modified version of our server we can start several
command windows, and demonstrate how it works.

1. Start the tao_imr_locator

For simplicity, we set the ImplRepoServiceIOR environment variable,
which allows applications, such as our server and the tao_imr utility, to find
the ImR without the need to supply lengthy –ORBInitRef options on the
command line.

$ ImplRepoServiceIOR=corbaloc::localhost:8888/ImR; export ImplRepoServiceIOR
$ cd $TAO_ROOT/orbsvcs/ImplRepo_Service
$./tao_imr_locator –ORBListenEndpoints iiop://:8888
Implementation Repository: Running
 Ping Interval : 10000ms
 Startup Timeout : 60s
 Persistence : Disabled
 Multicast : Disabled
 Debug : 1
 Locked : False

2. Start the Server

We start the server, passing –ORBUseIMR 1, so that it registers itself with the
ImR.

$ MessengerServer –ORBUseImR 1
Messenger server ready.

The ImR output shows that our server was automatically registered:

ImR: Server MessengerService is running at corbaloc:iiop:1.2@192.168.1.10:1323/
ImR: Auto adding NORMAL server:<MessengerService>

3. Run Client 1

$ MessengerClient messenger1.ior
message was sent
Reply was : A reply.

The ImR output shows that it forwarded the client to our server:

ImR: Forwarding invocation on <MessengerService> to
<corbaloc:iiop:1.2@192.168.1.10:1323/…NUP…MessengerService…Messenger1>

o c i w e b . c o m 1059

2 8 . 8 I m R a n d I O R T a b l e E x a m p l e

(Some parts of the IOR above were replaced with ellipsis for brevity.)

The server output shows a successful invocation:

Message from: TAO User
Subject: TAO Test
Message: Hello!

4. Run Client 2

$ MessengerClient messenger2.ior
message was sent
Reply was : A reply.

The ImR output shows that it forwarded the client to our server:

ImR: Forwarding invocation on <MessengerService> to
<corbaloc:iiop:1.2@192.168.1.10:8888/…NUP…MessengerService…Messenger2>

The server output is the same as above.

5. Create corbaloc object URLs

Here we demonstrate how to use the tao_imr utility to create an IOR, and
also how to create one manually. We can create the IOR manually, because we
started the ImR on a known endpoint.

$ tao_imr ior MessengerService/Messenger1 –f messenger3.ior
corbaloc:iiop:1.2@192.168.1.10:8888/MessengerService/Messenger1
$ echo corbaloc::localhost:8888/MessengerService/Messenger1 > messenger4.ior

6. Run Client 3

$ MessengerClient messenger3.ior
message was sent
Reply was : A reply.

The ImR output shows that this time we forward using a simple object key
instead of a full-blown IOR. This means the server will have to forward the
client again using its IOR Table.

ImR: Forwarding invocation on <MessengerService> to
<corbaloc:iiop:1.2@192.168.1.10:1272/MessengerService/Messenger1>

The server output is the same as above.

1060 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

7. Run Client 4

$ MessengerClient messenger4.ior
message was sent
Reply was : A reply.

This time we can see that the ImR has to forward two invocations. This is
because the server’s IOR Table contains an indirect object reference.

ImR: Forwarding invocation on <MessengerService> to
<corbaloc:iiop:1.2@192.168.1.10:1272/MessengerService/Messenger2>
ImR: Forwarding invocation on <MessengerService> to
<corbaloc:iiop:1.2@192.168.1.10:1272/…NUP…MessengerService…Messenger2>

The server output is the same as above.

28.9 Advanced Examples

You may want to experiment with Activator example using the various
Activation Modes, and other server start-up options. This should not require
any source code changes. You can also experiment with the ImR persistence,
start-up timeout, and ping interval settings.

You can find additional ImR tests and examples for TAO in
$TAO_ROOT/orbsvcs/examples/ImR and
$TAO_ROOT/orbsvcs/examples/ImplRepo.

28.10 Repository Persistence

The ImR can load and save its list of registered servers and Activators to
persistent storage using one of three formats. The easiest to work with is an
XML format that can be edited by hand. The XML file is rewritten in response
to any change in registration information, and may therefore be inefficient for
large, or very busy, repositories. A more efficient binary format is supported,
but this can be difficult to work with, and is known to have problems on some
platforms. The ImR can also save its registration information to the registry on
Windows systems.

• XML

o c i w e b . c o m 1061

2 8 . 1 1 I m R U t i l i t y

Starting the ImR with –x repo.xml creates a file containing an entry for
every registered server and Activator. The schema for this XML file can be
found at $TAO_ROOT/orbsvcs/ImplRepo_Service/ImR.xsd.

• Binary

Starting the ImR with –p repo.bin stores registered Activators and servers
in a binary file.

Note This option may have problems on some platforms when the memory mapped
file used internally needs to be expanded.

• Windows registry

Starting the ImR with –r stores registered servers and Activators at:

HKEY_LOCAL_MACHINE\SOFTWARE\TAO\ImplementationRepository

28.11 ImR Utility

TAO provides a command line tool called tao_imr that you can use to

• add or edit server information in the ImR,

• create IORs suitable for connecting to a server,

• view the status of registered servers,

• start or shutdown registered servers.

The full path to the tao_imr utility is $ACE_ROOT/bin/tao_imr.

28.11.1 Command Line Options
The general syntax for the ImR utility is

tao_imr command [options] [args]

Most of the commands take a server name as an argument. You can get help
information on each command via the -h option. For example:

$ tao_imr start -h

1062 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

Starts a server using its registered Activator.

Usage: tao_imr [options] start <name>
 where [options] are ORB options
 where <name> is the name of a registered POA.
 -h Displays this

The commands and options that can be passed to tao_imr are summarized in
the table below, followed by a detailed description of each command.

Table 28-1 Command Line Options for tao_imr

Command Option Description

add / update

-a

normal Start server on client invocation.

manual Start server with tao_imr activate.

per_client Start a new server for each client.

auto_start
Start server when ImR is started or with
tao_imr auto_start.

-c cmdline Command line string used to start server.

-e var=value
Set environment variable at server start-up.
Repeat this option to add more than one
environment variable.

-l activator The activator to use for starting the server.

-w working_dir Specify the server’s working directory.

-r count Set the startup/ping retry count to count.

autostart
Start all servers with activation mode of
auto_start.

ior -f filename
Write a corbaloc URL to standard output.
Optionally place the newly-created IOR into
filename.

kill -s signal
kill the server by sending the specified
signal. The default signal number is 9.

o c i w e b . c o m 1063

2 8 . 1 1 I m R U t i l i t y

28.11.1.1 add/update

Synopsis tao_imr add|update <server> [-a normal|manual|per_client|auto_start] [-c cmdline]
[-e var=value] [-w working dir] [-r count] [-l activator]

These commands are used to add a new server registration and to update an
existing server registration respectively. They take exactly the same options.
The only difference is that add cannot be used to change an existing server.
This means you can use update to add new servers.

You may specify an activation mode of auto_start, manual, normal, or
per_client. The default activation mode is normal.

Note It is possible for a client to make a second connection using the indirect object
reference, and this will cause the ImR to launch another server. For this
reason, per_client activation should be used with care.

The command line, working directory, environment variables, and retry count
are all optional, but you must specify at least a command line if you want the

link -p peer_list
Provide a list of peer POAs to link to the
named server.

list

-v
Display the names and status of registered
servers. Optionally display registered
start-up information.

-a
Only show active servers by pinging the
registered servers and excluding those
servers that do not respond to the ping.

remove Remove the server registration.

shutdown Shutdown the server.

shutdown-repo -a
Shutdown the ImR, and optionally all
registered activators.

start Start the server.

Table 28-1 Command Line Options for tao_imr

Command Option Description

1064 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

ImR to be able to start the server. The command line can be any command,
and does not necessarily have to directly start the server. For example, it could
run a script that causes the creation of a new persistent POA in an already
running server process.

You can specify the –e option multiple times on a single command line to set
multiple environment variables. The specified environment variables will
replace any that currently exist when updating.

The working directory does not affect the command line. If the command is
not in the path, then specifying the working directory does not allow the
command to run. Therefore, you must also specify the directory to the cmdline
argument.

The retry count is a feature to prevent further attempts to start servers that are
not functioning correctly. If a server either cannot be started by the Activator,
or does not register its running information with the ImR in a timely manor,
then the ImR will attempt to start it again. The start-up timeout is a command
line option to the ImR that is shared by all servers. An additional feature of the
update command is that it always resets the start-up count for a server.

You can specify an activator for a server, and this defaults to the hostname of
the machine on which the tao_imr utility is run. If you use the –n name
feature of the Activator then you must use the same name here so that the ImR
can find the correct Activator to start the server. Any auto-added servers will
not have an Activator set, so the tao_imr update command must be used to
set it if you want to make the server startable.

Note In previous versions of the ImR, you could not change the Activator for a
registered server. This restriction was due to an internal implementation
detail that has since changed.

28.11.1.2 autostart

Synopsis tao_imr autostart <server>

This command is used to start all servers registered with the auto_start
activation mode. In other respects it works exactly the same as the start
command.

o c i w e b . c o m 1065

2 8 . 1 1 I m R U t i l i t y

28.11.1.3 ior

Synopsis tao_imr ior <server> [-f filename]

This command can be used to construct a valid simple corbaloc URL for
accessing a server registered with the ImR. This is only useful if the address of
the ImR is unknown, because, for example, you are using multicast to find the
ImR. If the address of the ImR is known, then it is easier to construct the URL
manually using the form:

corbaloc:protocol:host_or_ip:port/ServerName

The ior command does not actually contact the ImR to lookup the address of
the server. Instead it uses the first available protocol specified for the ImR
connection.

28.11.1.4 kill

Synopsis tao_imr kill <server> [-s <signal>]

Kill the identified server by having its activator send the specified signal, or a
signal 9 if none is supplied.

This is useful if a server is unresponsive to a shutdown command. Shutdown
is a cooperative action, the ImR sends a CORBA request to the server to shut
down that has to be acted on. If the server is in a state where it cannot process
that request, it will not shut down. The kill command is implemented by the
activator, so obviously it is only available when the ImR activator is running
and was used to launch the server.

28.11.1.5 link

Synopsis tao_imr link <server> [-p <peers>] ...

Use link to create an association between two or more POAs in a server.

Servers may have more than one POA managing objects that are registered
with the ImR. This poses a risk of having multiple instances of the service
started on concurrent requests. Since start up is a multi-step process, one client
could request an object on POA1 while another client requests an object on
POA2. The result would be two server instances running, each with a POA1
and POA2, and thus the contact information for the first instance would be
overwritten by the second. And if that first server instance shut down, it would

1066 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

communicate to the ImR, causing the ImR to believe no instance of the server
is running.

To avoid this situation, the link command is used to associate POA2 with
POA1 so that a request for an object on either POA will trigger a launch of the
same server process. A subsequent request for the other POA will simply wait
for the server to complete its startup without launching another

To use the link command, first add or update a server entry for one of the
POAs. It doesn’t matter which, the POAs are considered peers in the ImR
regardless how they are related in the server itself. This first POA is
considered the owner of the server registration. Second, issue the link
command. The peer POAs may be added individually or in a comma separated
list. For example a server application named myapp contains three POAs,
named myserver1, secondserv, and anotherserv. The following steps show
how to link them
tao_imr add myserver1 -c "./myapp -ORBUseIMR 1 ..."
tao_imr link myserver1 -p secondserv,anotherserv

Or
tao_imr link myserver1 -p secondserv -p anotherserv

Or
tao_imr link myserver1 -p secondserv
tao_imr link myserver1-p anotherserv

These variations of the link command are equivalent.

POAs may be removed from the group by using the remove command, except
for the owner. If it is remove, all of the linked POAs are removed as well.
When listed, linked POAs show the same start up command options.

28.11.1.6 list

Synopsis tao_imr list [–v] [-a]

Use this command to list servers registered in the ImR.

You will probably want to use the verbose option –v most of the time. All
information registered using the add/update commands is displayed as well as
the current running status of the server and whether the server is locked due to
exceeding its retry count. By status is meant the endpoint the server is
assumed to be running, or, if the activator is being used and it detected that the
server is not running, then "Not currently running" is shown. If the server is
locked, you can unlock it using the update command. For example:

o c i w e b . c o m 1067

2 8 . 1 1 I m R U t i l i t y

tao_imr update myserver

In some cases the locator or activator may be shutdown and restarted. While
being shutdown registered servers may have been terminated. In these cases
the ImR is not aware of inactive servers. To ensure that the of servers includes
only the active ones, use the -a option. When this option is used a check is
made for each server if there has been a successful ping within the ping
interval discussed in 28.12.1. If there was a successful ping within this interval
the server is included in the list. If not, an attempt is made to ping the server. If
this ping was successful then the server is included in the list, shown as being
fully active. If the ping failed, but a connection to the server was completed,
the server is included in the list, but with a "maybe" status shown.

28.11.1.7 remove

Synopsis tao_imr remove <server>

This command simply removes all information about the server from the ImR.
If the server is running it is not shut down by this command. If the server is
removed without being shut down first, then a NOT_FOUND exception will be
caught by the server when it tries to unregister from the ImR. This exception is
ignored, but an error message is displayed.

28.11.1.8 shutdown

Synopsis tao_imr shutdown <server>

This command shuts down a running server by using the ServerObject that
every server internally registers with the ImR at start-up. The
orb->shutdown(0) operation is called in the server, typically causing the
server to return from orb->run() and shut down gracefully. Note that this
means servers with multiple persistent POAs can be shut down using any one
of the POA names. If this behavior is not desired, then you should use separate
ORBs in the server.

28.11.1.9 shutdown-repo

Synopsis tao_imr shutdown-repo [-activators]

1068 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

This command shuts down the ImR cleanly. This can also be done by using
Ctrl-C, or sending a SIGINT or SIGTERM to the ImR and/or Activator
processes.

The -a option specifies that you also want to attempt to shut down any
registered Activators. If any Activator cannot be shut down, it is ignored, and
no error is returned.

28.11.1.10 start

Synopsis tao_imr start <server>

This command is used to ensure that the specified server is activated, starting
the server process, if necessary, using the Activator registered for the server. If
the server is not already running, this requires that

1. The server has already been registered using add or update.

2. The registration information includes a command line and activator name.

3. A matching Activator is registered and running.

If any of the above conditions are not met, or if there is some problem
activating the server, then an error message is returned.

Note This command was previously named activate. That command name still
works but displays a warning that it is deprecated.

Note It is possible for the utility to report success when the ImR exceeds its ping
retry count. In this case the server was not activated, and list –v will show that
the server is locked.

28.11.2 Examples
For simplicity, we assume the ImplRepoServiceIOR environment variable
has been set to the appropriate IOR. This environment variable allows
applications, such as our server and the tao_imr utility, to find the ImR
without the need to supply lengthy –ORBInitRef options on the command
line. Alternatively, we could start the ImR with -m to allow clients to find it
using multicast service discovery.

o c i w e b . c o m 1069

2 8 . 1 1 I m R U t i l i t y

28.11.2.1 list existing servers
$ tao_imr list
No servers found.

28.11.2.2 add a new server
$ tao_imr add mysrv -l myhost -c mysrv -w $SERVERS/mysrv -e env1=1 -e env2=2 -a
per_client -r 1
Successfully registered server <mysrv>

28.11.2.3 list again
$ tao_imr list
<mysrv>

$tao_imr list –v
Server <mysrv>
 Activator: myhost
 Command Line: mysrv
 Working Directory: $SERVERS/mysrv
 Activation Mode: PER_CLIENT
 Number of retries: 1
 Environment Variable: env1=1
 Environment Variable: env2=2
 No running info available for PER_CLIENT mode

28.11.2.4 update the server
$ tao_imr update mysrv –l newhost –a normal
Successfully registered <mysrv>.

28.11.2.5 start the server
$ tao_imr start mysrv
Cannot activate server <TestMessengerService>, reason: <Cannot start server.>

$ tao_imr update mysrv –c "mysrv –ORBUseIMR 1"
Successfully registered <mysrv>

$ tao_imr start mysrv
Successfully activated server <mysrv>

28.11.2.6 shutdown the server
$ tao_imr shutdown mysrv
Successfully shut down server <mysrv>

1070 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

28.11.2.7 create an ior
$ tao_imr ior mysrv
corbaloc:iiop:1.2@10.20.200.123:3223/mysrv

28.11.2.8 remove the server
$ tao_imr remove mysrv
Successfully removed server <mysrv>

28.12 tao_imr_locator

tao_imr_locator is the primary application that we generally refer to as the
ImR. It is responsible for maintaining a repository of server and activator
information, and using it to support indirect binding of CORBA objects.

If the ImR is not started with multicast service discovery support, then you
must provide some mechanism for other processes to find the ImR when they
use resolve_initial_references(). This requires the servers,
Activators, and tao_imr to be started with an –ORBInitRef option, such as:

-ORBInitRef ImplRepoService=corbaloc::host:port/ImR
-ORBInitRef ImplRepoService=corbaloc::host:port/ImplRepoService
-ORBInitRef ImplRepoService=file://ImR.ior
-ORBDefaultInitRef corbaloc::host:port

Alternatively, you can set the ImplRepoServiceIOR environment variable:
$ export ImplRepoServiceIOR=corbaloc::host:port/ImR

For most of the above to work, the ImR must be started at a known endpoint.

-ORBListenEndpoints iiop://:8888
-ORBListenEndpoints iiop://host:port

The full path to the ImR is:

$TAO_ROOT/orbsvcs/ImplRepo_Service/tao_imr_locator

28.12.1 Command Line Options
Synopsis tao_imr_locator [-h|-?] [-d 0..5] [-l] [-m] [--lockout] [-o filename] [-p

filename] [-r] [-x filename] [-i] [-g timeout] [-v interval] [-t timeout]
tao_imr_locator [-c cmd] [-d 0|1|2] [-m] [-o file]

o c i w e b . c o m 1071

2 8 . 1 2 t a o _ i m r _ l o c a t o r

 [-r|-p file|-x file] [-s] [-t secs] [-v secs]

Table 28-2 tao_imr_locator Command Line Options

Option Description

-h or -? Display help/usage.

-d level Specify IMR specific debugging level, 0 to 5. Default is 0.

-l
Lock the database to prevent tao_imr add, update, and
remove.

-m Enable support for IOR multicast to find the ImR.

-o filename Write the ImR Administration IOR to filename.

-p filename Use binary persistence.

-r Use Windows registry persistence.

-x filename Use XML persistence.

-i Enable active pinging

-g timeout Ping operation timeout in milliseconds. Default is 1 second.

-v interval Ping interval in milliseconds. Default is 10 seconds.

-t timeout Start-up timeout in seconds. Default is 60 seconds.

-c command install or remove the Windows service.

-e Erase all persistence information at start-up.

--lockout Prevent restart attempts until restart count is explicitly reset

-u or
--UnregisterI
fAddressReuse
d

This option causes the ImR to automatically remove a server
from the implementation repository when another server is
registered with the same endpoint. This option should not be
used if more than one persistent POA in the same ORB is being
used via the ImR.

--primary Take on the role of primary service in a redundant service pair.

1072 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

The debug level varies from 0 to 5 with progressively more detail logged for
each level. This value is independent of the ORBDebugLevel, although the
ORB’s logging mechanism is used.

The -l option prevents the ImR repository information from being modified
by the tao_imr add or update commands. However, server
auto-registration, Activator registration, and server running status are all still
persisted to the repository.

The -m option provides a convenient way for all servers and Activators to find
the ImR without the need to pass IORs, use corbaloc object URLs, or use
the –ORBInitRef option. Instead, a multicast endpoint is established when
the ImR starts, and servers and Activators automatically find the correct IOR
using multicast. The multicast port may be specified using:

-ORBMulticastDiscoveryEndpoint <port>

If this option is not specified, then the environment variable
ImplRepoServicePort is used. The default port number is 10018.

The output file for the -o option is a simple stringified IOR stored in a text
file, suitable for use as a file:// object URL.

The -v option allows the ImR to more efficiently work with servers. If the
ImR has successfully pinged a server within the specified number of
milliseconds, then it assumes that the server is still running. Setting the ping
interval to zero disables the ping feature completely, and servers are assumed
to be running if they register a running status with the ImR.

Note In the current implementation for server registration, the server notifies the
ImR of its running status when the persistent POA is created. As such, the ImR
may sometimes forward a client to a server that is not yet ready to handle
requests, thereby causing the client to receive a TRANSIENT exception
indicating that the server’s POA is in the holding state. The ImR’s ping

--backup Take on the role of backup service in a redundant service pair.

--directory
dirname

Use a shared file system directory with name dirname as the
backing store for redundant tao_imr_locator service pair.

Table 28-2 tao_imr_locator Command Line Options

Option Description

o c i w e b . c o m 1073

2 8 . 1 2 t a o _ i m r _ l o c a t o r

feature can be used to allow the ImR to ensure the server is ready to handle
requests before forwarding the client to the server. If the ping feature is
disabled, the application should be prepared to handle the TRANSIENT
exception (e.g., by retrying the request).

The -t option allows the user to set a timeout value, in seconds, by which the
ImR will wait before giving up on starting a server. If the ImR does not
receive running information from a server within the specified timeout
interval, it will abort the server start-up. Depending on the server’s retry count
setting, the ImR may attempt to launch the server again. Once the retry count
has been exceeded, the ImR will not attempt to start the server again until an
administrator uses tao_imr update to reset the server’s start-up counter. The
start-up timeout value can be disabled by specifying –t 0 when starting the
ImR. However, disabling the start-up timeout is not recommended as the ImR
could become blocked permanently waiting for a server to start. The default
start-up timeout value is 60 seconds.

The -UnregisterIfAddressReused option is intended to solve a specific
issue with server restarts when a group of servers, each with one persistent
POA, are sharing a common set of ports via the portspan endpoint option.
Because these servers can swap ports on a restart, the ImR needs to be able to
automatically clear them out when a new server takes the port. The
-ORBForwardInvocationOnObjectNotExist ORB initialization option
should be used in the clients of this scenario.

In addition to the normal start-up options, the –c install or –c remove
options can be used to install or remove the ImR as a Windows service. When
installing, all other command line options are saved in the Windows registry
under:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\TAOImR

These options are used when the service is started.

28.12.2 Fault Tolerant Implementation Repository
The tao_imr_locator can be ran as a fault tolerant service by using the
following options:

• The --primary option tells the tao_imr_locator that it will be the
primary service in a redundant service pair.

1074 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

• The --backup option tells the tao_imr_locator that it will be the backup
service in a redundant service pair.

• The --directory dirname option tells the tao_imr_locator the
shared file system directory to use as the backing store for the redundant
service pair.

• When --backup is used, the -o filename option tells the
tao_imr_locator to output the redundant service pair ImR service IOR file,
which it can only do after successfully starting the primary and backup
ImR service instances. The IOR file contains the combined profiles of the
primary and backup tao_imr_locators. Clients must use the IOR file to use
the Fault Tolerant ImplRepo Service.

The primary and backup tao_imr_locators instances should have the same
ORBEndPoint protocol list so that any client can send a request to either
primary or backup regardless of protocol (IIOP,UIOP,etc...).

When the primary server is started it will write out the replication IOR to a file
the shared directory. The backup server will then read the IOR file so that it
can construct the multi-profile IOR to write to the filename passed to the -o
option.

The tao_imr_locator primary and backup options cannot be passed on the
command line along with -ORBObjRefStyle URL, since that style will
cause the backup profile to not be available in the IOR.

When starting up the Implementation Repository as a fault tolerant service
initially, the primary tao_imr_locator must be started first, followed by
the backup tao_imr_locator. In a case where both the primary and
backup are shut down, then either the backup or primary may be restarted
independently, reusing the ImR Locator persistent state and IOR which are set
up as part of the initial startup process. If you intend to start up the primary or
backup on a different host or port, then you will need to restart the process as
described above (by starting the primary first). If there is no change in the
primary or backup, the then the IORs can continue to be used by any of the
existing tao_imr_locator clients.

The previous IOR file will only remain valid if the ORBEndPoint list
remains the same for both instances. As long as both the primary and backup
tao_imr_locators are not shutdown at the same time the fault tolerant

o c i w e b . c o m 1075

2 8 . 1 2 t a o _ i m r _ l o c a t o r

ImR will remain available. If both servers are shut down and one of them is
restarted, the server will be available using the originally generated IOR file
created with the -o option.

28.12.3 Examples
Start the ImR with default options:

$tao_imr_locator.exe
Implementation Repository: Running
 Ping Interval : 10000ms
 Startup Timeout : 60s
 Persistence : Disabled
 Multicast : Disabled
 Debug : 1
 Locked : False

Start with alternative options:

$tao_imr_locator.exe -v 500 -t 5 -x repo.xml -m –d 2 –l
Implementation Repository: Running
 Ping Interval : 500ms
 Startup Timeout : 5s
 Persistence : repo.xml
 Multicast : Enabled
 Debug : 2
 Locked : True

Install as a Windows service with several non-default options

$tao_imr_locator –v 1000 –t 30 –p repo.bin –ORBListenEndpoints iiop://:8888 –c
install

Start a server

$myserver –ORBUseIMR 1 –ORBInitRef ImplRepoService=file://imr.ior

Start with fault tolerant options

1. Start the primary server
$tao_imr_locator --primary -ORBEndpoint localhost:8888 --directory
imr_shared_dir

2. Start the backup server
$tao_imr_locator -–backup -ORBEndpoint localhost:8888 --directory
imr_shared_dir -o ImR.ior

1076 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

28.13 tao_imr_activator

The Activator is an extremely simple process-starting service. It accepts
start-up information from the ImR, and attempts to launch a process.

Note On UNIX and UNIX-like platforms the Activator can detect when spawned
processes terminate, and can optionally notify the ImR when this happens.

Once started, the server registers itself with the ImR directly. Each persistent
POA within the server registers itself as a separate server within the ImR.

The start-up information passed to the Activator does not necessarily have to
directly start a server. For example, it could run a script that causes the
creation of a new persistent POA in an already running server process.

At start-up, the ImR Activator tries to register itself with an ImR. If an ImR
cannot be found, the Activator will not be able to notify the ImR when it is
shut down or when spawned processes are terminated.

 The full path to the tao_imr_activator is
$TAO_ROOT/orbsvcs/ImplRepo_Service/tao_imr_activator.

28.13.1 Command Line Options
Synopsis tao_imr_activator [-c cmd] [-d 0|1|2] [-e buflen] [-o file] [-l] [-n name]

 [-m maxenv]

Table 28-3 tao_imr_activator Command Line Options

Option Description

-h or -? Display help/usage.

-d level Specify IMR specific debugging level, 0-2. Default is 1.

-o filename Write the Activator IOR to filename.

-n name
The name of the Activator. Default is the name of the host on
which the Activator is running.

o c i w e b . c o m 1077

2 8 . 1 3 t a o _ i m r _ a c t i v a t o r

There are currently three valid settings for the debug level:

• 0

Most output is disabled.

• 1

Very basic information is displayed, with usually just one output per
interesting operation.

• 2

More messages are displayed, and more details are displayed for existing
messages.

In practice, debug level 1 is probably the best choice for day-to-day usage,
while level 2 is most useful when trying to resolve problems.

The output file for the -o option is a simple stringified IOR stored in a text
file, suitable for use as a file:// object URL. This option is not very useful,
because typically the ImR is the only client for the Activator.

You can change the name of an Activator instance, which allows running
more than one Activator on a single machine. This probably is not of much
practical value unless you were to create your own Activator class that
behaves differently from the default simple process launching service. For
example, you might create an activator that spawns servers as threads within
its own process.

The -e and -m options are both configuration parameters that control size
limitations of the environment passed to spawned processes. The -e option

-l
Notify the ImR when spawned processes die. (Not supported on
all platforms.)

-c command install, remove, or install_no_imr the Windows service.

-e buflen
Sets the length in bytes of the environment buffer for activated
servers. The default is 16 KB.

-m maxenv
Sets the maximum number of environment variables for
activated servers. The default is 512.

Table 28-3 tao_imr_activator Command Line Options

Option Description

1078 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

sets a limit for the size of the buffer (in bytes) that is used to hold the
environment variables. The -m option sets a limit for the number of
environment variables that can be passed. The default limits are 512 variables
and 16 KB of buffer space.

In addition to the normal start-up options, the –c install, -c remove, and
–c install_no_imr options can be used to install or remove the Activator
as an Windows service. When installing, all other command line options are
saved in the Windows registry under:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\TAOImR

These options are used when the service is started. The install_no_imr
option should be used when installing the Activator on a separate machine
with no ImR, otherwise the installation will ensure that the ImR is always
started before the Activator by setting a dependency between the two services.

Note Only a single Activator can be installed as a Windows service due to the way
the start-up options are stored in the registry.

28.13.2 Examples
Start the ImR Activator with default options:

>tao_imr_activator.exe
ImR Activator: Starting MYHOST
... Multicast error message ommitted
ImR Activator: Not registered with ImR.

Start the ImR Activator with debug level 2, store the Activator’s stringified
IOR in a file, and register with an ImR that was started with multicast
discovery enabled:

>tao_imr_activator.exe –d 2 –o activator.ior
ImR Activator: Starting MYHOST
ImR Activator: Registered with ImR.

Install the ImR Activator as a Windows service on a machine with no ImR:

>tao_imr_activator.exe –d 2 –o activator.ior –c install_no_imr

o c i w e b . c o m 1079

2 8 . 1 4 J a c O R B I n t e r o p e r a b i l i t y

28.14 JacORB Interoperability

In an environment where both TAO and JacORB servers coexist, the TAO
ImR can also be used to manage the JacORB servers, thus simplifying the task
of managing the servers. To take advantage of this feature, make sure you
have JacORB 3.3 or later. Consult the “TAO Implementation Repository”
chapter in the JacORB's Programming Guide document for more details about
integration of JacORB with TAO ImR. You can visit
<http://www.ociweb.com/product-suite/support-jacorb>
to learn more about JacORB, and
<http://www.jacorb.org/download.html> for obtaining JacORB
source code, release notes, programming guide, and other downloads.

Demos and integration test suites for JacORB integration with TAO ImR can
be found in $JACORB_HOME/demo/tao_imr and
$JACORB_HOME/test/orbreinvoke/tao_imr respectively.

28.14.1 JacORB Servers and the TAO ImR
The -ORBUseImR and TAO_USE_IMR environment variable as discussed in
28.3 are for TAO based servers only and are not applied to JacORB based
servers.

For communicating with a TAO ImR, a JacORB server must turn on the
property jacorb.use_tao_imr and turn off the property
jacorb.use_imr. In additional, the JacORB server must set the property
jacorb.implname.

Note The use of IOR tables discussed in 28.7 does not apply to JacORB servers.

28.14.2 Using the TAO ImR Utilility with JacORB Servers
When using the tao_imr utility discussed in 28.11, most of its commands take
a server name as an argument. For TAO servers, the “server name” is the
name of the qualified POA name; however for JacORB servers, the “server
name” has the format JACORB:<implname>/<qualified POA
name>,
where <implname> is the value set by the property jacorb.implname.
For example,
tao_imr add JACORB:EchoServer1/Message-POA {…other parameters…}

1080 o c i w e b . c o m

I m p l e m e n t a t i o n R e p o s i t o r y

would register a JacORB server with the “implname” of “EchoServer1” and
the qualified POA name of “Message-POA”.

A server's “implname” must be unique in a TAO ImR repository, thus, you
can not have an “implname” of “EchoServer1” and a registered POA name of
“EchoServer1” which would confuse the matching logic of the TAO ImR.
However, you can specify a same qualified POA name for multiple
“implname” instances as long as they are uniquely identified. For example,
you can add an entry for “EchoServer2” as following:
tao_imr add JACORB:EchoServer2/Message-POA {…other parameters…}

Note When using the tao_imr ior command as discussed in 28.11.1.3, the form of
the URL is different than that for a TAO server. For a JacORB server, the
form is corbaloc:protocol:host_or_ip:port/implname/poaName

o c i w e b . c o m 1081

Part 5

Appendices

1082 o c i w e b . c o m

o c i w e b . c o m 1083

Appendix A

Configuring ACE/TAO Builds

Your build of ACE/TAO can be configured or customized in a number of
ways:

• Optional features can be explicitly configured to build. These features are
typically disabled because they have external dependencies on other
software libraries or products. An example is Secure Sockets Layer (SSL)
support. When TAO is configured to build with SSL support, it knows
that the OpenSSL library is present and it should compile in support for
using this transport layer.

• Normally enabled TAO features can be disabled for specific builds. This
is often done for memory footprint reasons or maybe to enforce project
policies against using that feature. An example is Portable Interceptors
support. By default, TAO supports the interceptor interfaces, but the build
can be customized to disable this feature which reduces the footprint and
reduces processing overhead.

• The build process itself can be customized in a number of ways, typically
through compiler options. Examples of these types of customizations
include enabling/disabling support for generating debugging symbols,
multithreading, and function inlining.

1084 o c i w e b . c o m

C o n f i g u r i n g A C E / T A O B u i l d s

There are three mechanisms for specifying the above configurations in your
build:

• MPC features can be configured in the default.features file. This is a
user-defined file that is located in
$ACE_ROOT/bin/MakeProjectCreator/config/.

• GNU Make build flags can be set in the platform_macros.GNU file
(and via other related mechanisms). This mechanism is not available with
other build systems such as Microsoft Visual Studio.

• C++ macros can be set in the config.h file.

Some options must be set via a specific mechanism and others can be
specified at multiple levels. For example, setting ssl=1 in the
default.features file instructs MPC to include SSL-dependent projects in
the build files generated.

This appendix discusses these different mechanisms and options for
configuring builds of ACE and TAO. It discusses how to specify MPC
features, GNU Make build flags, and C++ macros as well as some of the
options available from each mechanism.

A.1 System Requirements

Since ACE and TAO are used to develop software, you will need a working
C++ compiler. The GNU g++ compiler is supported for most platforms, and
as of this writing, g++ version 4.2 is recommended. Also, the platform
vendor’s compiler is usually supported, as are certain third-party compilers. In
all cases other than a Windows platform, the GNU Make program must be
used. The vendor-provided linker is generally used, but the GNU linker can
also be used. In very rare cases, the GNU assembler must be used. To run
MPC or any of the automated test scripts, you must have Perl 5.6 or later. A
complete list of the tools used to build ACE and TAO on various platforms,
including version numbers and patch levels, is available in the release notes.
The release notes are included with the ACE and TAO source code
distribution in the file ACE_wrappers/OCIReleaseNotes.html.

How fast a processor and how much memory you need are somewhat a matter
of preference and your patience for waiting on files to compile. Generally, you
will want at least a 1.5 GHz processor and at least 1 GB RAM.

o c i w e b . c o m 1085

A . 2 G e n e r a t i n g M a k e f i l e s a n d P r o j e c t F i l e s

The amount of disk space you need will depend heavily on the machine, the
compiler, and the build flags you choose. A production system should fit in
100 MB or less of disk space, after all the intermediary files are removed. You
may need much less for a minimal build. Conversely, a full build with all
debugging information and other features enabled, plus intermediary and
temporary files could require over 5.0 GB of disk space.

A.2 Generating Makefiles and Project Files

MakeProjectCreator (MPC) is used to generate build files for use with various
tools including GNU Make, Microsoft Visual C++, Borland Make, and
Microsoft NMake. MPC eliminates the need to maintain separate build files
for these various build environments, and allows easy customization of build
flags on all platforms. OCI releases and DOC group full and micro release kits
all contain GNU makefiles and Visual C++ project files that were generated
with MPC. You are free to use these files to build ACE/TAO, but many users
generate their own custom build files using MPC. For more information on
how to use MPC, see <http://www.ociweb.com/products/mpc>.

A.2.1 Specifying Features to Build
ACE and TAO use the MPC features mechanism to define which areas of
functionality are enabled and disabled. They also determine what targets the
generated build files construct and the details of how those components are
built. When running MPC with ACE and TAO (using
$ACE_ROOT/bin/mwc.pl or $ACE_ROOT/bin/mpc.pl), feature-related
files are kept in the $ACE_ROOT/bin/MakeProjectCreator/config
directory. The global feature file, global.features, defines the default
values for features of ACE and TAO. You can specify any build-specific
feature settings by creating a default.features file in this same
directory. The features set in default.features override the values from
the global features file. Any features that are not specified in either file are
assumed to be enabled.

For example, to tell ACE and TAO to generate build files that compile
SSL-related code, including the ACE SSL library and TAO SSLIOP
pluggable protocol, place the following in your default.features file:

ssl=1

1086 o c i w e b . c o m

C o n f i g u r i n g A C E / T A O B u i l d s

When using GNU makefiles, you also need to set the SSL makefile build flag
to make sure that the libraries are actually built.

The table below summarizes the features that can be specified in the
default.features file. Note, that disabling a feature may also disable other
features, tests, and examples that depend on this feature. Conversely, even
though a feature may be specifically enabled in global.features and the
table below, the actual features may not be enabled in the build system due to
other features it is dependent upon. For example, the ace_flreactor and
tao_flresource are listed as enabled below, but they both depend on fl
which is disabled. Enabling fl and generating build files would then
physically enable all three features and cause the ACE_FlReactor and
TAO_FlResource libraries to get built. This is typical of the pattern for
ACE/TAO features that depend on external products. One feature (like fl)
announces the availability of the external product, other features control the
building of specific ACE/TAO functionality that depends on the external
product. Some of the product dependencies are listed below.

To build as intended, most of these features must be combined with the
corresponding build flag discussed in the next section.

Table 1-1 MPC features

Feature Description Default

ace_codecs
Enables building of the ACE encoding/decoding
mechanism. Supports Base64 transfer encoding. enabled

ace_filecache
Enables building of the ACE cached virtual file
system. enabled

ace_flreactor
Enable support for using a reactor that integrates
event handling with the Fast Light Toolkit. Depends
on fl.

enabled

ace_for_tao
Enables building only the subset of ACE features
required for TAO. disabled

ace_foxreactor Enables building of Fox reactor. Depends on fox. enabled

ace_other
Enables building of the ACE naming service and NT
service-related functionality. enabled

ace_qtreactor Enables building of Qt reactor. Depends on qt. enabled

ace_svcconf
Enables building of the ACE service configurator
functionality. enabled

o c i w e b . c o m 1087

A . 2 G e n e r a t i n g M a k e f i l e s a n d P r o j e c t F i l e s

ace_tkreactor Enables building of Tk reactor. Depends on tk. enabled

ace_token Enables building of the ACE token service. enabled

ace_uuid Enables building of the ACE UUID class. enabled

ace_xtreactor Enables building of Xt reactor. Depends on xt enabled

acexml
Enables building ACE XML support. Required for
TAO Implementation Repository, Notification
Service persistence, and CIAO.

enabled

ami
Enables building TAO Asynchronous Method
Invocation support. enabled

athena Athena widget libraries are available disabled

boost
Specifies that the boost library is present. Required
for building CIAO’s CIDL compiler. disabled

bzip2 bzip2 library is available disabled

cidl Enables building of CIAO’s CIDL compiler. disabled

corba_e_compact
Enable building of the CORBA/e compact profile
subset. disabled

corba_e_micro
Enable building of the CORBA/e micro profile
subset. disabled

corba_messaging
Enables building of TAO’s CORBA messaging
specification support. This includes AMI and the
CORBA policy framework.

enabled

dummy
Dummy feature that prevents certain obsolete
components from building. Should never be enabled. disabled

dummy_label
Dummy feature that prevents certain obsolete
components from building. Should never be enabled. disabled

ec_typed_events
Enables support for typed event channels in the COS
Event Service. enabled

exceptions
Enables use of native C++ exceptions and the
standard CORBA C++ error reporting mechanism. enabled

fl Fast Light Toolkit libraries are available disabled

fox Fox libraries are available disabled

gen_ostream
This feature causes the IDL compiler to generate
ostream operators for IDL-defined types (-Gos) disabled

gl OpenGL libraries are available. Depends on fl. enabled

Table 1-1 MPC features

Feature Description Default

1088 o c i w e b . c o m

C o n f i g u r i n g A C E / T A O B u i l d s

interceptors
Enables support for Portable Interceptors in TAO.
Security, fault tolerance, and load balancing features
all depend on interceptors.

enabled

ipv6 Enables support for IPv6 in ACE and TAO. disabled

java
Specifies that java SDK is present. Required for
certain interoperability tests. disabled

link_codecfactory
This feature causes TAO to always link with the
TAO_CodecFactory library. disabled

lzo2 lzo2 compression library is available. disabled

mcpp
mcpp portable preprocessor is available (for use with
TAO IDL compiler) disabled

mfc
Configures ACE/TAO build for use with the
Microsoft Foundation Class library. This feature is
only for use with Microsoft Visual C++.

disabled

minimum_corba
Enabling this feature disables a number of services,
tests, and examples that cannot work when TAO is
built in a minimum CORBA configuration.

disabled

motif Motif libraries are available disabled

negotiate_codesets
Enabling this feature links TAO clients and servers
with the TAO Codeset library, giving them the
ability to negotiate codesets with other processes.

disabled

openssl Specifies that the OpenSSL library is available. enabled

optimize_collocate
d_invocations

When disabled, this feature suppresses generation of
collocation optimization stubs by the TAO IDL
compiler (for a smaller memory footprint)

enabled

qos
Enables build support for the ACE QoS library.
Required for the TAO AV Streaming service. disabled

qt Qt library is available. disabled

repo
Enabling this feature disables some Load Balancing
and IDL tests disabled

rmcast
Enables build support for the ACE Reliable
Multicast library. enabled

rpc
Specifies that Remote Procedure Call (RPC) is
present. Required for RPC-related performance tests. disabled

rt_corba
Enables building of TAO’s Real-Time CORBA
specification support. enabled

rwho Enables building of the Distributed rwho utility. enabled

Table 1-1 MPC features

Feature Description Default

o c i w e b . c o m 1089

A . 2 G e n e r a t i n g M a k e f i l e s a n d P r o j e c t F i l e s

ssl
Specifies that Secure Sockets Layer (SSL) is present.
Required for ACE SSL and TAO SSLIOP libraries. disabled

stl The C++ standard template library is available. disabled

tao_flresource
Enables build of Fast Light resource factory (with
support for Fast Light Toolkit Reactor). Depends on
fl.

enabled

tao_foxresource
Enables build of Fox resource factory (with support
for Fox Reactor). Depends on fox. enabled

tao_no_iiop
Causes the TAO library to be built without IIOP
support (for small footprint systems that use other
protocols.

disabled

tao_qtresource
Enables build of Qt resource factory (with support
for Qt Reactor). Depends on Qt. enabled

tao_tkresource
Enables build of Tk resource factory (with support
for Tk Reactor). Depends on tk. enabled

tao_xtresource
Enables build of Xt resource factory (with support
for Xt Reactor). Depends on xt. enabled

threads
Enables multithreading support and components
dependent on it. enabled

tk Tk library is available. disabled

transport_current
Enables building of the TAO’s Transport Current
feature. enabled

uses_wchar
Enabling this feature disables various examples and
utilities that do no support wide character builds. disabled

vc8_avoid_dominanc
e_warning Suppresses Visual C++ 8.0 dominance warnings. enabled

vc8_avoid_unimpl_e
xception_spec_warn
ing

Suppresses Visual C++ 8.0 exception specification
warnings. enabled

vc8_stl_deprecated
_warnings

Suppresses Visual C++ 8.0 C run-time security
warnings. enabled

vc_avoid_crt_secur
e_warnings Suppresses Visual C++ C run-time security warnings. enabled

vc_avoid_this_ini_
initializer_warnin
gs

Suppresses Visual C++ this initializer warnings. enabled

vc_scl_secure_warn
ings Suppresses Visual C++ SCL security warnings. enabled

vcl Borland’s Visual Component Library is available. disabled

Table 1-1 MPC features

Feature Description Default

1090 o c i w e b . c o m

C o n f i g u r i n g A C E / T A O B u i l d s

A.3 GNU Make Build Flags

When MPC generates GNU makefiles using the default gnuace project type,
the makefiles support a number of build flags that are used to customize your
build. Some of these are identically named as the MPC features discussed in
the previous section and simply cause compilation of the projects and/or
functionality that their corresponding feature caused to be included in the
makefiles.

You can specify any of the GNU Make flags in the
$ACE_ROOT/include/makeinclude/platform_macros.GNU file or
using the MAKEFLAGS environment variable as well as on the command line
when you invoke make. Because many of the flags require that they be used
consistently across your application, the platform_macros.GNU file is
usually the preferred place to put these flags.

When not using the ACE/TAO GNU makefile system to build your
application, it is your responsibility to ensure that compatible environment

versioned_namespac
e

Builds ACE with the version number embedded in the
ACE namespace. disabled

wfmo
Disabling this feature disables examples that use the
Wait For Multiple Objects (WFMO) reactor. enabled

wince
Enables the Front-end for ACE CE (FaCE), a simple
front-end framework for testing and debugging
non-graphical application on Windows CE.

disabled

winregistry
Enables examples dependent on use of the Windows
Registry. enabled

wxWindows
Specifies that wxWindows library is present.
Required for TAO’s wxNamingViewer utility and
the ACE Configuration Viewer.

disabled

x11 The x11 library is available. Depends on xt. enabled

xt Xt library is available. disabled

zlib
Specifies that the Zlib compression library is present
and should be used. disabled

zzip
Specifies that the ZZip compression library is
present and should be used. disabled

Table 1-1 MPC features

Feature Description Default

o c i w e b . c o m 1091

A . 3 G N U M a k e B u i l d F l a g s

variables and compiler options are used in building your application. Many of
the build flags effects can also be specified via preprocessor macro definitions
in the $ACE_ROOT/ace/config.h file.

The tables below lists the GNU Make flags that affect not only the way the
ACE and TAO libraries and executables are built, but also the way your
applications are built. As indicated in the table’s right-most column, when you
build your applications, there are certain flags whose settings must match the
settings that were used when ACE and TAO were built. For example, inlining:
If ACE and TAO were built to inline functions, then applications must also be
built with this setting, or link errors result. Other flags only affect the target
being built at that time. For example, debug: If ACE and TAO were built with
debug enabled, the applications do not have to be built with debug enabled,
and vice-versa.

Each of these tables lists the GNU Make flags, a brief description of the flag,
the default setting of the flag (for most UNIX and UNIX-like platforms) for
building ACE and TAO, and the way applications must use the flag with
respect to how ACE and TAO were built. Almost all of the GNU Make flags
are enabled by setting them to one (1), and disabled by setting them to zero
(0). They are divided into separate tables based on the different varieties of
build flags that ACE and TAO use.

Table 1-2 shows the make flag options that control the details of the ACE,
TAO, and application builds. Later tables focus on make flags that control
whether specific features of ACE and TAO are built.

Table 1-2 GNU Make Flags - Compilation Control

Flag Description Default
Must
Match?1

debug Enable support for debugging 1 N

fast
Use -fast compiler option
(SunCC only) 0 N

inline Enable C++ function inlining 1 Y

no_hidden_visibility
Disables use of hidden visibilities
in limiting the export of symbols
from libraries.

0 (GCC>=V4)
1 (GCC<V4) N

optimize Turn on compiler optimization 1 N

pipes
Add -pipe compiler option for
pipe support 1 Y

1092 o c i w e b . c o m

C o n f i g u r i n g A C E / T A O B u i l d s

Table 1-3 shows the make flags that indicate whether external dependencies
(usually third party libraries) are present and whether the dependent parts of
ACE and TAO should be built.

profile Enable profiling 0 N

purify Third party product support 0 N

quantify Third party product support 0 N

repo Use GNU template repository 0 N

shared_libs Build shared libraries 1 E

shared_libs_only Build shared libraries only 0 E

split
Splits ACE source files before
compilation 0 B

static_libs Build archive libraries 0 E

static_libs_only Build archive libraries only 0 E

static_link
Link only static libraries to
executables (uses GNU linker’s
-static flag)

0 N

templates type
Specifies type of template
instantiation (automatic, used,
explicit)

automatic Y

threads Enable threads (if OS supports) 1 Y

versioned_so Add versioning to library names 1 Y

1. The values for Must Match? have the following meanings:
Y The application must use the same value as the build.
N The application may use any value it chooses.
E The application can only use this flag if it was set at ACE/TAO build time.
B This flag is only effective at ACE/TAO build time.

Table 1-3 GNU Make Flags - External Product Dependencies

Flag Description Default
Must
Match?1

fl
Build fl (Fast Light) components
(reactor and resource factory) 0 Y

fox
Build Fox components (reactor and
resource factory) 0 Y

qt
Build Qt components (reactor and
resource factory) 0 Y

Table 1-2 GNU Make Flags - Compilation Control

Flag Description Default
Must
Match?1

o c i w e b . c o m 1093

A . 3 G N U M a k e B u i l d F l a g s

Table 1-4 shows the make flags that control the building of specific ACE and
TAO features.

sctp
Build ACE SCTP and TAO SCIOP
support 0 B

ssl
Build with SSL support in ACE and
TAO 0 B

stlport Build with STLport support 0 B

tk
Build tk components (reactor and
resource factory) 0 Y

wfmo
Build with Wait For Multiple Objects
reactor support 0 B

winregistry Build with windows registry support 0 B

xt
Build Xt components (reactor and
resource factory) 0 Y

zlib
Build with zlib (compression)
components 1 B

1. The values for Must Match? have the following meanings:
Y The application must use the same value as the build.
N The application may use any value it chooses.
E The application can only use this flag if it was set at ACE/TAO build time.
B This flag is only effective at ACE/TAO build time.

Table 1-4 GNU Make Flags - ACE/TAO Feature Control

Flag Description Default
Must
Match?1

ace_for_tao
Builds a the minimal subset of ACE
necessary for TAO. 0 Y

ami
Enable Asynchronous Method Invocation
(AMI) 1 Y

corba_messaging Enable CORBA Messaging 1 Y

ec_typed_events
Enables support for typed event
channels in the COS Event Service. 1 Y

interceptors Enable Portable Interceptors 1 Y

minimum_corba Build with minimum CORBA support 0 Y

probe Enable ACE_Timeprobes 0 B

rt_corba Enable Real-time CORBA support 1 Y

Table 1-3 GNU Make Flags - External Product Dependencies

Flag Description Default
Must
Match?1

1094 o c i w e b . c o m

C o n f i g u r i n g A C E / T A O B u i l d s

A.4 Using the Build Flags

In the remainder of this section, we describe each flag listed in A.3, including
how to specify it using a GNU Make flag, a preprocessor macro, or both.

The flags are described below. They are shown in the form necessary for
changing the default.

ace_for_tao
Builds the minimal subset of ACE necessary for TAO.

This option is useful for minimizing the footprint of TAO applications.

ami
Enable Asynchronous Method Invocation (AMI).

If this flag is defined via a preprocessor macro in config.h, you must also set
the TAO_HAS_AMI_CALLBACK and TAO_HAS_AMI_POLLER macros with
respect to your particular needs. See 6.2 for more information on using AMI.

corba_messaging
Build with full CORBA Messaging support.

rwho Build the distributed rwho utility 1 B

1. The values for Must Match? have the following meanings:
Y The application must use the same value as the build.
N The application may use any value it chooses.
E The application can only use this flag if it was set at ACE/TAO build time.
B This flag is only effective at ACE/TAO build time.

Table 1-4 GNU Make Flags - ACE/TAO Feature Control

Flag Description Default
Must
Match?1

GNU Make Flag Preprocessor Macro
ace_for_tao=1 None

GNU Make Flag Preprocessor Macro
ami=0 #define TAO_HAS_AMI 0

GNU Make Flag Preprocessor Macro
corba_messaging=0 #define TAO_HAS_CORBA_MESSAGING 0

o c i w e b . c o m 1095

A . 4 U s i n g t h e B u i l d F l a g s

This flag is defined by default, unless minimum_corba is enabled. See
Chapter 6 for more information on CORBA Messaging.

debug
Causes the compiler to generate debugging information (e.g., by passing the
-g option for some compilers), and builds an in-memory database of ACE
objects.

ec_typed_events
Controls whether typed event channel support is built for the Cos event
service.

This option allows application developers to minimize the size of the Cos
Event service libraries when the typed event channels are not being used.

fast
Enable the -fast option. This only applies if you are using a Sun Workshop
C++ compiler that implements this option.

Note that the fast flag is mutually exclusive of the debug flag.

fl
Build ACE/TAO components dependent on the FLTK (The Fast Light Tool
Kit). This includes the ACE Fl reactor and TAO Fl resource libraries.

See 18.7.6 for more information on using the Xt reactor with TAO.

GNU Make Flag Preprocessor Macro
debug=0 #define ACE_NDEBUG

GNU Make Flag Preprocessor Macro
ec_typed_events=1 #define TAO_HAS_TYPED_EVENT_CHANNEL 1

GNU Make Flag Preprocessor Macro
fast=1 None

GNU Make Flag Preprocessor Macro
fl=1 None

1096 o c i w e b . c o m

C o n f i g u r i n g A C E / T A O B u i l d s

fox
Build ACE/TAO components dependent on the Fox library. This includes the
ACE Fox reactor and TAO Fox resource libraries.

See 18.7.6 for more information on using the Fox reactor with TAO.

inline
Enable or disable C++ function inlining.

If inlining is enabled when the ACE and TAO libraries are built, inline hints
are passed to the compiler for many simple functions, and the resulting
libraries may contain some inlined code. If inlining is disabled when the ACE
and TAO libraries are built, no inline hints are passed to the compiler, and
the libraries will contain independent function entries for these simple
functions. If inlining is enabled when your application is built, inlined ACE
and TAO functions may be inserted into your code.

interceptors
Build with support for Portable Interceptors.

Enabling this flag builds in support for Portable Interceptors as defined in the
CORBA specification. This flag is defined by default, unless
minimum_corba is enabled. For example, if ACE and TAO are built with this
flag enabled, the types and interfaces defined as part of the
PortableInterceptor module will be included in TAO. See
$TAO_ROOT/tao/PortableInterceptor.pidl for the specific type and
interface definitions that are included. See Chapter 9 for more information on
Portable Interceptors.

GNU Make Flag Preprocessor Macro
fox=1 None

GNU Make Flag Preprocessor Macro
inline=0 #define ACE_NO_INLINE

GNU Make Flag Preprocessor Macro
interceptors=0 #define TAO_HAS_INTERCEPTORS 0

o c i w e b . c o m 1097

A . 4 U s i n g t h e B u i l d F l a g s

minimum_corba
Build a minimally-supported CORBA system.

optimize
Generate time-optimized code. Note that some compilers do not allow both
debug and optimize to be specified at the same time.

pipes
Add -pipe compiler option for pipe support.

For use with gcc only, this option may provide increased compilation speed, at
the cost of increased memory usage during compilation.

probe
Build ACE with time probes.

profile
Enable the use of the GNU gprof tool.

purify
Process the object code so that memory integrity checking can be performed
using IBM Rational PURIFY®. Using the purify flag causes the purify
command to precede the linker command during the linking phase of building

GNU Make Flag Preprocessor Macro
minimum_corba=1 #define TAO_HAS_MINIMUM_CORBA 1

GNU Make Flag Preprocessor Macro
optimize=0 None

GNU Make Flag Preprocessor Macro
pipes=0 None

GNU Make Flag Preprocessor Macro
probe=1 #define ACE_COMPILE_TIMEPROBES

GNU Make Flag Preprocessor Macro
profile=1 None

1098 o c i w e b . c o m

C o n f i g u r i n g A C E / T A O B u i l d s

your application. The purify command must be found in your PATH
environment variable.

qt
Build ACE/TAO components dependent on the Qt library from Trolltech.
This includes the ACE Qt reactor and TAO Qt resource libraries.

See 18.3 for more information on using the Qt reactor with TAO.

quantify
Process the object code so that performance profiling can be obtained using
IBM Rational QUANTIFY®. Using the quantify flag causes the quantify
command to precede the linker command during the linking phase of building
your application. The quantify command must be found in your PATH
environment variable

repo
Use the GNU template repository.

rt_corba
Build with full Real-Time CORBA support.

This flag is defined by default, unless minimum_corba is enabled or
corba_messaging is disabled. See Chapter 8 for more information on
Real-Time CORBA.

GNU Make Flag Preprocessor Macro
purify=1 None

GNU Make Flag Preprocessor Macro
qt=1 None

GNU Make Flag Preprocessor Macro
quantify=1 None

GNU Make Flag Preprocessor Macro
repo=1 None

GNU Make Flag Preprocessor Macro
rt_corba=0 #define TAO_HAS_RT_CORBA 0

o c i w e b . c o m 1099

A . 4 U s i n g t h e B u i l d F l a g s

rwho
Build the distributed rwho utility.

sctp
Build ACE SCTP and TAO SCIOP support.

This flag should be set to name the SCTP implementation to use, either
lksctp or openss7. Since both of these SCTP implementations are linux
kernel options, the SCTP-related features are currently only supported on
linux.

shared_libs
Shared libraries are built by default. If the shared_libs_only flag is used,
this flag is also set. If the static_libs_only flag is used, this flag is
ignored.

shared_libs_only
Pseudo-flag that prevents static libraries from being built whether or not the
static_libs flag is used.

split
Splits ACE source files before compilation.

Splitting the ACE source files allows processes linked with static libraries to
only include the parts of ACE they require and minimizes the memory
footprint of the application.

GNU Make Flag Preprocessor Macro
rwho=0 None

GNU Make Flag Preprocessor Macro
sctp=lksctp #define ACE_HAS_SCTP 1

GNU Make Flag Preprocessor Macro
shared_libs=0 None

GNU Make Flag Preprocessor Macro
shared_libs_only=1 None

GNU Make Flag Preprocessor Macro
split=1 None

1100 o c i w e b . c o m

C o n f i g u r i n g A C E / T A O B u i l d s

ssl
Build with SSL support in ACE and TAO.

Enables building the SSL-related libraries in ACE and TAO. Requires
$SSL_ROOT environment variable to point to the OpenSSL installation
directory.

static_libs
Static libraries are not built by default. If the static_libs_only flag is
used, this flag is also set. If the shared_libs_only flag is used, this flag is
ignored.

static_libs_only
Pseudo-flag that prevents shared libraries from being built whether or not the
shared_libs flag is used.

static_link
Link only static libraries to executables (uses GNU linker’s -static flag).

This flag is only supported when using the GNU linker.

stlport
Build with STLport support.

Allow components that use the STLport library to be built.

GNU Make Flag Preprocessor Macro
ssl=1 None

GNU Make Flag Preprocessor Macro
static_libs=1 None

GNU Make Flag Preprocessor Macro
static_libs_only=1 None

GNU Make Flag Preprocessor Macro
static_link=1 None

GNU Make Flag Preprocessor Macro
stlport=1 #define ACE_HAS_STLPORT 1

o c i w e b . c o m 1101

A . 4 U s i n g t h e B u i l d F l a g s

templates
Specifies type of template instantiation.

This flag takes a value of either automatic (the default), explicit, or
used. Explicit template instantiation is not currently supported in TAO as all
supported platforms are currently working with automatic. The used value is
only for use with the OSF cxx C++ compiler.

threads
Build the ACE and TAO libraries to use threads (only applies if the operating
system supports multithreaded programming). We recommend not modifying
this flag from its default setting.

The threads flag can also be specified in the config.h file, but that is more
complicated as there are several variables that must be set in a way that is
specific to the operating system on which ACE and TAO are being built. You
are advised not to try to change these variables. Instead, you should use the
GNU Make flag above.

tk
Build ACE/TAO components dependent on Tk. This includes the ACE Tk
reactor and TAO Tk resource libraries.

See 18.7.6 for more information on using the Xt reactor with TAO.

versioned_so
Add versioning to library names.

If set to zero, this flag does not append version information to the library
name. If set to one, this flag causes each shared library to be appended with

GNU Make Flag Preprocessor Macro
templates=used None

GNU Make Flag Preprocessor Macro
threads=0 See text.

GNU Make Flag Preprocessor Macro
tk=1 None

GNU Make Flag Preprocessor Macro
versioned_so=0 None

1102 o c i w e b . c o m

C o n f i g u r i n g A C E / T A O B u i l d s

the contents of the SOVERSION variable. If SOVERSION is not set, then the
version number defaults to .major.minor.beta for DOC group releases and
.major.minor.patch_level for OCI versions.

wfmo
Build with Wait For Multiple Objects reactor support.

The WFMO reactor is only supported on Microsoft Windows and is usually
enabled there automatically.

winregistry
Build with windows registry support.

The winregistry option is only available on Windows and is usually
enabled there automatically.

xt
Build support for Xt-related components. This implicitly enables build of the
ACE for the Xt reactor and TAO Xt resource libraries.

See 18.4 for more information on using the Xt reactor with TAO.

zlib
Enables building the zlib-dependent features of TAO.

This enables building of the TAO zlib compression library allowing for its use
with the ZIOP Protocol. See 14.14 for ZIOP details.

GNU Make Flag Preprocessor Macro
wfmo=1 None

GNU Make Flag Preprocessor Macro
winregistry=1 None

GNU Make Flag Preprocessor Macro
xt=1 None

GNU Make Flag Preprocessor Macro
zlib=1 None

o c i w e b . c o m 1103

Appendix B

Choosing How To Build ACE and TAO

There are several ways to build ACE and TAO, depending upon your
operating system, compiler, and preferences. This appendix will help you
choose the type of build you need to perform.

The instructions in this and subsequent appendices apply only if you want to
build the ACE and TAO libraries and executables directly from the source
code distribution. Alternatively, for many platforms, you can install pre-built
binary versions of the libraries and executables directly from the OCI
CD-ROMs. See 2.2 and the instructions that come with the CD for more
information.

Building ACE and TAO on UNIX with GNU Make
For UNIX and UNIX-like platforms, it is possible to build TAO similarly to
previous releases, using provided configuration files and GNU Makefiles
generated by MPC. This method is described in Appendix C.

Building ACE and TAO on Windows with Visual C++
You can build ACE and TAO on Windows (NT, 2000, XP) using Visual C++.
See Appendix D for details.

1104 o c i w e b . c o m

Using ACE and TAO with VxWorks
You can build and use ACE and TAO on the VxWorks operating system. See
Appendix E for details.

Using ACE and TAO with LynxOS
You can build and use ACE and TAO on the LynxOS operating system. See
Appendix G for details.

o c i w e b . c o m 1105

Appendix C

Building ACE and TAO on UNIX

This appendix discusses how to build the ACE and TAO libraries and
executables after installing the source code. Alternatively, you can install
pre-built binary versions of the libraries and executables directly from the OCI
CD-ROMs. See the instructions that come with the CD for more information.

C.1 Building ACE and TAO on a UNIX System

ACE and TAO can be used on many versions of UNIX and UNIX-like
platforms, including Linux, Solaris, AIX, HP-UX, Tru64, IRIX, and others.

Before you build the ACE and TAO libraries, you should review C.2 to learn
about reducing the memory footprint of the ACE and TAO libraries. The
following steps must be performed in order to build TAO. They will be
discussed at length in the pages that follow.

1. Create a build tree. (Optional, but recommended.)

2. Set environment variables.

3. Configure the source code for your platform.

4. Determine what features to build.

1106 o c i w e b . c o m

B u i l d i n g A C E a n d T A O o n U N I X

5. Generate makefiles. (Optional, but recommended.)

6. Build ACE and TAO.

7. Verify the build.

C.1.1 Create a Build Tree
MPC includes a Perl script called clone_build_tree.pl that you can use
to create multiple build trees from a single, shared source tree. The builds are a
duplicate of ACE_wrappers, and are placed in ACE_wrappers/build/name
where name is the name you supply to identify the build. Each build can use a
different compiler and different settings.

The script must be run from the ACE_wrappers directory. You can name
your build anything you like. For example:

MPC/clone_build_tree.pl default

will create an ACE_wrappers/build/default directory with a complete
duplicate of the directory structure of ACE_wrappers, with symbolic links to
source code and other necessary files. The build directory will not contain any
makefiles as it is assumed you will use MPC to generate them.

If you are modifying ACE or TAO, and have added or removed files in the
original tree, then you should run clone_build_tree.pl again without any
arguments. This will update all existing builds.

You may choose not to create a build tree. In this case you can put your
makefiles directly in ACE_wrappers.

C.1.2 Set Environment Variables
The environment variables for building ACE and TAO are ACE_ROOT and
TAO_ROOT. Assuming you installed the source directories under
/usr/local, and created a new build tree as outlined in C.1.1, the following
sh commands set these environment variables.

ACE_ROOT=/usr/local/ACE_wrappers/build/default; export ACE_ROOT
TAO_ROOT=$ACE_ROOT/TAO; export TAO_ROOT

For the ACE and TAO executables to link, the ACE and TAO libraries must
be in the library path. In TAO, the output library path is easily configured
using MPC. By default, libraries are placed in $ACE_ROOT/lib. The

o c i w e b . c o m 1107

C . 1 B u i l d i n g A C E a n d T A O o n a U N I X S y s t e m

following sh command sets the search path for libraries, assuming MPC was
used to generate your makefiles:

LD_LIBRARY_PATH=$ACE_ROOT/lib:$LD_LIBRARY_PATH; export LD_LIBRARY_PATH

Note You must define ACE_ROOT when building the ACE and TAO libraries.
TAO_ROOT defaults to $ACE_ROOT/TAO. The same settings must also be
defined to use ACE and TAO. See C.1.3 for information on setting the
platform_macros.GNU file.

C.1.3 Configure the Source Code for Your Platform
To achieve ACE and TAO’s portability on a wide variety of platforms with a
minimum impact to the source code, platform dependencies for the source
code and the makefiles are constrained to three files.

• $ACE_ROOT/ace/config.h

• $ACE_ROOT/include/makeinclude/platform_macros.GNU

• $ACE_ROOT/bin/MakeProjectCreator/config/default.features

These files serve as documentation of which settings were used to build ACE
and TAO, and also to ensure that your own projects use consistent settings
where necessary.

The config.h file defines C++ preprocessor macros that control operating
system and C++ compiler characteristics and system library coverage. Most of
these macros are of the form ACE_HAS_feature or ACE_LACKS_feature.
Currently, we recommend also putting any TAO_HAS_feature options in this
file, though in the future those may be moved to another file.

Here are some examples of preprocessor macros that control how ACE and
TAO are built:

ACE_LACKS_SIGNED_CHAR
ACE_HAS_IP_MULTICAST
TAO_HAS_MINIMUM_CORBA

The platform_macros.GNU file defines macros used by GNU Make to
build ACE and TAO and applications, such as exceptions, inline, debug,
and optimize. For details about available options for use in
platform_macros.GNU, see Appendix A.

1108 o c i w e b . c o m

B u i l d i n g A C E a n d T A O o n U N I X

Here are some examples of build flags that affect how ACE and TAO and
applications are built:

debug=0
optimize=1
fast=1
inline=0

Creating the Platform Configuration Files
The three configuration files described above do not exist in the ACE and
TAO source code distribution; you have to create them.

Your config.h file should #include a config-*.h file that is specific to
your platform, such as config-hpux11.00.h, config-linux.h, or
config-sunos5.9.h. Then, you can add your own configuration options
before the #include.

As an example, we will create configuration files to build ACE and TAO for
Solaris 9 using the Sun ONE Studio 8 Compiler. We also enable qos and ssl
features.

To support Solaris 9, we create the following $ACE_ROOT/ace/config.h
file:

// Add any configuration macros here.
#include "ace/config-sunos5.9.h"

Your platform_macros.GNU file should include the correct file for the
platform and compiler, such as platform_hpux_aCC.GNU,
platform_linux.GNU, or platform_sunos5_sunc++.GNU. Then, you
can add your own configuration options before the include.

For example, to support the Sun ONE Studio 8 Compiler, we create the
following $ACE_ROOT/include/makeinclude/platform_macros.GNU
file:

Add any configuration options such as debug, release, and exceptions here.
include $(ACE_ROOT)/include/makeinclude/platform_sunos5_sunc++.GNU

Note Several platform-specific config*.h and platform*.GNU files are
provided as part of the ACE and TAO source code distribution. These cover
all of the OCI supported platforms, as well as other platforms. If files are not

o c i w e b . c o m 1109

C . 1 B u i l d i n g A C E a n d T A O o n a U N I X S y s t e m

included for a particular platform, operating system, and compiler
combination in which you are interested, you may be able to create one by
starting with one of the provided files and modifying it slightly. OCI can help
you port ACE and TAO to a new platform.

C.1.4 Determine what features to build
Before generating makefiles, you may want to go over the features listed in
A.2.1 to see if any are enabled/disabled that you wish to be disabled/enabled.
If so you will need to create a default.features file containing your
custom feature settings.

C.1.5 Generate Makefiles
We are now ready to use the MPC tool to generate the makefiles for our build.

cd $ACE_ROOT
bin/mwc.pl -type gnuace -recurse

This command will generate makefiles for any .mwc workspace files found in
our build tree, as well as generating makefiles for any .mpc project files. By
generating makefiles for workspaces, we will be able to build related projects
with a single command.

Note See the MPC documentation at
<http://www.ociweb.com/products/MPC> for more information on
using MPC.

C.1.6 Build ACE and TAO
This step briefly describes how to build ACE and TAO. For more detailed
instructions, see $ACE_ROOT/ACE-INSTALL.html and
$TAO_ROOT/TAO-INSTALL.html.

The makefiles require version 3.79.1 or later of GNU Make. If you do not
have GNU Make version 3.79.1, you can obtain it at no cost via
<http://www.theaceorb.com/references/>.

Assuming MPC was used to generate makefiles as described above, it is
possible to build a complete ACE and TAO development installation by
running a single make command from $TAO_ROOT:

1110 o c i w e b . c o m

B u i l d i n g A C E a n d T A O o n U N I X

cd $TAO_ROOT
make

This will build everything you need to use TAO. It will not build any
examples, tests, or performance tests.

Note You must use GNU Make to build ACE+TAO on UNIX and UNIX-like
platforms. The make command on your system may actually invoke the native
operating system’s make program instead of GNU Make. If you are not sure,
type make --version. If the make command on your system is not GNU
Make, check with your system administrator to see if GNU Make is available.
On some systems, you may be able to use the gmake command.

C.1.7 Verify Your Build
Once you have a complete TAO build, you may want to run a few tests to
verify that it is working correctly. The TAO source code distribution includes
some basic tests and performance tests that you can use.

• $TAO_ROOT/tests/Hello contains a basic “Hello, world!” CORBA
client and server application. If this test does not work, then your TAO
build or your run time environment is seriously impaired.

• $TAO_ROOT/DevGuideExamples and
$TAO_ROOT/orbsvcs/DevGuideExamples directories contains all of
the source code for the examples in this Developer’s Guide, along with
MPC files and run scripts.

• $TAO_ROOT/tests/Param_Test contains an application that exercises
the ORB’s basic parameter passing conventions for many OMG IDL data
types.

• $TAO_ROOT/performance-tests/Cubit/TAO/IDL_Cubit contains
tests for certain optimizations, such as collocation. You can also use the
IDL Cubit server and client to test passing various command line options
to applications.

See the README file in each of the above directories for more information on
building and running these tests. Each of the above directories also contains
MPC files to use for building the test, and a Perl script named run_test.pl
for semi-automated running of the test.

o c i w e b . c o m 1111

C . 2 C u s t o m i z i n g A C E a n d T A O B u i l d s

C.2 Customizing ACE and TAO Builds

In certain situations (e.g., embedded environments) you may want to
minimize the memory footprint required by the ACE and TAO libraries. There
are several build parameters you can customize to help reduce the size and
memory footprint of these libraries. You can also disable MPC features to
prevent generation of makefiles for related projects.

Note To customize your build, you must set these parameters before building ACE
and TAO.

C.2.1 Minimizing the Size of the TAO Library
TAO provides support for the minimumCORBA specification from the OMG.
The minimumCORBA specification omits the following features from the
CORBA specification:

• Dynamic Skeleton Interface (DSI)

• Dynamic Invocation Interface (DII)

• Dynamic Any

• Interceptors

• Interface Repository

• Advanced POA features

• CORBA/COM interworking

To select the minimumCORBA subset of TAO, you can define the
TAO_HAS_MINIMUM_CORBA preprocessor macro with a value of 1 in
$ACE_ROOT/ace/config.h or include minimum_corba=1 in
platform_macros.GNU. You must also add minimum_corba=1 to your
default.features file before generating your makefiles. Building only the
minimumCORBA subset typically results in about a 26% reduction in the size
of the TAO library ($ACE_ROOT/lib/libTAO.*). However, it may not be
appropriate for your application due to the omission of the features listed
above.

You can choose the minimumCORBA configuration of TAO, but retain the
advanced POA features, such as Servant Managers, Default Servant, and

1112 o c i w e b . c o m

B u i l d i n g A C E a n d T A O o n U N I X

Adapter Activators, by defining TAO_HAS_MINIMUM_POA = 0 in
$ACE_ROOT/ace/config.h before building TAO.

Here is an example of a config.h file that could be used on Linux to build
TAO with minimumCORBA support, yet retain the advanced POA features:

#define TAO_HAS_MINIMUM_CORBA=1
#define TAO_HAS_MINIMUM_POA=0
#include "ace/config-linux.h"

C.2.2 Selectively Building TAO Services
All TAO service libraries ($ACE_ROOT/lib/libTAO_*.*) are built by
default. These libraries include all of TAO’s currently-supported services (see
Chapter 21 for more about TAO’s services). You can reduce the number of
services that are built (and thereby reduce the overall build time and disk
space consumption) by excluding unused services. In previous versions of
TAO, this was controlled by setting the TAO_ORBSVCS variable to contain
only the names of the services you want to build. This is no longer supported.
However, you can change directory to $TAO_ROOT/orbsvcs/orbsvcs and
build individual projects such as CosNaming or RTEvent to build only the
services you want to use. For example:

$ cd $TAO_ROOT/orbsvcs/orbsvcs
$ make CosNaming RTEvent

You can view the available projects by looking at the list of GNU make files.
In a given directory, you will see a make file for each project, such as
GNUmakefile.CosNaming and GNUmakefile.CosNaming_Skel. Simply
pass the set of project names you want to build on the make command line.

Another way to build a subset of TAO services is to create your own
workspace for use with MPC. You could make a copy of the existing
$TAO_ROOT/TAO_ACE.mwc workspace file and modify it to build only the
services that you want. This approach has the added advantages of portability
and repeatability.

The following is an example of a custom workspace (.mwc) file located in
$TAO_ROOT that contains everything necessary to build the CosNaming and
RTEvent libraries along with the tao_cosnaming executable.

// $TAO_ROOT/CosNaming_RTEvent.mwc

o c i w e b . c o m 1113

C . 2 C u s t o m i z i n g A C E a n d T A O B u i l d s

workspace {
 ../ace
 ../apps/gperf/src
 tao
 TAO_IDL
 orbsvcs/orbsvcs/Svc_Utils.mpc
 orbsvcs/orbsvcs/CosNaming.mpc
 orbsvcs/orbsvcs/RTEvent.mpc
 orbsvcs/Naming_Service
}

1114 o c i w e b . c o m

B u i l d i n g A C E a n d T A O o n U N I X

o c i w e b . c o m 1115

Appendix D

Building ACE and TAO Using Visual C++

This appendix discusses how and why you might want to build the ACE and
TAO libraries and executables from the source code for the Windows platform
using Visual C++.

D.1 Building ACE and TAO

Building ACE and TAO with Visual C++ requires several steps:

1. Create a build tree. (Optional, but recommended.)

2. Set environment variables.

3. Configure the source code for your platform.

4. Determine what features to build.

5. Generate Project Files. (Optional, but recommended.)

6. Build ACE and TAO.

7. Verify the build.

1116 o c i w e b . c o m

B u i l d i n g A C E a n d T A O U s i n g V i s u a l C + +

D.1.1 Create a Build Tree
As discussed in C.1.1, this optional step of working with build trees allows
you to create multiple builds from a single set of source code.

Note This features requires use of NTFS, because it relies on linked files.

MPC includes a Perl script called clone_build_tree.pl that can create
multiple build trees from a shared source tree. The builds are a duplicate of
ACE_wrappers, and are placed in ACE_wrappers/build/<name>. Each
build can use a different compiler and settings.

The script must be run from ACE_wrappers, and you can name the build
anything you like. For example:

clone_build_tree.pl default

will create a directory named ACE_wrappers/build/default with a
complete duplicate of the directory structure of ACE_wrappers, with links to
source code and other necessary files. The build directory will not contain any
project files, as it is assumed you will use MPC to generate them.

If you are modifying ACE or TAO, then you should run
clone_build_tree.pl again without any arguments. This will update all
existing builds. Unlike UNIX and UNIX-like platforms, which support
symbolic links, Windows uses hard links that can be broken by many tools.
For example, editing a file with some editors appears to actually remove the
existing file and create a new one in its place. This is not a problem with
Notepad or Visual Studio. When clone_build_tree.pl updates an
existing build, it will overwrite existing files with the version from the build
directory if it is newer, and the original will be renamed with the addition of a
.bak extension. For example, if you edit
ACE_wrappers\build\default\VERSION, then clone_build_tree.pl
will rename ACE_wrappers\VERSION to ACE_wrappers\VERSION.bak,
and copy the one from the build directory.

You may choose not to create a build tree. In this case, you can use the default
projects, or generate new ones directly in ACE_wrappers.

o c i w e b . c o m 1117

D . 1 B u i l d i n g A C E a n d T A O

D.1.2 Set Up Your Environment
You should create ACE_ROOT and TAO_ROOT environment variables, and
update your PATH. This is not strictly necessary on Windows, but it makes
using TAO more convenient.

For example:

set ACE_ROOT=c:\ACE_wrappers\build\default
set TAO_ROOT=%ACE_ROOT%\TAO
set PATH=%PATH%;%ACE_ROOT%\bin;%ACE_ROOT%\lib

TAO requires two entries in your PATH. The first is the location for generated
executables, and the second is the location for DLLs.

D.1.3 Configure the Source Code for Your Platform
Before you are able to build the libraries and executables, you must configure
the source for the environment. For all Win32 platforms, create a new file
called %ACE_ROOT%\ace\config.h and add the following lines:

#include "ace/config-win32.h"

You can modify this file to suit your custom build requirements. Here are
some additional settings you may need to add to your config.h file:

• Open Socket Limit

- By default, Windows’ sockets library allows only 64 simultaneous
open sockets. You can add the following definition to increase this
limit, however ACE already increases it to 1024 by default:

#define FD_SETSIZE 256

D.1.4 Determine what features to build
Before generating project files, you may want to go over the features listed in
A.2.1 to see if any are enabled/disabled that you wish to be disabled/enabled.
If so you will need to create a default.features file containing your
custom feature settings.

D.1.5 Generate Project files
We can now use MPC to generate the project for our build:

1118 o c i w e b . c o m

B u i l d i n g A C E a n d T A O U s i n g V i s u a l C + +

cd %ACE_ROOT%
mwc.pl -type vc12 TAO_ACE.mwc

This command will generate an .sln file for ACE and TAO including all of
the optional libraries, services, and utilities.

The example above shows a build environment type selection for Visual C++
12, which ships with Visual Studio 2013. Build environment types are
identified by the compiler identifier, not the Visual Studio vintage. MWC will
create workspace solutions for several Visual C++ versions shown here.

To create a separate .sln for the regression test suite or the TAO examples
use mwc.pl without naming an mwc file name. In this case mwc.pl generates
a workspace that contains a separate project for each of the mpc files found in
the directory tree. Individual example or tests projects may be contained in
separate solution files by running mwc.pl in individual example or test
directories..

Table D-1 Visual C++ Type values for mwc.pl and mpc.pl

-type value Usage

vc6 Visual Studio 6.0, for OCITAO 1.6a and older

vc7 Visual Studio .NET (2002), not supported for any TAO

vc71 Visual Studio .NET 2003, for OCITAO 2.0a and older

vc8 Visual Studio 2005, for OCITAO 2.0a and older

vc9 Visual Studio 2008, for OCITAO 2.2a and older

vc10 Visual Studio 2010

vc11 Visual Studio 2012

vc12 Visual Studio 2013

vc14 Visual Studio 2015

nmake command line build, compatible with all the above compilers

Table D-2 Notable top-level directories

Directory Contains

%TAO_ROOT%\examples
Examples of use of the various TAO core features
and optional libraries.

%TAO_ROOT%\tests Regression tests for TAO core functionality.

%TAO_ROOT%\DevGuideExamples All of the examples presented in this guide.

o c i w e b . c o m 1119

D . 1 B u i l d i n g A C E a n d T A O

D.1.6 Build the Libraries
All TAO libraries and executables can be built from single Visual C++
workspace found in %TAO_ROOT%\TAO_ACE.sln.

You may use the Batch Build command in Visual Studio IDE to build the
libraries and configurations in which you are interested. Alternatively, you
may find that it is easier to build just the configurations in which you are
interested from the command line, as follows:

devenv TAO_ACE.sln /build debug /out build.log

The Express Editions of Visual Studio lack the devenv tool, but can build
from the command line using msbuild or vcbuild. For example, the
following msbuild command builds all projects in the TAO_ACE.sln
solution:

msbuild /p:Configuration=Debug TAO_ACE.sln

An easy way to build the most commonly used TAO projects is to build the
Naming_Service project. Its dependencies build ACE, TAO, the TAO IDL
compiler, and some other common projects. You can build this project from
the command line as follows:

devenv TAO_ACE.sln /build debug /project Naming_Service /out build.log

or with the msbuild

msbuild /t:Naming_Service /p:Configuration=Debug TAO_ACE.sln

The advantage of using this method over using Batch Build is that you do
not build libraries and executables that you do not need, and you do not need
to know which projects are required to build a particular service.

%TAO_ROOT%\orbsvcs\examples
Examples of use of the various TAO ORB services
such as naming or notification.

%TAO_ROOT%\orbsvcs\tests Regression tests for the ORB services.

Table D-2 Notable top-level directories

Directory Contains

1120 o c i w e b . c o m

B u i l d i n g A C E a n d T A O U s i n g V i s u a l C + +

D.1.7 Verify Your Build
Once you have a complete TAO build, you may want to run a few tests to
verify that it is working correctly. The TAO source code distribution includes
some basic tests and performance tests that you can use.

• %TAO_ROOT%\tests\Hello contains a basic “Hello, world!” CORBA
client and server application. If this test does not work, then your TAO
build or your run time environment is seriously impaired.

• %TAO_ROOT%\DevGuideExamples and
%TAO_ROOT%\orbsvcs\DevGuideExamples contain all of the source
code for the examples in this Developer’s Guide, along with MPC files
and run scripts.

• %TAO_ROOT%\tests\Param_Test\ contains an application that
exercises the ORB’s basic parameter passing conventions for several
OMG IDL data types.

• %TAO_ROOT%\performance-tests\Cubit\TAO\IDL_Cubit\
contains tests for certain optimizations, such as collocation. You can also
use the IDL Cubit server and client to test passing various command line
options to applications.

See the README file in each of the above directories for more information on
building and running these tests. Each of the above directories also contains
MPC files to use for building the test, and a Perl script named run_test.pl
for semi-automated running of the test.

D.2 Build Notes

• MPC is used to generate all projects for ACE and TAO. Using MPC
ensures that all project types are kept up to date and makes it easier to
maintain and add projects. Using MPC also ensures consistent settings
across all projects.

• If you receive errors while building the static libraries for TAO, it may be
because the IDL generated files do not yet exist. The easiest way to
generate these files is to just build twice. On the first pass, Visual C++
will run the custom build command on the IDL files, which generates
code from the IDL files. On the second pass, Visual C++ will be able to
build without errors. Do not set dependencies between the various static

o c i w e b . c o m 1121

D . 2 B u i l d N o t e s

library projects; doing so has the unwanted side-effect of including the
complete contents of the dependent library within the library for the
project, resulting in some very large libraries.

• If you join the ranks of contributors to ACE and TAO, you will probably
find yourself rebuilding certain files often. If this is the case, you may
want to enable incremental linking, and/or minimal build in the settings
for the project you are working on.

• You can build any project or workspace using Visual C++ from the
command line. This is most easily shown with a few examples:

- To build the Debug configuration of all the projects in the TAO_ACE
solution, use the following command for Visual Studio:

devenv TAO_ACE.sln /build Debug

or using the msbuild:

 msbuild /t:Build /p:Configuration=Debug TAO_ACE.sln

- To clean all of the projects you can use:

devenv TAO_ACE.sln /clean

or with msbuild:

 msbuild /t:Clean /p:Configuration=Debug TAO_ACE.sln

• When you use the clean feature of Visual C++, it leaves many temporary
files behind. To make sure all the unneeded files are cleaned, you can
search for the following wildcards using the Windows Search utility on
the %ACE_ROOT% folder, then delete the found files:

.pch;.lib;*.dll;*.sbr;*.plg;*.ncb;*.opt;*.clw;*.idb;*.obj;*.exe;*.ilk;*.
bsc;*.exp;*.pdb;*.suo

• You must restart Visual C++ after making changes to environment
variables. You may run into this problem the first time you build
TAO_ACE.sln on a machine if you had Visual C++ running before setting
ACE_ROOT, TAO_ROOT, and PATH.

1122 o c i w e b . c o m

B u i l d i n g A C E a n d T A O U s i n g V i s u a l C + +

o c i w e b . c o m 1123

Appendix E

Using ACE and TAO with VxWorks

This appendix describes how to build and use ACE and TAO with the
VxWorks (version 6.x) operating system from Wind River Systems, Inc.
VxWorks is a real-time operating system that is used in many embedded and
real-time systems.

TAO can also be built for use with VxWorks 5.5.x. See
$ACE_ROOT/ACE_INSTALL.html for details.

Cross-compilation is the only way to build ACE and TAO for VxWorks. Here,
we will describe building ACE and TAO on a Windows host and on a UNIX
host, such as Linux, for a PowerPC target.

VxWorks versions prior to 6.x placed application code in the same address
space as the kernel. Starting with VxWorks 6.0, VxWorks also supports
Real-Time Processes (RTP). Applications can still be built as kernel space
modules, but can also be built as RTPs. TAO supports both modes of building
for VxWorks.

1124 o c i w e b . c o m

U s i n g A C E a n d T A O w i t h V x W o r k s

E.1 Kernel and System Configuration

The VxWorks kernel is highly configurable and may require some
modification for optimal performance with ACE and TAO. A good starting
point for this configuration is the Development Profile from Wind River’s
Workbench. In addition, enable the following components from the kernel
configuration tool:

INCLUDE_CORE_NFS_CLIENT
INCLUDE_CPLUS_IOSTREAMS
INCLUDE_GETADDRINFO_SYSCTL
INCLUDE_IFCONFIG
INCLUDE_IPCOM_USE_AUTH
INCLUDE_IPDNSC
INCLUDE_IPIFCONFIG_CMD
INCLUDE_IPNETSTAT_CMD
INCLUDE_IPNSLOOKUP_CMD
INCLUDE_IPPING_CMD
INCLUDE_IPTELNETS
INCLUDE_IPWRAP_GETADDRINFO
INCLUDE_IPWRAP_IFCONFIG
INCLUDE_IPWRAP_NETSTAT
INCLUDE_IPWRAP_PING
INCLUDE_NETSTAT
INCLUDE_NET_HOST_SHOW
INCLUDE_NFS3_CLIENT
INCLUDE_PING
INCLUDE_POSIX_PTHREAD_SCHEDULER
INCLUDE_PX_SCHED_DEF_POLICIES
INCLUDE_Q_PRI_BMAP_CREATE_DELETE
INCLUDE_RPC
INCLUDE_SHELL_BANNER
INCLUDE_USE_NATIVE_SHELL

For ACE and TAO to run properly under VxWorks, the NUM_FILES kernel
configuration value must be changed. This value defaults to 50 but should be
changed to at least 64. The value increase is required due to the possible high
number sockets that can be created under normal operation of TAO.

Optionally, if DNS is enabled (as it is in the example above), you must modify
the DNS server and domain in the kernel configuration to reflect your DNS
information. If DNS is not enabled, the command line argument
-ORBDottedDecimalAddresses 1 must be used with TAO clients and
servers to tell the ORB not to use host names under the IIOP protocol.
Alternatively, TAO_USE_DOTTED_DECIMAL_ADDRESSES can be defined

o c i w e b . c o m 1125

E . 2 E n v i r o n m e n t S e t u p

when compiling TAO to accomplish the same thing without requiring the
command line option. (See E.2.)

E.2 Environment Setup

ACE, ace_gperf and tao_idl must be statically built for your host prior to
setting up the environment to build for VxWorks. We describe how to do this
for both UNIX (in E.2.1) and Windows (in E.2.2) build hosts.

Note It is possible to build a shared version of ACE, ace_gperf and tao_idl, but
statically linking can help you avoid problems with library mismatches and
finding the shared library at run time.

E.2.1 UNIX
If your host is Solaris or Linux, follow the directions laid out in Appendix C
until you reach C.1.3, “Configure the Source Code for Your Platform.”

Next, create the following files for your host machine:

$ACE_ROOT/ace/config.h
$ACE_ROOT/include/makeinclude/platform_macros.GNU

For example, if your build host machine is running Linux, you would create
platform_macros.GNU in $ACE_ROOT/include/makeinclude with the
following contents:

debug=0
optimize=1
static_libs_only=1
include $(ACE_ROOT)/include/makeinclude/platform_linux.GNU

Your config.h file can be set up once and can take into account both the host
and target platforms based on preprocessor macros. The following config.h
file will suffice for Solaris, Linux, and Windows hosts, as well as
cross-compiling for VxWorks:

#if defined (sun)
include "ace/config-sunos5.10.h"

1126 o c i w e b . c o m

U s i n g A C E a n d T A O w i t h V x W o r k s

#elif defined (linux)
include "ace/config-linux.h"

#elif defined (_MSC_VER)
define ACE_DISABLE_WIN32_ERROR_WINDOWS
define ACE_DISABLE_WIN32_INCREASE_PRIORITY
include "ace/config-win32.h"

#elif defined (ACE_VXWORKS)
include "ace/config-vxworks.h"
#endif

Once the above configuration is complete, build a static version of ACE,
ace_gperf, and tao_idl. To do this, first generate a minimal set of
makefiles with MPC.

cd $ACE_ROOT/TAO
../bin/mwc.pl -type gnuace TAO_ACE.mwc

Now, build the ACE library by running GNU Make in $ACE_ROOT/ace with
the ACE target:

cd $ACE_ROOT/ace
make ACE

The ace_gperf and tao_idl executables can be built similarly by running
GNU Make with no parameters in the $ACE_ROOT/apps/gperf/src and
$ACE_ROOT/TAO/TAO_IDL directories.

cd $ACE_ROOT/apps/gperf/src
make
cd $ACE_ROOT/TAO/TAO_IDL
make

Now, you can reconfigure your source tree to build for your target. First, clean
up libraries and object files left from the static build for your host:

cd $ACE_ROOT/ace
make realclean

Next, modify your platform_macros.GNU file in
$ACE_ROOT/include/makeinclude as follows:

debug=0
optimize=1

o c i w e b . c o m 1127

E . 2 E n v i r o n m e n t S e t u p

static_libs_only=1
CPU=PPC32
include $(ACE_ROOT)/include/makeinclude/platform_vxworks.GNU

This example builds for RTP. To build for kernel mode applications, add
rtp=0 to your platform_macros.GNU. See the VxWorks documentation for
the appropriate value of the CPU variable for your target processor.

Start a VxWorks development shell by running the wrenv.sh script that is
part of the VxWorks installation. This script sets up a number of environment
variables necessary for building with VxWorks. For example:

cd /opt/VxWorks
./wrenv.sh -p vxworks-6.7

At this point, you can follow the instructions in C.1.5, “Generate Makefiles”
and finish with the remaining instructions in Appendix C.

E.2.2 Windows
If your host is Windows, follow the directions in Appendix D until you reach
D.1.3, “Configure the Source Code for Your Platform”.

Next, create the following file for your host machine:

%ACE_ROOT%\ace\config.h

Your config.h file can be set up once and can take into account both the host
and target platforms based on preprocessor macros. The following config.h
file will suffice for Solaris, Linux, and Windows hosts, as well as
cross-compiling for VxWorks:

#if defined (sun)
include "ace/config-sunos5.10.h"

#elif defined (linux)
include "ace/config-linux.h"

#elif defined (_MSC_VER)
define ACE_DISABLE_WIN32_ERROR_WINDOWS
define ACE_DISABLE_WIN32_INCREASE_PRIORITY
include "ace/config-win32.h"

#elif defined (ACE_VXWORKS)
include "ace/config-vxworks.h"

1128 o c i w e b . c o m

U s i n g A C E a n d T A O w i t h V x W o r k s

#endif

Once the above configuration is complete, build a static version of ACE,
ace_gperf and tao_idl. To do this, first generate project and
workspace/solution files using MPC.

For example, if you are using Visual C++ version 9:

cd %ACE_ROOT%\TAO
..\bin\mwc.pl -static -type vc9 TAO_ACE.mwc

Next, build the ACE library, ace_gperf and tao_idl by opening the
TAO_ACE workspace or solution file (e.g., TAO_ACE.sln) in the
%ACE_ROOT%\TAO directory (with Visual C++), selecting the active build
configuration of “Release”, and building the TAO_IDL_EXE project.

Next, create a platform_macros.GNU file in
%ACE_ROOT%\include\makeinclude with the following contents:

debug=0
optimize=1
static_libs_only=1
CPU=PPC32
include $(ACE_ROOT)/include/makeinclude/platform_vxworks.GNU

This example builds for RTP. To build for kernel mode applications, add
rtp=0 to your platform_macros.GNU. See the VxWorks documentation for
the appropriate value of the CPU variable for your target processor.

Start a Visual Studio command prompt using the Start Menu shortcut installed
by Microsoft Visual Studio. From within this window, start a VxWorks
development shell by using the wrenv.exe. For example:

C:\VxWorks\wrenv.exe -p vxworks-6.7

Note Running within a Visual Studio command prompt is necessary in order for
TAO’s IDL compiler to properly utilize the Visual C++ preprocessor.

At this point, you can follow the directions in C.1.5, “Generate Makefiles” and
finish with the remaining instructions in Appendix C.

o c i w e b . c o m 1129

Appendix F

Using ACE and TAO with Android

This appendix describes how to build and use ACE and TAO for Android
operating system from Google, Inc. Android is an embedded operating system
based on Linux. Application development is largely done using the Java
language, but ACE and TAO provide the basis for products such as Open
DDS which provides Java wrappers.

The ACE and TAO build described in this appendix are static libraries for use
with the Native Development Kit (NDK). As of this writing NDK versions r5c
and r6 are supported.

Cross-compilation is the only way to build ACE and TAO for Android. Here,
we will describe building ACE and TAO on a Linux host an ARM based
target.

The general sequence of steps to follow are:

• Download and configure Android SDK and NDK packages.

• Download and configure ACE/TAO for multiple builds.

• Set the required environment variables.

• Build the required host tools.

1130 o c i w e b . c o m

U s i n g A C E a n d T A O w i t h A n d r o i d

• Build the deployable libraries

• Run tests

F.1 Android Development Kits

Building for Android requires both the Software Development Kit (SDK) as
well as the NDK. Obtain each from http://developer.android.com.
The NDK should be at least release r5c, although the latest release will be
something newer than that. Download and expand each archive into its own
directory. The environment variables $NDK and $SDK should be set to point to
each installed root directory.

For ACE and TAO development, a stand-alone tool chain should be used. This
is necessary as ACE and TAO require RTTI and exceptions. Use the script
$NDK/build/tools/make-standalone-toolchain.sh to do this. The
target platform must be “android-9” and the architecture should be either
“arm” or “x86.” For example:
$cd $NDK
$./build/tools/make-standalone-toolchain.sh --arch arm --platform android-9 \
 --install-dir=arm_toolchain

This will construct a stand alone tool chain for the arm architecture in a
directory called “arm_toolchain” which should be set as the value for the
environment variable $NDK_TOOLS. $NDK_TOOLS/bin must be added to the
$PATH.

Optionally, set the architecture value supplied to the tool chain maker script to
a variable called $ANDROID_ARCH. This default to “arm” if not set.

The last environment variable to be set is $SYSROOT, which is defaulted to
“$NDK/platform/android-9/arch-$ANDROID_ARCH.”

F.2 Setup ACE/TAO Workspaces

ACE, ace_gperf and tao_idl must be statically built for your host prior to
setting up the environment to build for Android. As of the writing of this
appendix, building ACE and TAO for the Android target is supported on

o c i w e b . c o m 1131

F . 3 B u i l d T h e H o s t T o o l s

Linux only, although there are NDK packages available for building on
Windows and MacOS as well.

Cross compiled targets require two build workspaces. Follow the directions
laid out in Appendix C until you reach C.1.3, “Configure the Source Code for
Your Platform.” While those instructions indicate setting up a build
workspace as an optional step, it is required for cross compiled targets since
two workspaces are required, one for the host tools and the other for the target.

F.3 Build The Host Tools

Now that you have set up the two workspace directories, one for the host and
one for the target. You should now set $ACE_ROOT to point to your host build
workspace, and $TAO_ROOT point to the associated TAO directory.

Create the following files for your host machine:

$ACE_ROOT/ace/config.h
$ACE_ROOT/include/makeinclude/platform_macros.GNU

For example, since your build host machine is running Linux, you would
create platform_macros.GNU in $ACE_ROOT/include/makeinclude
with the following contents:

debug=0
optimize=1
include $(ACE_ROOT)/include/makeinclude/platform_linux.GNU

Your config.h file can be set up once and can take into account both the host
and target platforms based on preprocessor macros. The following config.h
file will suffice for Linux:

include "ace/config-linux.h"

Once the above configuration is complete, build a static version of ACE,
ace_gperf, and tao_idl. To do this, first generate a minimal set of
makefiles with MPC.

cd $TAO_ROOT
$ACE_ROOT/bin/mwc.pl -type gnuace TAO_ACE.mwc

1132 o c i w e b . c o m

U s i n g A C E a n d T A O w i t h A n d r o i d

You now have all the makefiles necessary for building a full ACE/TAO suite
for the Linux host environment. This can come in handy for testing by
providing a second peer to be a client or server as needed for inter-host tests
with your Android applications. In this case, from the $TAO_ROOT directory
you simply run GNU Make.

cd $TAO_ROOT
make

However, this is not necessary if you are building exclusively for Android and
do not need a local ACE/TAO build for the host platform. In this case, you
still need to build the tools necessary to run the IDL compiler. First, build the
ACE library by running GNU Make in $ACE_ROOT/ace with the ACE target:

cd $ACE_ROOT/ace
make ACE

The ace_gperf and tao_idl executables can be built similarly by running
GNU Make with no parameters in the $ACE_ROOT/apps/gperf/src and
$ACE_ROOT/TAO/TAO_IDL directories.

cd $ACE_ROOT/apps/gperf/src
make
cd $TAO_ROOT/TAO_IDL
make

Once built, verify that the environment variable $HOST_ROOT is set to the
host’s $ACE_ROOT directory.

F.4 Build The Target Libraries

Now reset your $ACE_ROOT and $TAO_ROOT to point to the target workspace
directories you prepared earlier.

As you did for the host environment, it is necessary to set up the config.h
and platform_macros.GNU files.

The platform_macros.GNU file for the android target is very simple,
relying on previously set environment variables for configuration. The
platform details are in platform_android_linux.GNU which must be included.
Apart from that, you can set debugging and optimization options. As of this

o c i w e b . c o m 1133

F . 4 B u i l d T h e T a r g e t L i b r a r i e s

writing, support for other options, such as SSL has not been provided. Here is
an example of the platform macros file for building Android-targeted libraries.

debug=0
optimize=1
include $(ACE_ROOT)/include/makeinclude/platform_android_linux.GNU

To recap, the environment variables required along with this file are:

• $ANDROID_ARCH - either arm or x86. Note that x86 is only available in r6
and greater, and is still experimental. ANDROID_ARCH will be set to arm
by default.

• $NDK — the path to the android native development kit.

• $SDK — the path to the android software development kit.

• $SYSROOT — the platform/architecture directory. This defaults to
$NDK/platforms/android-9/arch-$ANDROID_ARCH.

• $HOST_ROOT — the path to the TAO_IDL & gperf tools, which is the
host’s $ACE_ROOT.

• $NDK_TOOLS — the path to the standalone tool chain created as shown
above.

• $PATH — must include $NDK_TOOLS/bin.

For the ace/config.h file, yours should include the supplied Android-specific
config file:

#include "ace/config-android.h"

Now the target build workspace is configured. As you did with the host build
workspace, you need to generate GNU Make compatible makefiles. Switch to
your new TAO directory and run MWC. Once done, you can run GNU Make.
You should be able to observe that the C++ compiler being used is the one
from the NDK Toolchain rather than the native gcc or g++.

cd $TAO_ROOT
$ACE_ROOT/bin/mwc.pl -type gnuace TAO_ACE.mwc
make

1134 o c i w e b . c o m

U s i n g A C E a n d T A O w i t h A n d r o i d

o c i w e b . c o m 1135

Appendix G

Using ACE and TAO with LynxOS

This appendix describes how to build and use ACE and TAO with the
LynxOS (Version 5.0) operating system from LynuxWorks, Inc. ACE and
TAO are built with a cross-compiler for LynxOS.

G.1 Cross-Compilation

G.1.1 Configuring and Building the Source Code
Setting up for cross-compilation is slightly different than configuring for
native compilation. The main difference is that you must statically build ACE,
ace_gperf and tao_idl for your host prior to configuring to build for your
target.

Note It is possible to build a shared version of ACE, ace_gperf and tao_idl, but
statically linking can help you avoid problems with library mismatches and
with finding the shared library at run time.

1136 o c i w e b . c o m

U s i n g A C E a n d T A O w i t h L y n x O S

Follow the directions in Appendix C until you reach C.1.3, “Configure the
Source Code for Your Platform”.

At this point, create the following files for your host machine:

$ACE_ROOT/ace/config.h
$ACE_ROOT/include/makeinclude/platform_macros.GNU

For example, if your build host machine is running Linux, and you are using
the GNU compiler, you would create platform_macros.GNU in
$ACE_ROOT/include/makeinclude with the following contents:

debug=0
optimize=1
static_libs_only=1
include $(ACE_ROOT)/include/makeinclude/platform_linux.GNU

Your $ACE_ROOT/ace/config.h file can be set up just once for all
platforms using preprocessor macros. The following config.h file is
sufficient for Linux and Windows hosts, as well as for cross-compiling for
LynxOS:

#if defined (linux)
include "ace/config-linux.h"

#elif defined (_MSC_VER)
include "ace/config-win32.h"

#elif defined (__Lynx__)
include "ace/config-lynxos.h"
#endif

Once the above configuration is complete, build a static version of ACE,
ace_gperf, and tao_idl. To do this, first generate a minimal set of
makefiles with MPC.

cd $ACE_ROOT/TAO
../bin/mwc.pl -type gnuace TAO_ACE.mwc

Now, build the ACE library by running GNU Make in $ACE_ROOT/ace with
the ACE target:

cd $ACE_ROOT/ace
make ACE

o c i w e b . c o m 1137

G . 1 C r o s s - C o m p i l a t i o n

The ace_gperf and tao_idl executables can be built similarly by running
GNU Make with no parameters in the $ACE_ROOT/apps/gperf/src and
$ACE_ROOT/TAO/TAO_IDL directories.

cd $ACE_ROOT/apps/gperf/src
make
cd $ACE_ROOT/TAO/TAO_IDL
make

Now, you can reconfigure your source tree to build for your target. First, clean
up libraries and object files left from the static build for your host:

cd $ACE_ROOT/ace
make realclean

Next, modify your platform_macros.GNU file in
$ACE_ROOT/include/makeinclude. An additional variable, VERSION,
must be set when you cross-compile ACE and TAO for LynxOS. For
example, your platform_macros.GNU file would appear as follows:

VERSION = 5.0.0
include $(ACE_ROOT)/include/makeinclude/platform_lynxos.GNU

The following steps are necessary to prepare the LynxOS cross-compilation
environment. See the LynxOS 5.0 Installation Guide, Chapter 2, “Using the
License Management Server”, for details.

1. Start the FlexLM license server if it is not already running as a daemon.

2. Set LynxOS environment variables (including PATH) using the provided
script:

cd /usr/LynxOS/5.0.0
. SETUP.bash x86

(or replace x86 with ppc)

3. Start the LynxOS session manager by running lwsmgr which is now on
the PATH. When the build is complete you can stop the session manager
by running lwsmgr -s.

At this point, you can follow the instructions in C.1.5, “Generate Makefiles”
and finish with the remaining instructions in Appendix C.

1138 o c i w e b . c o m

U s i n g A C E a n d T A O w i t h L y n x O S

o c i w e b . c o m 1139

Appendix H

Testing ACE and TAO on VxWorks and
LynxOS

Once you have built ACE and TAO for VxWorks or LynxOS, it is a good idea
to build the tests for ACE, TAO, and orbsvcs. These tests can be useful in
determining possible run-time problems that will affect your application. You
can use individual tests that focus on particular features of ACE, TAO, and the
orbsvcs to narrow down any particular problems you might have with your
build or your environment. Not all tests will pass on both VxWorks and
LynxOS.

H.1 Building the Tests

Run MPC with the following commands to generate GNU makefiles:

cd $ACE_ROOT/tests
$ACE_ROOT/bin/mwc.pl -type gnuace -recurse

cd $ACE_ROOT/TAO/tests
$ACE_ROOT/bin/mwc.pl -type gnuace -recurse

cd $ACE_ROOT/TAO/orbsvcs/tests
$ACE_ROOT/bin/mwc.pl -type gnuace -recurse

1140 o c i w e b . c o m

T e s t i n g A C E a n d T A O o n V x W o r k s a n d L y n x O S

Run GNU Make in the following directories to build the tests:

$ACE_ROOT/tests
$ACE_ROOT/TAO/tests
$ACE_ROOT/TAO/orbsvcs/tests

This can be done very easily with the following commands:

cd $ACE_ROOT
make -C tests
make -C TAO/tests
make -C TAO/orbsvcs/tests

H.2 Running the Tests

H.2.1 ACE Tests
A script is provided to non-interactively run the ACE tests on UNIX,
Windows, and LynxOS. However, there is currently no script to run the tests
on VxWorks. On VxWorks, you will have to run the tests manually.

The automated test script runs the ACE tests that apply to the platform being
tested. Output from each test is stored in a separate file in the
$ACE_ROOT/tests/log directory. These files can be analyzed later for test
bugs or other run-time problems.

• To run the ACE tests on LynxOS, change to the $ACE_ROOT/tests
directory and run the perl script, run_test.pl.

• To run the ACE tests for VxWorks kernel mode, you must manually load
the test you want to run using ld from VxWorks shell and run it by calling
the spa function with ace_main as the first argument.

• To run the ACE tests for VxWorks RTP mode, you must run each test
using rtpSpawn in the C Shell or rtp exec in the cmd shell.

The following tests in $ACE_ROOT/tests provide pretty good coverage of
ACE features:

Basic_Types_Test
Cached_Allocator_Test
Collection_Test

o c i w e b . c o m 1141

H . 2 R u n n i n g t h e T e s t s

Date_Time_Test
Dynamic_Priority_Test
High_Res_Timer_Test
INET_Addr_Test
MT_SOCK_Test
OS_Test
Object_Manager_Test
Priority_Task_Test
Reactor_Notify_Test
Reactors_Test
SOCK_Test
Task_Test
Thread_Mutex_Test
ARGV_Test
MT_Reactor_Timer_Test

H.2.2 TAO Tests
The TAO tests are less automated than the ACE tests. Therefore, the tests
must be selectively run and the output checked by hand. Here are some of the
more important tests to run, all found in $TAO_ROOT/tests:

Hello
IORManipulation
InterOp-Naming
Leader_Followers
MT_Client
MT_Server
NestedUpcall
 MT_Client_Test
 Simple
 Triangle_Test
ORB_init
OctetSeq
POA
 Current
 Default_Servant
 Etherealization
 Excessive_Object_Deactivations
 Identity
 MT_Servant_Locator
 Nested_Non_Servant_Upcalls
 Non_Servant_Upcalls
 Object_Reactivation
 Persistent_ID
 POA_Destruction
 Policies
 Single_Threaded_POA

1142 o c i w e b . c o m

T e s t i n g A C E a n d T A O o n V x W o r k s a n d L y n x O S

 wait_for_completion
Param_Test
Timeout

Most TAO tests have a perl script, run_test.pl, that makes them a little
easier to run on LynxOS. To run an individual test, change to the specific test
directory and execute the run_test.pl script.

Testing on VxWorks can be performed in numerous ways. Since most tests
consist of one or more client processes and one or more server processes, they
cannot be run on VxWorks kernel mode. Even in RTP mode, many of these
tests remain difficult to run. We will discuss three possible ways to run these
tests:

• Run the client on the target and the server or servers on the host machine.

Both machines may need access to input and output files. So remember,
unless you have enabled NFS in the VxWorks kernel or have a target local
file system, the file system that the tasks see is that of the machine on
which the target server is running.

• Run the server on the target and the client or clients on the host machine.

This is similar to the above method.

• When using kernel mode, it may be possible to combine the client or
clients and server or servers into one module and run on the target.

This will require writing a main function to spawn threads for each client
and server.

Look at each test’s run_test.pl script to see the order in which the test’s
programs should be run and the command line options they require. Many
TAO tests depend upon the Naming Service, which can be run on the host or
another machine. Many of the orbsvcs tests rely on multicast discovery of
services; you will need to skip these tests if you do not have multicast routing
enabled. Each test sends its output to the terminal.

H.2.3 ORB Services Tests
As with the TAO tests, the orbsvcs tests are less automated than the ACE
tests. Most tests have a perl script, run_test.pl, just as the TAO tests. The
following tests, found in $TAO_ROOT/orbsvcs/tests, are built by default.
Of course, the tests you run will depend upon which services you have chosen
to build.

o c i w e b . c o m 1143

H . 2 R u n n i n g t h e T e s t s

 Simple_Naming
 EC_Multiple
 EC_Throughput
 EC_Mcast
 EC_Custom_Marshal
 Property
 Time
 Event
 Basic
 Performance
 CosEvent
 Basic
 ImplRepo
 Trading

Note The ImplRepo test depends upon the ability to spawn processes, thus it does
not apply to VxWorks in kernel mode.

1144 o c i w e b . c o m

T e s t i n g A C E a n d T A O o n V x W o r k s a n d L y n x O S

o c i w e b . c o m 1145

Appendix I

CORBA Compliance

I.1 Introduction

This appendix contains detailed information about TAO’s compliance with
various OMG CORBA specifications. The information in this appendix
should not be considered as a legally binding statement. It reflects the intent of
the developers of TAO as based on their interpretation of the various OMG
specifications. Presently, no generally recognized acceptance tests exist for
the OMG specifications listed in this appendix.

Whereas compliance with OMG specifications is a design goal of TAO, it is
also a continuing pursuit. As a user of TAO, you can help in this pursuit by
contacting us if you feel TAO’s implementation misinterprets any part of the
cited OMG specifications, or even better, by contributing ideas and source
code for how TAO’s compliance could be improved.

Note Throughout this document, “TAO” and “TAO 2.2a” refer to “OCI’s
Distribution of TAO, Version 2.2a.”

1146 o c i w e b . c o m

C O R B A C o m p l i a n c e

TAO is designed to be compliant with several OMG specifications. In this
appendix, we address TAO’s compliance with the following OMG
specifications:

• CORBA 3.1 (Core, Interoperability, Interworking, and Quality of Service)

• CORBA for embedded (CORBA/e)

• Real-Time CORBA

• CORBA C++ Language Mapping

• Naming Service

• Notification Service

• Security Service

The following sections list the exact features of each of the above
specifications that TAO supports as well as describing where TAO deviates
from each specification.

I.2 CORBA 3.1

TAO is mainly compliant with the OMG CORBA 3.1 specification. This
specification is defined in three separate parts. Part 1: CORBA Interfaces
(OMG Document formal/08-01-04) and Part 2: CORBA Interoperability
(OMG Document formal/08-01-06) are discussed in this section. Part 3:
CORBA Component Model (OMG Document formal/08-01-08) covers the
CORBA Component Model (CCM). CIAO, TAO’s implementation of CCM,
and its conformance to Part 3 are not discussed here.

Some areas of TAO, which have not implemented the new CORBA 3.1
remain compliant with the CORBA 3.0.3 specification (OMG Document
formal/04-03-12).

Prior to CORBA 3.1, The CORBA Core specification divided compliance into
four separate areas:

• CORBA Core

• CORBA Interoperability

• CORBA Interworking

• CORBA Quality of Service

o c i w e b . c o m 1147

I . 2 C O R B A 3 . 1

The minimum required for a CORBA-compliant system was adherence to the
specifications in CORBA Core and one language mapping. See I.5 for
information about TAO’s C++ language mapping compliance.

The CORBA 3.1 specifications are no longer organized along these lines and
do not discuss compliance based on these categories. Because these categories
remain useful, we continue to use them to organize our discussion of TAO’s
compliance in the sections below.

I.2.1 CORBA Core
TAO supports the CORBA 3.1 Core specification with the following
exceptions:

• The IDL keyword import is not supported.

• Use of request contexts is not supported.

• IDL fixed data types are not supported.

• Domain Managers are not supported.

• Support for value types is nearly complete; exceptions are listed in 10.8.

I.2.2 CORBA Interoperability
An ORB is considered to be interoperability-compliant when it meets the
following requirements:

• In the CORBA Core part of the specification, standard APIs are provided
by an ORB to enable the construction of request-level inter-ORB bridges.
APIs are defined by the Dynamic Invocation Interface (DII) (CORBA 3.1,
Part 1, Chapter 11), the Dynamic Skeleton Interface (DSI) (CORBA 3.1,
Part 1, Chapter 12), and by the object identity operations described in the
Interface Repository chapter (CORBA 3.1, Part 1, Chapter 14).

• The Internet Inter-ORB Protocol (IIOP) (CORBA 3.1, Part 2, Chapter 9)
defines a transfer syntax and message formats — described independently
as the General Inter-ORB Protocol (GIOP) — and defines how to transfer
messages via TCP/IP connections. The IIOP can be supported natively or
via a half-bridge.

TAO fully supports the DII and DSI APIs. TAO also fully supports the object
identity operations, such as CORBA::Object::_is_equivalent() and
CORBA::Object::_is_a(). TAO implements IIOP as a pluggable protocol,

1148 o c i w e b . c o m

C O R B A C o m p l i a n c e

and is interoperable with ORBs that support IIOP version 1.0, 1.1, or 1.2,
including bi-directional GIOP/IIOP (CORBA 3.1, Part 2, Chapter 9).

TAO supports the dynamic management of any values as described in the
CORBA specification (CORBA 3.1, Part 1, Chapter 13) with the exception of
the DynamicAny::DynAnyFactory interface which is missing the
create_dyn_any_without_truncation and
create_multiple_dyn_anys operations.

CORBA 3.1 also defines IIOP versions 1.3 and 1.4. IIOP version 1.3 allows
the existing IIOP 1.2 messages to be used with component-related types. IIOP
1.4 improves support for certain wide character types. While TAO does not
support IIOP 1.3 and 1.4, it supports the intended component-related
functionality of IIOP 1.3 with its IIOP 1.2 implementation.

I.2.3 CORBA Interworking
The main purpose of the Interworking architecture was to specify support for
two-way communication between CORBA objects and COM objects. Most of
this material has been removed from the CORBA 3.1 specifications. TAO has
never supported the CORBA Interworking architecture.

CORBA Interworking also defines the Portable Interceptor facilities (CORBA
3.1, Part 1, Chapter 16). TAO implements the majority of the interfaces and
features described in this chapter, with the following exceptions:

• IOR interceptors are not completely implemented

- The ObjectReferenceFactory interface does not support the
equals() and make_profiles() operations.

I.2.4 CORBA Quality of Service
Quality of Service (QoS) is a general concept that is used to specify the
behavior of a service. Programming service behavior by means of QoS
settings offers the advantage that the application developer need indicate only
what is wanted rather than how this QoS should be achieved. Generally
speaking, QoS is comprised of several QoS policies. Each QoS policy is an
independent description that associates a name with a value. Describing QoS
by means of a list of independent QoS policies gives rise to greater flexibility
in CORBA applications.

o c i w e b . c o m 1149

I . 3 C O R B A f o r E m b e d d e d

TAO supports the Quality of Service portions of the CORBA 3.1 specification
as follows:

• TAO fully supports the policy management framework.

• TAO implements a subset of the Messaging QoS policies, such as
synchronization scope (SyncScope) for oneway requests and relative
round-trip time-outs (RelativeRoundtripTimeout), and extends the
Messaging QoS policies with the addition of policies for connection
time-out and oneway buffering constraints (see Chapter 6).

• TAO implements the Asynchronous Method Invocation (AMI) callback
model, but not the polling model (see Chapter 6).

• TAO does not support Time-Independent Invocation (TII).

I.3 CORBA for Embedded

TAO implements the CORBA for Embedded (CORBA/e) specification
defined in OMG Document formal/08-11-06. This specification defines two
profiles (or subsets) of CORBA that are designed for systems with limited
resources. It attempts to satisfy the resource constraints of such systems while
preserving portability, interoperability, and full IDL support. The CORBA/e
Compact Profile, formerly known as minimum CORBA, is targeted to
embedded systems running with constrained resources. The CORBA/e Micro
Profile is targeted for systems with severely constrained resources. Support
for the CORBA/e Compact and Micro Profiles are disabled by default when
TAO is built. The preprocessor macros CORBA_E_COMPACT and
CORBA_E_MICRO are used to enable/disable support for these profiles when
building TAO.

TAO supports the use of the TAO_HAS_MINIMUM_CORBA preprocessor macro.
Its effects are similar to the CORBA/e Compact Profile described below. The
main difference is that the minimum CORBA profile also disables support for
AMI. The minimum CORBA profile also allows for selectively re-enabling a
number of features. AMI support can be enabled by defining TAO_HAS_AMI
and the advanced POA features can be enabled by defining
TAO_HAS_MINIMUM_POA (as 0).

1150 o c i w e b . c o m

C O R B A C o m p l i a n c e

I.3.1 CORBA/e Compact Profile
The following features are disabled in TAO when the CORBA/e Compact
Profile support is enabled:

• Dynamic Invocation Interface (DII).

• Dynamic Skeleton Interface (DSI).

• DynamicAny.

• Interface Repository.

• Implementation Repository.

• Remote Policies.

• Interceptors.

• The following interfaces, exceptions, and types in module CORBA:
Context and ContextList
Request and RequestSeq
ServerRequest
ConstructionPolicy
NamedValue, NVList, and NameValuePair
WrongTransaction
AnySeq
DynAny, DynSequence, DynStruct, etc.
FieldName
ORB::InconsistentTypeCode

• The following operations on CORBA::Object:
_non_existent()
_get_implementation()
_get_interface()
_get_component()
_create_request()
_request()

• PortableServer::ForwardRequest.

• Support for pluggable protocols other than IIOP.

• Value Boxes.

• Abstract Interfaces

In addition, the following advanced POA features in the PortableServer
module are disabled by default when the CORBA/e Compact Profile support is
enabled:

• The following CORBA policies:

o c i w e b . c o m 1151

I . 4 R e a l - T i m e C O R B A

ThreadPolicy
ImplicitActivationPolicy
ServantRetentionPolicy
RequestProcessingPolicy

• Servant Managers (ServantActivator and ServantLocator).

• Default Servant.

• Adapter Activators.

• The following POA Manager operations and associated POA Manager
states:
hold_requests()
discard_requests()
deactivate()

• The following UserException types in interface PortableServer::POA:
AdapterInactive
NoServant

I.3.2 CORBA/e Micro Profile
The following additional features are disabled in TAO when the CORBA/e
Micro Profile support is enabled (in addition to those listed in the Compact
profile):

• Value Types

• Any

• Type Codes

• Policies

• Creating POAs (only a single Root POA is supported)

I.4 Real-Time CORBA

TAO implements the Real-Time CORBA version 1.2 specification (OMG
Document formal/05-01-04). Real-Time CORBA is an optional set of
extensions to CORBA tailored to equip ORBs to be used as a component of a
real-time system. The goals of the specification are to support developers in
meeting real-time requirements by facilitating the end-to-end predictability of
activities in the system and by providing support for the management of
resources.

1152 o c i w e b . c o m

C O R B A C o m p l i a n c e

The Real-Time CORBA specification defines one mandatory compliance
point, as defined in Appendix A of the Real-Time CORBA 1.2 specification.
The Real-Time CORBA Dynamic Scheduling, defined in Chapter 3 of the
Real-Time CORBA 1.2 specification, is a separate and optional compliance
point. TAO supports Real-Time CORBA Dynamic Scheduling.

Support for Real-Time CORBA is enabled by default when TAO is built. The
preprocessor macro TAO_HAS_RT_CORBA is used to enable/disable Real-Time
CORBA support when TAO is built. Real-Time CORBA support is dependent
upon CORBA Messaging support.

TAO supports all of the features of the mandatory portion of the Real-Time
CORBA 1.2 specification with the following exceptions:

• Priority transforms are not supported.

• Threadpool request buffering is not supported.

• Thread borrowing among threadpool lanes is not supported.

TAO extends the Real-Time CORBA 1.2 specification in the following ways:

• Addition of a Priority Mapping Manager.

• Addition of named mutexes.

• Use of a reactor-per-lane threadpool model.

• RT CORBA protocol configuration in TAO supports the selection and
configuration of certain TAO pluggable protocols.

• TCPProtocolProperties are extended to allow the application to
enable network priorities via Diffserv code points (DSCP).

See Chapter 8 for more information about using the features of the Real-Time
CORBA specification with TAO.

I.5 C++ Language Mapping

TAO is compliant with the CORBA C++ Language Mapping version 1.2
specification (OMG Document formal/08-01-09) except for those elements of
the CORBA Core specification that are not supported as described in I.2.1
(i.e., fixed data types).

o c i w e b . c o m 1153

I . 6 N a m i n g S e r v i c e

TAO no longer supports the alternative mappings for modules and exceptions
(as described in Section 4.46 of the V1.2 C++ Mapping).

I.6 Naming Service

TAO implements the Naming Service version 1.2 specification (OMG
Document formal/02-09-02). In addition to the IOR, corbaloc, and
corbaname ObjectURL formats, TAO supports the following ObjectURL
schemes:

• file

• iiop

• mcast

• http

and optionally supports the following object URL schemes for pluggable
protocols implemented by TAO (though the corbaloc ObjectURL scheme is
preferred):

• uiop

• shmiop

• diop

• uipmc

• sciop

• htiop

• ziop

The iiop, uiop, shmiop, diop, uipmc, sciop, htiop, and ziop schemes
are based on pluggable protocol implementations that are supplied with TAO.
TAO supports the addition of custom pluggable transport protocols and their
associated object URL schemes. See Chapter 14 for more information on
pluggable protocols.

1154 o c i w e b . c o m

C O R B A C o m p l i a n c e

I.7 Notification Service

TAO implements the Notification Service version 1.1 specification (OMG
Document formal/04-10-13) with the following exceptions:

• Only the push model is supported; the pull model is not supported.

• Mapping filters are not supported.

• Only structured and untyped events are supported; typed events are not
supported.

• Filtering of untyped events is only partially supported.

• Filtering supports both the Trader Constraint Language (TCL) and the
Extended Trader Constraint Language (ETCL).

• All standard Quality of Service properties are supported except for:

- StartTime

- StopTime

- StartTimeSupported

- StopTimeSupported

• Some of the standard QoS properties are not applicable at all levels
defined by the specification (see 25.4.6).

• The Event Type Repository (which is an optional compliance point) is not
supported.

See Chapter 25 for more information on using TAO’s Notification Service.
See also $TAO_ROOT/docs/releasenotes/notify.html.

I.8 Security Service

The implementation of CORBA Security that is in the version of TAO from
the DOC Group that forms the basis for OCI’s TAO 2.2a is in a state of
transition. Previous versions of TAO included a partial implementation of
CORBA Security and SSLIOP. The implementation in TAO 2.2a is based on
newer versions of the CORBA Security specification. Unfortunately, the
implementation is incomplete, so some features are not available. Further,
some features that were available in previous releases may not be available as

o c i w e b . c o m 1155

I . 8 S e c u r i t y S e r v i c e

the implementation currently exists. Specifically, Policy Enforcing
applications will very likely not work properly, though all Security Unaware
and many Policy Changing applications will work.

See Chapter 27 for more information on using TAO’s implementation of
CORBA Security.

1156 o c i w e b . c o m

C O R B A C o m p l i a n c e

o c i w e b . c o m 1157

References

Bolton, Fintan. 2002. Pure CORBA: A Code-Intensive Premium Reference.
Sams Publishing.

Deshpande, Mayur, Douglas C. Schmidt, Carlos O’Ryan, and Darrell
Brunsch. 2002. Design and Performance of Asynchronous Method
Handling for CORBA. Department of Electrical and Computer
Engineering, University of California, Irvine.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley.

Harrison, Timothy H., David L. Levine, and Douglas C. Schmidt. 1997. “The
Design and Performance of a Real-time CORBA Event Service.” In
Proceedings of OOPSLA ’97 (Atlanta, GA, October 1997). Association for
Computing Machinery.

Henning, Michi and Steve Vinoski. 1999. Advanced CORBA Programming
with C++. Addison-Wesley.

1158 o c i w e b . c o m

R e f e r e n c e s

Huston, Stephen D., James CE Johnson, and Umar Syyid. 2004. The ACE
Programmer’s Guide: Practical Design Patterns for Network and Systems
Programming. Addison-Wesley.

Kuhns, Fred, Douglas C. Schmidt, Carlos O’Ryan, Ossama Othman, and
Bruce Trask. 2000. Implementing Pluggable Protocols for TAO. St. Louis,
MO: Center for Distributed Object Computing, Washington University.

Lewis, Bil, Daniel J. Berg. 1996. Threads Primer: A Guide to Multithreaded
Programming. Sun Microsystems, Inc.

Martin, Robert C., Dirk Riehle, Frank Buschmann. 1998. Pattern Languages
of Program Design 3: Software Patterns Series. Addison-Wesley
Longman.

The Object Management Group.1 2008. Common Object Request Broker
Architecture Specification, Version 3.1 Part 1: CORBA Interfaces, January
2008. OMG Document formal/08-01-04.

The Object Management Group. 2008. Common Object Request Broker
Architecture Specification, Version 3.1 Part 2: CORBA Interoperability,
January 2008. OMG Document formal/08-01-06.

The Object Management Group. 2008. Common Object Request Broker
Architecture Specification, Version 3.1 Part 3: CORBA Component Model,
January 2008. OMG Document formal/08-01-08.

The Object Management Group. 2009. C++ Language Mapping
Specification, Version 1.2, January 2008. OMG Document
formal/08-01-09.

The Object Management Group. 2004. Event Service Specification, Version
1.2, October 2004. OMG Document formal/04-10-02.

The Object Management Group. 2004. Extensible Transport Framework
(ETF), Final Adopted Specification, March 2004. OMG Document
ptc/04-03-03.

The Object Management Group. 2002. Naming Service Specification, Version
1.2, September 2002. OMG Document formal/02-09-02.

The Object Management Group. 2004. Notification Service Specification,
Version 1.1, October 2004. OMG Document formal/04-10-13.

1. See page xxxi in the Preface for instructions on obtaining OMG documents.

o c i w e b . c o m 1159

The Object Management Group. 2002. Persistent State Service Specification,
Version 2.0, September 2002. OMG Document formal/02-09-06.

The Object Management Group. 2005. Real-Time CORBA Specification,
Version 1.2, January 2005. OMG Document formal/05-01-04.

Pyarali, Irfan, Carlos O’Ryan, Douglas C. Schmidt, Nanbor Wang, Vishall
Kachroo, and Aniruddha Gokhale. 1999. “Applying Optimization
Principle Patterns to Real-time ORBs.” In Proceedings of the 5th USENIX
Conference on Object-Oriented Technologies and Systems (COOTS ’99).
San Diego, CA: May 1999.

Ruh, William, Thomas Herron, Paul Klinker. 1999. IIOP Complete:
Understanding CORBA and Middleware Interoperability.
Addison-Wesley Longman.

Schmidt, Douglas C. 1995. “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dispatching.” In
Pattern Languages of Program Design (James O. Coplien and Douglas C.
Schmidt, editors). Addison-Wesley.

Schmidt, Douglas C. and Steve Vinoski. 1998. “An Introduction to CORBA
Messaging.” In C++ Report, November/December 1998. SIGS
Publications.

Schmidt, Douglas C. and Steve Vinoski. 1999. “Programming Asynchronous
Method Invocations with CORBA Messaging.” In C++ Report, February
1999. SIGS Publications.

Schmidt, Douglas C. and Steve Vinoski. 2001. “Object Interconnections:
Real-time CORBA, Part 1: Motivation and Overview.” In C/C++ Users
Journal C++ Experts Forum, December 2001. CMP Media.

Schmidt, Douglas C. and Steve Vinoski. 2003. “Object Interconnections:
CORBA Metaprogramming Mechanisms, Part 1: Portable Interceptors
Concepts and Components.” In C/C++ Users Journal C++ Experts
Forum, March 2003. CMP Media.

Schmidt, Douglas C., Michael Stal, Hans Rohnert, and Frank Buschmann.
2000. Pattern-Oriented Software Architecture: Patterns for Concurrent
and Networked Objects (POSA2). John Wiley & Sons.

Schmidt, Douglas C., Stephen D. Huston. 2001. C++ Network Programming,
Volume 1: Mastering Complexity Using ACE and Patterns (C++NPv1).
Addison-Wesley Longman.

1160 o c i w e b . c o m

R e f e r e n c e s

Schmidt, Douglas C., Stephen D. Huston. 2003. C++ Network Programming,
Volume 2: Systematic Reuse with ACE and Frameworks (C++NPv2).
Addison-Wesley Longman.

Stevens, W. Richard. 1998. UNIX Network Programming, Second Edition,
Volumes 1 and 2. Prentice Hall.

o c i w e b . c o m 1161

S y m b o l s

Index

Symbols

_add_ref() operation 264, 309
_get_policy() operation 207
_id() operation 62, 64–65, 67, 92, 252, 339, 699–700
_make_resources() operation 439
_narrow() operation 313
_refcount_value() operation 264
_remove_ref() operation 264, 309
_set_policy_overrides() operation 105
_unchecked_narrow() operation 285–286, 340
_validate_connection() operation 108, 151, 167

1162 o c i w e b . c o m

A

A

abstract factory pattern 16
abstract keyword

value types 272

abstract value type 269, 272, 274
acceptor 462, 549
acceptor pattern 16
access identity 967
AccessDecision object 1026
ACE 592

service configurator 12, 433–434, 436–448, 450–458, 463, 541, 550, 574, 595, 604,
617, 620, 623

_make_resources() operation 439
ACE_Dynamic_Service class 456
ACE_FACTORY_DECLARE macro 453
ACE_FACTORY_DEFINE macro 453
ACE_SERVICE_ALLOCATOR 451
ACE_Service_Config class

close() operation 443
open() operation 441–442, 463, 479–480, 541–542
process_directive() operation 444
reconfigure() operation 444, 458

ACE_Service_Object class 438, 445, 447, 449, 451
ACE_STATIC_SVC_DECLARE macro 453
ACE_STATIC_SVC_DECLARE_EXPORT macro 453
ACE_STATIC_SVC_DEFINE macro 453
ACE_STATIC_SVC_REQUIRE macro 454
ACE_SVC_NAME macro 452, 454
ACE_SVC_OBJ_T macro 452
Client_Strategy_Factory configuration 437
commanding 443
control options 439
DELETE_OBJ macro 452
DELETE_THIS macro 452
destructor 450
dynamic directive 438, 447, 450, 454
example

dynamic service 454
static service 455

factories 434

o c i w e b . c o m 1163

A

finalizer 450
fini() operation 450, 452
framework 440
helper macros 452
info() operation 456
init() operation 450
instance() operation 457
loading service objects 440
obtaining services 456
options 437
ORB initialization options 52, 55, 439, 441, 459–460, 473, 949

ORBServiceConfigLoggerKey 440
ORBSkipServiceConfigOpen 440
ORBSvcConf 440
ORBSvcConfDirective 440

process_directive() operation 458
remove directive 444, 448, 450
Resource_Factory configuration 437–438, 447
resume directive 444–445, 448, 456
Server_Strategy_Factory configuration 437
service finalization 450
service initialization 450
service manager 434, 457
service objects 445, 448
service state 456
static directive 437, 447, 450–451, 457, 595, 604
suspend directive 444–445, 448, 456
XML 434, 445

service manager 444–445

ACE classes
ACE_Addr 779
ACE_Allocator 551
ACE_Data_Block 553–554
ACE_Dynamic_Service 456–457
ACE_Dynamic_Service_Base 456
ACE_Event_Handler 375–376, 449
ACE_Log_Msg 443
ACE_MEM_Acceptor 354
ACE_MEM_Connector 355
ACE_Message_Block 553, 556, 578
ACE_QtReactor 568
ACE_Reactor 441, 449–450, 551–552

1164 o c i w e b . c o m

A

ACE_Select_Reactor 411, 584
ACE_Service_Config 440–444, 458, 463, 479–480, 537, 541–542

close() operation 443
open() operation 441–442, 463, 479–480, 541–542
process_directive() operation 444
reconfigure() operation 444, 458

ACE_Service_Object 438, 445, 447–449, 451, 454, 551, 596–597, 618
ACE_Service_Object ACE_Service_Object class 452, 454–455
ACE_Service_Type 452
ACE_Shared_Object 449
ACE_Singleton 282
ACE_SOCK_Acceptor 354
ACE_SOCK_Connector 355
ACE_Static_Svc_Descriptor 451, 453
ACE_Strategy_Acceptor 354
ACE_Strategy_Connector 355
ACE_Task_Base 395, 665
ACE_TP_Reactor 411
ACE_XtReactor 569–570

ACE macros
__ACE_INLINE__ 41
ACE_COMPILE_TIMEPROBES 1097
ACE_DECLARE_NEW_CORBA_ENV 570
ACE_DEFAULT_LOGGER_KEY 442, 537
ACE_DEFAULT_MAX_SOCKET_BUFSIZ 536, 539
ACE_ENDTRY 569, 571
ACE_FACTORY_DECLARE 453–455, 562
ACE_FACTORY_DEFINE 453–455, 562
ACE_HAS_XML_SVC_CONF 445
ACE_MAX_DGRAM_SIZE 335
ACE_NDEBUG 1095
ACE_NO_INLINE 1096
ACE_SERVICE_ALLOCATOR 451
ACE_STATIC_SVC_DECLARE 453
ACE_STATIC_SVC_DECLARE_EXPORT 453, 455, 562
ACE_STATIC_SVC_DEFINE 453, 455, 562
ACE_STATIC_SVC_REQUIRE 454–455, 562
ACE_SVC_NAME 452, 454–455
ACE_SVC_OBJ_T 452, 455
ACE_TCHAR 452
ACE_TRY 569–570
ACE_TRY_CHECK 569–570

o c i w e b . c o m 1165

A

DELETE_OBJ 452, 455
DELETE_THIS 452, 455

ACE service configurator
See ACE, service configurator

ACE_Addr class 779
ACE_Allocator class 551
ACE_Data_Block class 553–554
ACE_Dynamic_Service class 456–457
ACE_Dynamic_Service_Base class 456
ACE_Event_Handler class 375–376, 449
ace_for_tao build flag 1094
ACE_HAS_XML_SVC_CONF macro 445
ACE_Log_Msg class 443
ACE_MEM_Acceptor class 354
ACE_MEM_Connector class 355
ACE_Message_Block class 553, 556, 578
ACE_QtReactor class 568
ACE_Reactor class 441, 449–450, 551–552
ACE_ROOT environment variable 26, 40, 45, 52, 1106
ACE_Select_Reactor class 411, 584
ACE_Service_Config class 440–444, 458, 463, 479–480, 537, 541–542
ACE_Service_Object class 438, 445, 447–449, 451, 454, 551, 596–597, 618
ACE_Service_Type class 452
ACE_Shared_Object class 449
ACE_Singleton class 282
ACE_SOCK_Acceptor class 354
ACE_SOCK_Connector class 355
ACE_Static_Svc_Descriptor class 451, 453
ACE_Strategy_Acceptor class 354
ACE_Strategy_Connector class 355
ACE_Task_Base class 395, 665
ACE_TP_Reactor class 411
ACE_XtReactor class 569–570
activate_object_with_id_and_priority() operation 211
activate_object_with_id() operation 92, 339
activate_object_with_priority() operation 210
activate_object() operation 30
activate() operation 30, 235, 397, 452, 598, 649, 666–667, 880, 904, 1025
activation 92
activation-per-AMI-call strategy 91–92
active demultiplexing 11, 16, 413, 427, 476, 601, 607–608, 610, 613–614
active object map 92, 302, 600, 602–603, 606, 614

1166 o c i w e b . c o m

A

parameters 602

active object pattern 16
adapter pattern 16
adapter_manager_state_changed() operation 245
adapter_state_changed() operation 245
ADAPTIVE Communication Environment (ACE)

See ACE
add_client_request_interceptor() operation 230
add_constraints() operation 890
add_filter() operation 890
add_ior_component() operation 246
add_ior_interceptor() operation 245, 247
add_server_request_interceptor() operation 234
Advanced CORBA Programming Using TAO course xxxv
Advanced CORBA Programming with C++ book xxvii, xxxi, xxxv, 8, 25,
60–61, 79, 105, 140, 278, 553, 645–647, 695, 833, 1039, 1157
advanced resource factory 328, 409, 550, 552–555, 558, 565, 571–573, 590

options 588

alert protocol 992
AMH

See asynchronous method handling (AMH)
amh_response_handler_allocator() operation 565
AMI

See asynchronous method invocation (AMI)
ami build flag 1093–1094
ami_response_handler_allocator() operation 565
ANY_EVENT type 872, 878
asymmetric encryption 985
asymmetric protocol 341–342
asynchronous invocations 173
asynchronous method handling (AMH) 72, 125–147, 363, 564, 1157

advantages 126
disadvantages 127
example 128, 131
response handler 128, 130
servant 128
skeleton 128
using with

collocation 141
CORBA::Current objects 140
portable interceptors 139
reference counted servants 141

o c i w e b . c o m 1167

B

asynchronous method invocation (AMI) 75, 78, 126, 278, 361, 426, 564,
1159

activation-per-AMI-call strategy 91–92
associating replies with requests 91
callback 76–77, 95–96, 130
drawbacks 78
example 95
exception replies 83
ExceptionHolder class 80–81, 83
IDL compiler 78
local interfaces 300
processing sendc_ operation 93
reply handler 82, 84

exception 82, 90
non-exception 82, 86

request delivery 102
sendc_ prefix 77, 79, 93
servant-per-AMI-call strategy 91–92
server-differentiated-reply strategy 91–92

audio/video streaming service 14, 637
ORB service libraries 637

auditing 968
identity 967

AV streams
See audio/video streaming service

B

BAD_INV_ORDER exception 72, 371–372, 375
BAD_PARAM exception 71, 248
BAD_QOS exception 848
basic filter builder

real-time event service (RTES) 757

basic object adapter (BOA) 11
begin_scheduling_segment() operation 174, 176–177, 212, 214
Berg, Daniel 1158
bi-directional GIOP 341

BidirectionalPolicyValue 116
See also general inter-ORB protocol (GIOP), bi-directional

bind() operation 312

1168 o c i w e b . c o m

B

binding
direct 1038
indirect 1038

bindings 652, 670, 980–981, 986
explicit 11, 151, 166
indirect 312, 1053

bit-mask filters 759
real-time event service (RTES) 759

blocking strategy 578
BlockingPolicy property 844–845, 916
BOA

See basic object adapter (BOA)
Bolton, Fintan xxvii, xxxi, 1157
Borland 32, 1085
boxed value types 274–275
bridge pattern 16
Brunsch, Darrell 1157
BUFFER_MESSAGE_COUNT 113–114
BUFFER_TIMEOUT 113
buffering

oneways 112
requests 152

BufferingConstraint policy 112–114
build flags 281, 287

ace_for_tao 1094
ami 1093–1094
corba_messaging 201, 1093–1094, 1098
debug 1091, 1095
ec_typed_events 1095
fast 1091, 1095
fl 1092, 1095
fox 1092, 1096
inline 41, 45–46, 1091, 1096
interceptors 1093, 1096
minimum_corba 201, 220, 1093, 1095–1098
optimize 1091, 1097
pipes 1091, 1097
probe 1093, 1097
profile 1092, 1097
purify 1092, 1097–1098
qt 1092, 1098
quantify 967, 1092, 1098

o c i w e b . c o m 1169

B

repo 1098
rt_corba 201, 1093, 1098
rwho 1094, 1099
sctp 1093, 1099
shared_libs 1092, 1099
shared_libs_only 1092, 1099
split 1092, 1099
ssl 1002–1003, 1093, 1100
static_libs 1092, 1100
static_libs_only 1092, 1100
static_link 1092, 1100
stlport 1092–1093, 1100
templates 1101
threads 1092, 1101
tk 1093, 1101
tk_reactor 573, 592
versioned_so 1092, 1101
wfmo 1093, 1102
winregistry 1093, 1102
xt 1093, 1102
zlib 1102

building 19
$ACE_ROOT/ace/config.h 41, 446, 568, 570, 1091
$ACE_ROOT/bin/generate_export_file.pl 52, 453
$ACE_ROOT/bin/svcconf-convert.pl 446
$ACE_ROOT/include/makeinclude/platform_macros.GNU 1090
ACE and TAO 19, 1103

from source code distribution 1103
on UNIX 1103
UNIX 1105–1112
with Visual C++ 1103, 1115

build libraries 1119
configure source code 1117
setting up environment 1117
verify build 1120

cross compilation
MakeProjectCreator (MPC) 25, 1106, 1109
messaging 1094, 1098
security libraries 1001

on UNIX 1002
on Windows 1003

Buschmann, Frank 17, 393, 423, 1158–1159

1170 o c i w e b . c o m

C

C

C++ language mapping 5, 13, 1152
CORBA compliance 1152
See also interface definition language (IDL), C++ mapping

C++ Network Programming book
Volume 1 (C++NPv1) 17, 358, 365, 1159
Volume 2 (C++NPv2) 17, 370, 386, 398, 409, 411, 434, 1160

cache_maximum() operation 557–558
caching

cache_maximum() operation 557–558
create_cached_connection_lock() operation 557
create_purging_strategy() operation 557
locked_transport_cache() operation 557
management 557
max_muxed_connections() operation 557–558
purge_percentage() operation 557

cancel() operation 175
CDR

See common data representation (CDR)
CEC_Factory configuration 715, 722–727, 729–731, 733–740
CECConsumerControl option 717, 722–725, 731, 738
CECConsumerControlPeriod option 717, 723, 731, 737–738
CECConsumerControlRoundtripTimeout option 724
CECConsumerControlTimeout option 717–718, 724
CECConsumerOperationTimeout option 718, 725
CECDispatching option 715–716, 719, 726–727
CECDispatchingThreads option 715–716, 726–727
CECProxyConsumerCollection option 719, 728–729
CECProxyConsumerLock option 717, 730
CECProxyDisconnectRetries option 718
CECProxySupplierCollection option 719, 732–733
CECProxySupplierLock option 717, 734
CECReactivePullingPeriod option 720, 735
CECSupplierControl option 717, 736–737, 739
CECSupplierControlPeriod option 717, 737
CECSupplierControlRoundtripTimeout option 738
CECSupplierControlTimeout option 718
CECSupplierOperationTimeout option 718, 739
CECUseORBId option 720–721, 740
certificates 986–987, 994

o c i w e b . c o m 1171

C

authority 987, 995
commands summary 1001
creating requests 996
issuing 998
multiple authorities 1007
self-signed 987
signing requests 998

character set
definition 563

ciphertext 984
client interceptors 221–222, 227, 239
client role 359
client strategy factory 412–417, 421–422, 436–437, 462, 617–631

cached connection strategy 575
Client_Strategy_Factory configuration 389, 414–415, 421–422, 424, 426, 437–

438, 617, 625–630
connect strategy 623, 625
interface definition 618
multiplexing strategies 619
options 624

ORBClientConnectionHandler 622
ORBConnectionHandlerCleanup 622, 624–625
ORBConnectStrategy 414, 421, 624–626
ORBProfileLock 389, 619, 626–627
ORBReplyDispatcherTableSize 627
ORBTransportMuxStrategy 391, 415–416, 421, 620, 628
ORBTransportMuxStrategyLock 620, 629
ORBWaitStrategy 387, 389, 414, 416–417, 421–422, 424, 426, 622, 629–630

profile locking 618, 626
TAO_Wait_Strategy class 621, 623
transport multiplexing 619
wait strategy 620, 630

Client_Strategy_Factory configuration 389, 412, 414–415, 421–422, 424,
426–427
ClientInterceptor class 227
client-propagated priority model 205, 207
ClientRequestInfo interface 223

get_effective_component() operation 245

CLOSE_WAIT socket state 425
code set 563

configuration 563–564
definition 563

1172 o c i w e b . c o m

C

code set translator 564
codec (coder/decoder) 237

codec_factory() operation 237, 241
CodecFactory reference 237–238

codepoints
diffserv 121, 191

Collocated-only inter-ORB protocol (COIOP) 322
collocation 10

asynchronous method handling (AMH) 141
event channel 702
notification channel

example 903
objects 361, 465, 476, 704
optimization 427–429
real-time collocation resolver 205, 428, 487

COMM_FAILURE exception 61, 65, 70
common data representation (CDR) 320–321, 435, 556

conversion allocators 553

common secure interoperability (CSI) packages 962, 971, 974–975
CSI 0 971, 974
CSI 1 962, 971, 974
CSI 2 962, 971, 974

compliance
See CORBA compliance

components_established() operation 245
concurrency xxxv, 4, 12–13, 16, 433, 595, 597

behavior 607, 611
server 597
strategy 597

concurrency control service 4, 14, 638
ORB service libraries 638

concurrency models 335, 340, 385–395, 462
reactive 385–389, 394
thread-per-connection 335, 340, 385, 389–392, 599, 612, 706
thread-pool 385, 392–397, 411, 427
wait-on-leader-follower 630–631

config.h file 41, 446, 567–568, 570, 586, 706, 716, 771, 786, 818, 1084, 1091, 1094,
1101, 1107–1108, 1111–1112, 1117, 1125, 1127, 1131, 1136
configuration

source code
See also building

conjunction groups 760

o c i w e b . c o m 1173

C

connect strategies 413–414, 623
blocking 414
leader-follower 413
reactive 414

connect_push_consumer() operation 705, 750, 756, 771
connect_push_supplier() operation 697, 746, 771
connect_sequence_push_consumer() operation 902
connect_sequence_push_supplier() operation 898
connect_structured_push_consumer() operation 879
connect_structured_push_supplier() operation 873
connecting and disconnecting

real-time event service (RTES) 750–751

connection handler 549
connection timeout 108
ConnectionReliability property 840–841, 845, 848–849, 864
connector 549
connector pattern 16
consumer and supplier control options 717, 789

CECConsumerControl 717
CECConsumerControlPeriod 717
CECConsumerControlTimeout 717–718
CECConsumerOperationTimeout 718
CECSupplierControl 717
CECSupplierControlPeriod 717
CECSupplierControlTimeout 718
CECSupplierOperationTimeout 718
ECConsumerControl 789, 793, 820–825
ECConsumerControlPeriod 789, 794
ECConsumerControlTimeout 789, 795
ECConsumerValidateConnection 796
ECObserver 802
ECSupplierControl 789, 811
ECSupplierControlPeriod 789, 812
ECSupplierControlTimeout 790, 813

consumer proxies 742
ConsumerAdmin interface 828, 836, 877–878, 884, 892, 901
context_data field 228
context_id field 228
CORBA

architecture 8, 152
audio/video streaming service 14
client role 359

1174 o c i w e b . c o m

C

compliance xxviii, 7, 13, 15, 1145–1155
C++ language mapping 1152
CORBA Component Model (CCM) 1155
CORBA for Embedded 1149
core 1147
DII COE 1155
interoperability 1147
interworking 1148
naming service 1153
notification service 1154
quality of service (QoS) 1148
real-time CORBA 1151
security service 1154
value types 274

concurrency control service 14
CORBA::Any 237, 695
CORBA::Boolean 252
CORBA::OctetSeq 242
core 1147

specification 76
data distribution service (DDS) 14
environment parameter

exceptions 60
event service 14
gateway 774
interface repository 14
interoperability 1147
interworking 1148
life cycle service 14
load balancing service 14
log service 14
messaging

See messaging
minimum 1097
naming service 14
notification service 14
object 10, 70, 475, 540, 645, 704
ORBPolicyManager interface 168
PolicyCurrent interface 168
PolicyList interface 163–164
property service 14
quality of service (QoS) 1148

o c i w e b . c o m 1175

C

real-time 72, 350, 385, 391, 394, 1159
See also real-time CORBA

security service 14
server role 359, 361
services 14
system exceptions 61
time service 14
trading service 14
VoidData native type 176

CORBA Programming with C++ course xxxiv
corba_messaging build flag 201, 1093–1094, 1098
CORBA/e Compact Profile 1149–1150
CORBA/e Micro Profile 1149
corbaloc

object URL
example 655

corbaloc object URL 311–312, 640–641, 654–658, 661, 670
example 656
iiop protocol 655
rir protocol 655–656

corbaname object URL 579, 657–660, 663, 1153
example 659

CosEvent_Service program 695, 702
command line options 713–714

create_cached_connection_lock() operation 557–558
create_channel() operation 870, 904
create_corba_object_lock() operation 566
create_filter() operation 889
create_flushing_strategy() operation 556
create_for_unmarshal() operation 266
create_lf_strategy() operation 553
create_mutex() operation 161
create_named_mutex() operation 198
create_POA() operation 105, 153, 157, 163
create_policy() operation 103–104, 107–108, 111, 114, 117, 1015–1018
create_priority_banded_connection_policy() operation 167
create_proxy() operation 278, 282–283, 285, 288, 293
create_purging_strategy() operation 557
create_reference_with_id_and_priority() operation 211
create_reference_with_priority() operation 211
create_resource_manager() operation 178, 181
cross compilation

1176 o c i w e b . c o m

D

See building, cross compilation
CSD

See Custom Servant Dispatching (CSD)
CSI

See common secure interoperability (CSI) packages
CSI ECMA protocol 971, 975
Current interface 92, 159, 208, 249, 301, 1019
custom factory 583
custom interoperable object reference (IOR) parsers 560
Custom Servant Dispatching (CSD) 50, 363, 403
customer support

See support
customizing

access to services 636
ACE and TAO builds

See building
event structure 755
filters 764

D

data distribution service (DDS) 14
data-centric publish-subscribe (DCPS)

instance 50
marshaling 50

Datagram inter-ORB protocol (DIOP) 169
datagram inter-ORB protocol (DIOP) 12, 169, 322, 333–335, 517, 522, 583

DIOP_Factory configuration 334, 583
endpoints 522

DCE common inter-ORB protocol (DCE-CIOP) 971, 974
deadline timeouts 765, 767
debug build flag 1091, 1095
debugging

ACE_NDEBUG macro 1095
ORBDebug option 460, 462, 464, 480
ORBDebugLevel option 462, 464, 480–481
TAO_ORB_DEBUG environment variable 480

default proxy factory 283, 285
default resource factory 328, 550–551, 553–556, 558–559, 566, 572
default_filter_factory() operation 889

o c i w e b . c o m 1177

D

default.features file 1084
DefaultValueRefCountBase class 264
demarshaling 51, 70, 92, 413, 427, 476–477
demultiplexing 595

active 11, 16, 599, 601
dynamic hash 599–600
linear search 599–600
strategies 599

Deshpande, Mayur 1157
design patterns

See also patterns
Design Patterns: Elements of Reusable Object-Oriented Software
book 17, 1157
destroy_mutex() operation 161
destroy() operation 30, 64–65, 305, 364
DevGuideExamples directory xxx
differentiated services 121, 191

codepoints (DSCP) 121, 191
diffserv field (DF) 121, 191

DII
See dynamic invocation interface (DII)

DIIPollable interface 302
DIOP

See datagram inter-ORB protocol (DIOP)
DIOP_Factory configuration 334
direct binding 1038
direct mapping 187–188
directives 436, 444

dynamic 324, 389, 438, 450, 454
components 438

resume 445, 456
static 389, 437, 450, 550, 595, 617, 715, 785, 818
suspend 445, 456

DiscardPolicy property 839, 842, 844–846, 916
disconnect_push_consumer() operation 699, 705, 711, 748, 771
disconnect_push_supplier() operation 697–698, 705, 746, 771
disconnect_sequence_push_consumer() operation 899–900
disconnect_sequence_push_supplier() operation 894
disconnect_structured_push_consumer() operation 874–876
disconnect_structured_push_supplier() operation 867
disjunction group 759
dispatching

1178 o c i w e b . c o m

E

events 716
module 743

real-time event service (RTES) 743
options

CECDispatching 715–716, 719, 726–727
CECDispatchingThreads 715–716, 726–727
ECDispatching 786, 791, 797–800
ECDispatchingThreadFlags 786, 800
ECDispatchingThreads 786, 797, 799
ECQueueFullServiceObject 787

strategies
event channel 716
multithreaded 716, 786
priority 786
reactive 716, 786

distributable thread 151, 155, 174–177, 179
distribution model

pull 694
push 694

DNS
See domain name servers (DNS)

do() operation 176, 212
DOC Group xxvi, xxxii, 3, 1154
domain name servers (DNS) 325, 482, 489, 509–510
DSI

See dynamic skeleton interface (DSI)
dynamic hash 600, 606, 609–610, 613–614
dynamic invocation interface (DII) 11, 13, 76, 300
dynamic scheduling 15, 149, 151, 174, 199
dynamic service example 454
dynamic skeleton interface (DSI) 11, 13
Dynamic Thread Pool 401
Dynamic Thread pool 398
dynamic threads 162
DynamicAny module 301

E

eager resource usage strategy 551, 567
earliest deadline first (EDF) scheduling 182

o c i w e b . c o m 1179

E

EC_Factory configuration 785–786, 795, 813
EC_QueueFullSimpleActions configuration 809
ec_typed_events build flag 1095
ECConsumerControl option 795, 813
ECConsumerControlPeriod option 813
ECConsumerControlTimeout option 795
ECConsumerValidateConnection option 788
ECDispatching option 786, 791, 797–800
ECDispatchingThreadFlags option 786, 800
ECDispatchingThreads option 786, 797, 799
ECFiltering option 757, 762, 785, 787–788, 801
ECObserver option 771, 788, 802
ECProxyConsumerLock option 789, 803
ECProxyPushConsumerCollection option 790, 804
ECProxyPushSupplierCollection option 790, 806
ECProxySupplierLock option 789, 808
ECQueueFullServiceObject option 787, 809
ECScheduling option 788, 801, 810
ECSupplierFilter option 788
ECSupplierFiltering option 787, 814
ECTimeout option 787, 815
ECTPCDebug option 788, 816
ECUseORBId option 788, 817
EDF_Scheduling module 182
enable_network_priority attribute 169, 191
end_scheduling_segment() operation 177, 212
endpoint-specific options 523
end-to-end priority propagation 15, 151, 166
environment specific inter-ORB protocol (ESIOP) 319–320

DCE 319

environment variables 26, 1106
ACE_ROOT 26, 40, 45, 52, 1106
ImplRepoServiceIOR 1041, 1045, 1048, 1058, 1068, 1070
ImplRepoServicePort 507, 643, 1072
InterfaceRepoServicePort 643, 948
InterfaceRepositoryIOR 707, 948, 951, 959
LD_LIBRARY_PATH 26, 439
MAKEFLAGS 755
NameServiceIOR 655, 696, 744
NameServicePort 527, 643, 653
on UNIX 26
on Windows 26

1180 o c i w e b . c o m

E

OPENSSL_CONF 994, 1001
PATH 439, 447, 482, 509–510, 521–522, 532, 541, 607, 1001, 1098
SSL_CERT_DIR 1006–1007
SSL_CERT_FILE 1006–1007
SSL_EGD_FILE 1006
SSL_RAND_FILE 1006
SSL_ROOT 1002–1003
TAO_IDL_PREPROCESSOR 42, 44

See also IDL compiler
TAO_IDL_PREPROCESSOR_ARGS 44

See also IDL compiler
TAO_ORB_DEBUG 480
TAO_ORBENDPOINT 462, 489, 518
TAO_ORBSVCS 1112
TAO_ROOT 26, 40, 42, 44–45, 1106, 1120
TAO_USE_IMR 1039–1040, 1046, 1048
TradingServicePort 542, 643

error handling 59–74
errno 72
error number codes 72
TAO error number codes 72

ESIOP
See environment specific inter-ORB protocol (ESIOP)

establish_components() operation 243–244
ETCL

See extended trader constraint language (ETCL)
etherealize 477
event channel 745

attributes 770
consumer_poa 704
consumer_reconnect 704–705
disconnect_callbacks 705
supplier_poa 704
supplier_reconnect 704–705

collocating 702
consumer and supplier control options 717
consumer proxy 697
creation and destruction 695, 702
disconnecting consumer 705, 722
disconnecting supplier 697, 705, 736
example 768
implementation 695

o c i w e b . c o m 1181

E

locating 702
locking options 716
managing own servants 702
object 696
options

CECConsumerControl 717, 722–725, 731, 738
CECConsumerControlPeriod 717, 723, 731, 737–738
CECConsumerControlRoundtripTimeout 724
CECConsumerControlTimeout 717–718, 724
CECConsumerOperationTimeout 718, 725
CECDispatching 715–716, 719, 726–727
CECDispatchingThreads 715–716, 726–727
CECProxyConsumerCollection 719, 728–729
CECProxyConsumerLock 717, 730
CECProxyDisconnectRetries 718
CECProxySupplierCollection 719, 732–733
CECProxySupplierLock 717, 734
CECReactivePullingPeriod 720, 735
CECSupplierControl 717, 736–737, 739
CECSupplierControlPeriod 717, 737
CECSupplierControlRoundtripTimeout 738
CECSupplierControlTimeout 718
CECSupplierOperationTimeout 718, 739
CECUseORBId 720–721, 740
ECConsumerControl 795, 813
ECConsumerControlPeriod 813
ECConsumerControlTimeout 795
ECConsumerValidateConnection 788
ECDispatching 786, 791, 797–800
ECDispatchingThreadFlags 786, 800
ECDispatchingThreads 786, 797, 799
ECFiltering 757, 762, 785, 787–788, 801
ECObserver 771, 788, 802
ECProxyConsumerLock 789, 803
ECProxyPushConsumerCollection 790, 804
ECProxyPushSupplierCollection 790, 806
ECProxySupplierLock 789, 808
ECQueueFullServiceObject 787, 809
ECScheduling 788, 801, 810
ECSupplierFilter 788
ECSupplierFiltering 787, 814
ECTimeout 787, 815

1182 o c i w e b . c o m

E

ECTPCDebug 788, 816
ECUseORBId 788, 817

proxy 696
queue full service object

EC_QueueFullSimpleActions 809
resource factory 715, 784

CEC_Factory 715, 722–727, 729–731, 733–740
EC_Factory 785, 795, 813
options 721, 792

setting attributes 704, 770
supplier proxy 701
typed 695

creating 707, 714
destroying 714
example 706

untyped 695

event channel attributes 770
event correlation

real-time event service (RTES) 743

event filtering 693, 832
adding to consumer 891
adding to supplier 889
notification service 832

event service xxix, xxxv, 14, 693–740, 742, 746, 830, 837
and naming service 714
compatability with notification service 909
connecting to the channel 700
CosEvent_Service program 695, 702
creating an event channel 695
creating servants 702
decoupled supplier consumer 693
dispatching 716
event filtering 693
Event_Service program 745
example 695, 703
ORB service libraries 638
overview 694
proxy collection options 718, 790
pull model support 706
push

consumer interface 699
distribution model 694

o c i w e b . c o m 1183

E

supplier interface 698
pushing events 696
red-black tree 719
starting CosEvent_Service server 696
structured event types 693
supplier 693
typed

and interface repository 707
typed event channel 695, 706

creating 707, 714
destroying 714

untyped event channel 695

event structure
notification service 829–830
real-time event service 753
real-time event service (RTES) 753

event supplier
notification service 868

Event_Service program 745, 783
command line options 783

EventBatch data type 832
EventChannel interface 746, 769, 772, 776, 783, 828, 834, 841, 871, 877, 892,
896, 901, 904
EventHeader structure

members 753
real-time event service (RTES) 753

EventReliability property 841, 845, 851–852, 864, 941
EventSourceID 746, 753
EventType 746, 753–754
eventtype keyword

value types 261, 275

example xxix, 27, 95–101, 225
asynchronous method handling (AMH) 128, 131
asynchronous method invocation (AMI) 95
building 34
collocated notification channel 903
corbaloc object URL 656
corbaname object URL 659
DevGuideExamples directory xxx
event channel

local 768
event service collocation 703

1184 o c i w e b . c o m

E

getting started 25
IDL compiler 40
implementation repository

activator 1049
basic indirection 1043
ImplRepo_Service program 1075
ImR_Activator program 1078
IOR table 1054
tao_imr utility 1068

interface repository 951
IORTable 312
local interface 306
local interfaces 306
locality constrained 306
logging 289
messaging 95
Messenger interface 27
Messenger_i implementation class 28
MessengerClient 27, 30
MessengerServer 27, 29
multiple protocol endpoint 524
multithreading 387, 392, 395
naming service persistence 676
naming sevice 648
notification service 865
portable interceptors 245

client-side recursion 250
simple authentication interceptor 225
using the codec 238

real-time CORBA 156, 209, 217
real-time event service (RTES) 744

local event channel 768
running 34
security 1010
send_message() operation 30
servant manager 302
ServantLocator class 302
service configurator 455
setting up your environment 26
smart proxies 290–297
TAO_Naming classes 665, 676
typed event channel 706–707

o c i w e b . c o m 1185

F

value type 262

ExceptionHolder class 80–81, 83
exceptions 60–68, 70, 72, 74, 838, 1107–1108

BAD_INV_ORDER 72, 371–372, 375
BAD_PARAM 71, 248
BAD_QOS 848
catching 62, 65
COMM_FAILURE 61, 65, 70
completed() operation 63
CORBA 61
INCOMPATIBLE_SCHEDULING_DISCIPLINES 181
INV_OBJREF 61, 70
location code 69
MARSHAL 257, 300, 475
minor codes 68
minor() operation 63, 68
MutexNotFound 198
NO_IMPLEMENT 301
OBJECT_NOT_EXIST 61, 304, 372
real-time CORBA

INCOMPATIBLE_SCHEDULING_DISCIPLINES 181
MutexNotFound 198

system 61
TIMEOUT 70
TRANSIENT 61, 65, 69, 71, 532, 601–602, 609, 613, 1012
UNKNOWN 70
user 66
WrongPolicy 211

explicit binding 11, 151, 166
extended trader constraint language (ETCL) 832–833, 889, 891

F

factory 703
advanced resource 328, 571
client strategy 412–417, 421–422, 436–437, 462, 617–624
initialization 597
resource 324, 417, 421, 462, 549–553, 557, 559–560, 563–564, 568–572, 574–575,

581–583, 586, 588
server strategy 71, 386, 389–392, 435, 437–438, 462, 595–599, 602–615

1186 o c i w e b . c o m

F

value type 261–263, 265–266, 268

factory keyword
value types 262

fast build flag 1091, 1095
fault tolerant implementation repository 1073
Fault Tolerant Naming Service 678
feature packages

common secure interoperability (CSI) 962

federating event channels
IP multicast 781
mechanism 782
real-time event service (RTES) 772
selection mechanism 782
UDP 777

FIFO
See first in first out (FIFO) strategy

filtering
adding to consumer 891
adding to supplier 889
by event type 757
by source ID 758
construction 764
correlation 755
disjunction groups 759

example 759
InterFilterGroupOperator parameter 834, 871–872, 878
notification service 832, 889, 891
real-time event service 758

fini() operation 450, 452
first in first out (FIFO) strategy 551, 557
fixed priority scheduling 174, 181
fl build flag 1092, 1095
flushing strategies 412–413, 416–417, 556

blocking 417
leader-follower 416
reactive 416

footprint 436, 476, 571, 609, 814, 1105, 1111
minimizing library size 1111
reduction 5, 91, 300, 421, 436, 476, 571, 609, 628, 814

minimum_corba build flag 201, 220, 1093, 1095–1098

forward declaration 947
fox build flag 1092, 1096

o c i w e b . c o m 1187

G

FP_Scheduling module 181
FP_Scheduling::FP_Scheduler interface 181
FP_Scheduling::SegmentSchedulingParameterPolicy interface 181
Free Software Foundation

GNU Public License (GPL) xxxvii, xxxix

frequently asked questions (FAQ) xxxii

G

Gamma, Erich 17, 1157
Gang of Four (GoF)

See Design Patterns: Elements of Reusable Object-Oriented Software book
general inter-ORB protocol (GIOP) 12, 265, 319–321, 324, 328, 330, 335,
337

bi-directional 13, 15, 76, 115–118, 139
BidirectionalPolicyValue 116
BiDirPolicy 118
security 118

version 1.2 116

generic security service (GSS) procotol 975
get_client_policy() operation 301
get_component() operation 301
get_domain_managers() operation 301
get_effective_component() operation 245, 248
get_event_channel() operation 871, 877
get_interface() operation 301
get_parser_names() operation 560
get_peer_certificate_chain() operation 1020
get_peer_certificate() operation 1020
get_policy_overrides() operation 301
get_policy() operation 301, 973
get_protocol_factories() operation 559
get_proxy() operation 283–284
get_qos() operation 843, 847
get_slot() operation 250
getting started 25–35
GIOP

See general inter-ORB protocol (GIOP)
GNU Make xxx, 32–34, 201, 1084–1085, 1090–1102, 1109, 1126, 1132, 1136–1137,
1140

1188 o c i w e b . c o m

G

build flags
ace_for_tao 1094
ami xxix, 1093–1094
corba_messaging 201, 1093–1094, 1098
debug 1091, 1095
ec_typed_events 1095
fast 1091, 1095
fl 1095
fl_ 1092
fox 1092, 1096
inline 41, 45–46, 1091, 1096
interceptors xxix, 5, 300, 477, 970, 973, 1093, 1096
minimum_corba 1093, 1095, 1097–1098
no_hidden_visibility 1091
optimize 1091, 1097
pipes 1091, 1097
probe 1093, 1097
profile 1092, 1097
purify 1092, 1097–1098
qt 1092, 1098
quantify 967, 1092, 1098
repo 1092, 1098
rt_corba 201, 1093, 1098
rwho 1094, 1099
sctp 1093, 1099
shared_libs 1092, 1099–1100
shared_libs_only 1092, 1099
smart_proxies 281, 287
split 1092, 1099
ssl 1002, 1093, 1100
static_libs 1092, 1099–1100
static_libs_only 1092, 1099–1100
static_link 1092, 1100
stlport 1092–1093, 1100
templates 1101
threads 1092, 1101
tk 1093, 1101
tk_reactor 573, 592
versioned_so 1092, 1101
wfmo 1093, 1102
winregistry 1093, 1102
xt 1093, 1102

o c i w e b . c o m 1189

H

zlib 1102
gprof program 1097

GNU Public License (GPL) xxxvii, xxxix
gnuace build type 33
GoF

See Design Patterns: Elements of Reusable Object-Oriented Software book
Gokhale, Aniruddha 1159
gprof program 1097

H

half-sync/half-async pattern 16
handle_events() operation 410–411, 422
handle_input() operation 411
handle_timeout() operation 375
Harris, Timothy 1157
hash() operation 301
hashing

perfect 11, 16

Helm, Richard 17, 1157
Henning, Michi xxvii, xxxi, 1157
Herron, Thomas 320, 1159
hostname_in_ior option 327, 344, 346, 517
HTBP

See HTTP tunneling bi-directional protocol (HTBP)
HTIOP

See HTTP tunneling inter-ORB protocol (HTIOP)
HTTP

See hypertext transfer protocol (HTTP)
HTTP tunneling bi-directional protocol (HTBP) 341
HTTP tunneling inter-ORB protocol (HTIOP) 12, 322, 341
Huston, Stephen D. 17, 365, 1158–1160
hypertext transfer protocol (HTTP) 12

I

id_to_reference() operation 30
IDL

See interface definition language (IDL)

1190 o c i w e b . c o m

I

IDL compiler 10, 28, 39–57, 78
A option 43
Ce option 57
ci option 45
cs option 45
Cw option 56
D option 43
d option 56
E option 43
GA option 49
GC option 49
Gd option 52
Gdcps option 50
GH option 49, 130
GI option 28, 47, 291, 307
GIa option 47
GIb option 47
GIc option 47
GId option 47
GIe option 47
GIh option 47
GIs option 47
Gp option 52
Gsp option 49, 281, 283, 285–287, 289, 291
GT option 49
Gt option 49
Guc option 49
H option 51
hc option 45
hI option 46
hs option 45
hT option 46
I option 43
ic option 49
in option 49
o option 45
operation lookup strategy 50
options 42–57

back-end processing 52
export_include 53
export_macro 53
obv_opt_accessor 53

o c i w e b . c o m 1191

I

pch_include 53
post_include 53
pre_include 53
skel_export_include 53
skel_export_macro 53
stub_export_include 53
stub_export_macro 53

code generation 48
code suppression 54
collocation strategy 51

output and reporting 55
output files 40–41, 45
pragma ID 44
pragma ident 44
pragma prefix 44
pragma version 44
preprocessing 42
Sa option 54
Sd option 55
sI option 46
si option 45
Sm option 55
smart proxies 278, 286
Sp option 55
ss option 45
St option 55
sT option 46
starter code 46
t option 56
U option 43
V option 56
v option 56
w option 56
Wb option 52
Wp option 43
Yp option 43

IETF
See Internet Engineering Task Force (IETF)

IFR_Service program 947–948, 951, 958–959
multithreaded 948

IIOP
See internet inter-ORB protocol (IIOP)

1192 o c i w e b . c o m

I

IIOP Complete: Understanding CORBA and Middleware Interop-
erability book 1159
implementation repository 312, 468, 506, 1071, 1076

and IOR table 1053
directives 1062
example

activator 1049
basic indirection 1043
ImplRepo_Service program 1075
ImR_Activator program 1078
IOR table 1054
tao_imr utility 1068

fault tolerant 1073
ImplRepo_Service program 485, 507, 544
ImplRepoServiceIOR environment variable 1041, 1045, 1048, 1058, 1068, 1070
ImplRepoServicePort 507, 643, 1072
ImR_Activator program 544, 1050
JacORB interoperability 1079
options

ORBImplRepoServicePort 468, 506–507, 643
server start-up 1046
tao_imr utility 1061–1062

add/update commands 1063
autostart command 1064
ior command 1065
kill command 1065
link command 1065
list command 1066
remove command 1067
shutdown command 1067
shutdown-repo command 1067
start command 1068

TAO_USE_IMR environment variable 1039–1040, 1046, 1048

ImplRepoServiceIOR environment variable 1041, 1045, 1048, 1058, 1068,
1070
ImplRepoServicePort environment variable 507, 643, 1072
INCOMPATIBLE_SCHEDULING_DISCIPLINES exception 181
indirect binding 312, 1038, 1053
info() operation 456, 458
init_protocol_factories() operation 559
init() operation 450, 664
inline build flag 41, 45–46, 1091, 1096

o c i w e b . c o m 1193

I

input_cdr_allocator_type_locked() operation 554
input_cdr_buffer_allocator() operation 554
input_cdr_dblock_allocator() operation 554
input_cdr_msgblock_allocator() operation 554
installation

ACE and TAO 1103

instance
data-centric publish-subscribe (DCPS) 50

instance() operation 284, 441, 457
Institute for Software Integrated Systems (ISIS) 3
interceptors

See portable interceptors
interceptors build flag 220, 1093, 1096
interface definition language (IDL) xxvi, xxxiv, xxxix–xl, 10, 27, 84

back-end options 52
C++ mapping 5, 39, 60
collocation strategy options 51
compiler

See IDL compiler
compiler front end (CFE) xxxix–xl
definitions 95
environment variables 44
preprocessing options 42
pseudo (PIDL) 108, 113, 155, 221–223, 243–244, 249, 255, 1096
starter implementation files 46
stubs and skeletons 10
suppression options 54
tao_idl program 28, 39–40, 42–47, 51, 53–54, 96

interface repository xxix, 14, 62, 945–947, 952, 958–959, 1111
command line options 947
compliance 1147, 1150
example 951
forward declaration 947
IFR_Service program 947–948, 951, 958–959
implementation 947
InterfaceDef interface 946
InterfaceRepoServicePort 643, 948
Repository object 946
RepositoryId 224, 946–947
tao_ifr program 947, 949–950, 958–959

options 949–950

InterfaceRepoServicePort environment variable 643, 948

1194 o c i w e b . c o m

I

InterfaceRepositoryIOR environment variable 707, 948, 951, 959
interfaces

CORBA::Current 92, 159, 208, 249, 301, 1019
CORBA::DIIPollable 302
CORBA::DynamicAny 301
CORBA::InterfaceDef 946
CORBA::LocalObject 303, 307, 309
CORBA::LocalObject class 245
CORBA::Policy 302
CORBA::PolicyCurrent 92, 104, 302, 508
CORBA::PolicyList 103–105, 107–109, 111, 114, 117, 157, 163–164, 168, 173,

193–194, 206, 209, 305, 382, 1015–1016, 1018
CORBA::PolicyManager 104, 107, 111, 114, 193, 302
CORBA::Pollable 302
CORBA::PollableSet 302
CosEventComm::PushConsumer 699

699
CosEventComm::PushSupplier 698
CosNaming::NamingContextExt 660, 662
CosNotifyChannelAdmin::ConsumerAdmin 828, 836, 877–878, 884, 892, 901
CosNotifyChannelAdmin::EventChannel 834, 841, 871, 877, 892, 896, 901, 904
CosNotifyChannelAdmin::ObtainInfoMode 887–888
CosNotifyChannelAdmin::ProxyConsumer 833, 872, 887, 897
CosNotifyChannelAdmin::ProxySupplier 833, 878–879, 887, 901–902
CosNotifyChannelAdmin::SequenceProxyPushConsumer 829, 832, 870, 872–

874, 894, 897, 899, 902
CosNotifyChannelAdmin::SequenceProxyPushSupplier 829, 867, 873, 878–879,

893, 902
FP_Scheduling::FP_Scheduler 181
FP_Scheduling::SegmentSchedulingParameterPolicy 181
IORTable::Locator 314
IORTable::Table 312
ORBInitializer 225, 235, 245, 251
ORBInitInfo 225
PortableInterceptor::IORInfo 243–246
PortableInterceptor::PICurrent 223, 249–253, 257
PortableServer::ServantLocator 302–303, 305
RTCORBA::Current 176
RTCORBA::Mutex 178
RTCORBA::NetworkPriorityMapping 195–197
RTCORBA::RTORB 153
RtecEventChannelAdmin::EventChannel 746, 769, 772, 776, 783

o c i w e b . c o m 1195

I

RtecEventComm::PushConsumer 748–749
RtecEventComm::PushSupplier 746
RTScheduling::Current 155, 174, 176–177, 199–200, 212
RTScheduling::DistributableThread 174
RTScheduling::ResourceManager 178, 181
RTScheduling::Scheduler 178–180, 199
RTScheduling::ThreadAction 175, 212, 214

InterFilterGroupOperator parameter 834, 871–872, 878
Internet Engineering Task Force (IETF) 121, 191, 344
internet inter-ORB protocol (IIOP) 12–13, 319–328, 331, 334–336, 338,
349–350, 619

endpoints 518
example 523

IIOP_Factory configuration 324, 583
lite 328, 584
options 326
portspan option 326, 336, 517–518, 523

interoperable object reference (IOR) 489, 531, 540, 560, 605, 607, 618, 648,
770

custom parsers 560
formats 511, 560
interceptors 243, 257
profile locking 618

inter-process communications (IPC) xxxv, 170, 319, 322, 328, 330, 521, 532,
583

local 12, 517

interval timeouts
real-time event service (RTES) 765–766

Introduction to CORBA course xxxiv
invocation

asynchronous 173
dynamic 13
oneway 15, 76–77, 109–110, 112–114, 159, 173, 278, 333, 335, 337, 339–340, 361,

375, 420, 522
reliable oneway 173
static 10, 13

IOR
See interoperable object reference (IOR)

IOR table 312
IORInfo interface 243–246
IORTable

example 312

1196 o c i w e b . c o m

J

IORTable::Locator interface 314
IORTable::Table interface 312
is_a() operation 301, 313
is_equivalent() operation 301
is_nil() operation 31, 371
ISIS

See Institute for Software Integrated Systems (ISIS)

J

JacORB xxxiii, 1038
TAO interoperability 1079

Java Reflection API 945
jitter 4
Johnson, James CE 1158
Johnson, Ralph 17, 1157

K

Kachroo, Vishall 1159
Kerberos 971, 975, 984
kernel and system configuration

VxWorks 1124

Klinker, Paul 320, 1159
Kuhns, Fred 1158

L

latency 4
lazy resource usage strategy 551, 567
LD_LIBRARY_PATH environment variable 26, 439
leader/followers

pattern 393
strategy 417, 556, 578

least frequently used (LFU) strategy 551, 557, 572, 589
least laxity first (LLF) scheduling 183
least recently used (LRU) strategy 551, 557–558, 572, 589

o c i w e b . c o m 1197

L

Levine, David 1157
Lewis, Bil 1158
LFU

See least frequently used (LFU) strategy
libraries

minimizing size 1111

licensing xxv–xxvi, xxxvii, xxxix–xl
Free Software Foundation

GNU Public License (GPL) xxxvii, xxxix
terms xxv

life cycle service 14, 638
ORB service libraries 638

Linux xxxiv, 25, 1002
Linux kernel stream control transmission protocol (lksctp) 345
LLF_Scheduling module 183
load balancing service 14, 280, 489, 619, 638

ORB service libraries 638

local interfaces 260, 299–301, 303, 307, 309
_add_ref() operation 309
_remove_ref() operation 309
asynchronous method invocation (AMI) 300
C++ mapping 300
CORBA::LocalObject 300–301, 303
dynamic invocation interface 300
example 306
object 299
ORB mediation 300
postinvoke() operation 303
preinvoke() operation 303
reference counting 309
servant activation 302
servant locator 302

locality constrained 300–301, 303, 307, 309
example 306

LocalObject interface 315
locate() operation 314
location codes 69
LOCATION_FORWARD 69, 222, 314, 619, 626
lock() operation 178
locked_transport_cache() operation 557–558
locking

lock() operation 160

1198 o c i w e b . c o m

M

option
real-time event service (RTES) 788

strategies 433

log service 14
ORB service libraries 638

logical AND groups
real-time event service (RTES) 761

LRU
See least recently used (LRU) strategy

LynuxWorks, Inc. 1135
LynxOS iv, 1104, 1135, 1139–1140, 1142

cross compilation 1135
using ACE and TAO 1135

M

magic number 352, 583
MAIN_THREAD_MODEL policy 378, 381, 384
MAKEFLAGS environment variable 755
MakeProjectCreator (MPC) xlii, 25, 1085, 1106, 1109

build type
gnuace 33
nmake 32, 1085
vc6 34

Make Project Creator (mpc) 25, 31–32, 35
Make Workspace Creator (mwc) 33–34
mwc.pl program 33–34
options

idlflags 42
rt_client base project 201
rt_server base project 201

managing connections
real-time event service (RTES) 750

mapping
C++ language mapping 5
direct 187–188

mapping() operation 190
MARSHAL exception 257, 300, 475
marshaling 10, 51, 70, 92, 237, 320–321, 351, 413, 427, 465, 474–476, 553, 754

data-centric publish-subscribe (DCPS) 50

o c i w e b . c o m 1199

M

Martin, Robert C. 1158
match_prefix() operation 561
max_muxed_connections() operation 557–558
Max_Utility_Scheduling module 184
maximize accrued utility (MAU) scheduling 184
maxPriority constant 158
mcast option 483
messaging 75, 125, 320

_validate_connection() operation 108
activation-per-AMI-call strategy 91–92
associating replies with requests 91
asynchronous method invocation (AMI) 1159
asynchronous requests 112
bi-directional general inter-ORB protocol (GIOP) 115
BidirectionalPolicyValue 116
BUFFER_MESSAGE_COUNT 113–114
BUFFER_TIMEOUT 113
buffered oneway request 112
BufferingConstraint policy 112–114
callback solution 77
client-side policy management 104
connection timeout 107–108

ConnectionTimeout policy 108
controlling the delivery of AMI-based requests 102
corba_messaging build flag 201
create_policy() operation 103–104, 107–108, 111, 114, 117
creating a reply-handler class 84
drawbacks to using AMI 78
exceptions

ExceptionHolder class 80–81, 83
replies 83
reply-handler functions 90

introduction 1159
oneway requests 112
policies

creating 103
destroying 105
management of 103

quality of service (QoS) 106
reply

handler 82, 84
timeouts 106

1200 o c i w e b . c o m

M

request
delivery 102
timeouts 106

secure 969
sendc_ prefix 77, 79
server-differentiated-reply strategy 91–92
server-side policy management 105
specification 149
SYNC_DELAYED_BUFFERING 113
SYNC_NONE 113
SyncScope policy 102, 109–110, 112–114
TAO.pidl 113

Microsoft Foundation Classes (MFC) 670
MIF_Scheduling module 185
minimizing size 1097

libraries 1111
minimum_corba build flag 201, 220, 1093, 1095–1098, 1111

minimum_corba build flag 1093, 1097
minor() operation 64
minPriority constant 158
MIOP

See multicast inter-ORB protocol (MIOP)
MMAPFilePrefix option 332
MMAPFileSize option 332
most important first (MIF) scheduling 184
MPC

See MakeProjectCreator (MPC)
msg_wfmo reactor 592
multicast 468, 481, 483, 506–507, 527, 651, 672, 773, 781, 948, 958

naming service 651, 654
service discovery 483

multicast inter-ORB protocol (MIOP) 12, 322, 337, 339–340
multithreading 357

client thread 360
connect strategies 359

blocking 414
leader-follower 413
reactive 414

example 387, 392, 395
flushing strategies 359, 412–413, 416
guideline 367, 372, 382
main thread model 380

o c i w e b . c o m 1201

N

multithreaded select reactor 410
ORB-controlled model 378
polling loop 368
request invocation 360
request processing 361
select reactor 409
server thread 360
shutting server down 374
single thread model 379
thread-pool reactor 411
transport multiplexing strategies 415
wait strategies 359, 417

wait-on-leader-follower 422
wait-on-leader-follower-no-upcall 424
wait-on-reactor 422
wait-on-read 418

MutexNotFound exception 198
mwc.pl program 33–34

N

name() operation 232, 245
NameServiceIOR environment variable 655, 696, 744
NameServicePort environment variable 527, 643, 653
naming service 14, 63, 312, 456, 635–636, 640, 645, 647–660, 662–667, 670–672,
678–680, 714, 784

client source code 650
command line options 672
compliance 1153
corbaloc object URL 655
corbaname object URL 657
discriminating between multiple services 653
example 648

TAO_Naming classes 665, 676
executable 646
fault tolerant 678

load balancing 678
persistence 681

multicast 651, 654
NameServiceIOR environment variable 655, 696, 744

1202 o c i w e b . c o m

N

NameServicePort environment variable 527, 643, 653
NamingContextExt interface 660, 662
NamingViewer utility 670
object group 678
object URLs 655
options 672

ORBNameServicePort 468, 526–528, 643, 653
ORB service libraries 638
persistence 673
replication 678
resolve_initial_references() operation 647
resolving 647
root naming context 696
TAO_Naming_Client class 663–664
TAO_Naming_Server class 664, 666
tao_nsadd utility 667, 669
tao_nsdel utility 667, 669
tao_nslist utility 667
TAO-specific classes 663
utilities 667

NamingViewer 670
tao_nsadd 669
tao_nsdel 669
tao_nslist 667

Naming_Service program 647
NamingContextExt interface 660, 662–663
NamingViewer utility 670
negating the logic of filters

real-time event service (RTES) 761

nested upcalls 16, 420, 422–425
nesting groups

real-time event service (RTES) 762

NetworkPriorityMapping interface 195–197
NetworkPriorityMappingManager interface 196–198
new_for_consumers() operation 877, 901
new_for_suppliers() operation 871, 896
NMake 32, 1085

nmake build type 32, 1085

no operation (NOOP) strategy 551, 557
no_context() operation 1020
no_hidden_visibility build flag 1091
NO_IMPLEMENT exception 301

o c i w e b . c o m 1203

N

non_existent() operation 301
NON_RETAIN policy 302, 305
NOOP

See no operation (NOOP) strategy
notification service 14, 312, 827–829, 832–833, 835–838, 842, 847, 864–866,
869–871, 889, 891, 893, 909, 916, 918, 1154

845
adding subscriptions 884
administration properties 841
architecture 828
collocated 903
compatability with event service 909
conflict resolution 847
connecting

consumers 880
suppliers 881

ConnectionReliability property 840–841, 845, 848–849, 864
destroying the notification channel 882
developing structured event supplier 895
disconnecting

consumers 880
suppliers 881

event consumer 900
event filtering 832, 889, 891

consumer 891
supplier 889

event structure 829–830
event supplier 868, 895
EventReliability property 841, 845, 851–852, 864, 941
example 865
features 829
implementing intefaces

sequence push consumer 899
sequence push supplier 894
structured push consumer 875
structured push supplier 867

limits
MaxConsumers 842, 845, 892
MaximumBatchSize 832, 840, 845
MaximumEventsPerConsumer 840, 845, 916
MaxQueueLength 842, 845, 892
MaxSuppliers 842, 845, 892

1204 o c i w e b . c o m

N

managing connections 880
MaxConsumers property 842, 845, 892
MaxQueueLength property 842, 845, 892
MaxSuppliers property 842, 845, 892
negotiating quality of service (QoS) 847
notification administration properties 841

MaxConsumers 842, 845, 892
MaxQueueLength 842, 845, 892
MaxSuppliers 842, 845, 892
RejectNewEvents 839, 842, 844, 846

notify manager
resource factory options 911, 941

Notify_Service program 866–867, 870, 903, 909–910
obtain_subscription_types() operation 836
offer_change() operation 835
offers and subscriptions 882, 887
ORB service libraries 638
PacingInterval property 832, 840, 845
quality of service (QoS)

get_qos() operation 847
properties 892

accessing and modifying 845
ConnectionReliability 840–841, 845, 848–849, 864
DiscardPolicy 839, 842, 844–846, 916

AnyOrder 839
DeadlineOrder 840
FifoOrder 839
LifoOrder 839
PriorityOrder 840

EventReliability 841, 845, 851–852, 864, 941
MaximumBatchSize 832, 840, 845
MaximumEventsPerConsumer 840, 845, 916
OrderPolicy 839, 845–846, 893, 916

AnyOrder 839
DeadlineOrder 839
FifoOrder 839
PiorityOrder 839

PacingInterval 832, 840, 845
PriorityOrder 839, 845
setting in a structured event header 846
StopTime 838, 846
Timeout 838, 846

o c i w e b . c o m 1205

O

support 837
quality of service (QoS) properties 838, 845, 892
resuming consumer connections 881
sequence push consumer 899
sequence push supplier 894
setting quality of service (QoS) 846
structured event 830–831

consumer 876
supplier 868
type 830

structured push consumer 875
offer_change() operation 875
push_structured_event() operation 875

structured push supplier 867
subscriptions 835, 882, 887

adding to consumer 884
subscription_change() operation 836

suspending
consumer connections 881
supplier connections 881

TAO-specific properties
BlockingPolicy 844–845, 916
ThreadPool 843, 846, 853, 855, 908, 913
ThreadPoolLanes 843, 846, 853–854, 905, 913

transmitting an EventBatch 893
unsupported quality of service (QoS) exceptions 847

Notify_Service program 866–867, 870, 903, 909–910
command line options 909–910
starting 866

null filters
real-time event service (RTES) 764

O

O’Ryan, Carlos 1157–1159
object adapter

see portable object adapter (POA)
Object Computing, Inc. (OCI) i, xxvii, xxxi–xxxiv, 3–4, 20, 1154
object factories 434–435
object group 678

1206 o c i w e b . c o m

O

Object Management Group (OMG) specifications
C++ Language Mapping (formal/08-01-09) 13, 39, 299, 309, 1152
Compressed GIOP submission (mars/08-12-20) 347
CORBA 2.6 (formal/01-12-35) 81
CORBA 3.0.3 (formal/04-03-12) 1146
CORBA 3.1

Part 1 (formal/08-01-04) 13, 75, 220, 256, 259, 299, 362, 514–515, 523, 531,
537, 640, 945, 1146, 1158

Part 2 (formal/08-01-06) 13, 76, 118, 320, 656, 962, 1146, 1158
Part 3 (formal/08-01-08) 13, 1146, 1158

CORBA Component Model (CCM) (formal/02-06-65) 1158
CORBA for Embedded (CORBA/e) (formal/08-11-06) 1149
Event Service 1.2 (formal/04-10-02) 693, 827, 1158
Extensible Transport Framework (ETF) (ptc/04-03-03) 1158
Naming Service 1.2 (formal/02-09-02) 648, 1153, 1158
Naming Service 1.3 (formal/04-10-03) 645
Notification Service 1.1 (formal/04-10-13) 827, 1154, 1158
Persistent State Service (formal/02-09-06) 1159
Real-Time CORBA 1.0 (ptc/99-06-02) 149
Real-Time CORBA 1.1 (formal/02-08-02) 149
Real-Time CORBA 1.2 (formal/05-01-04) 13, 149, 1151, 1159
Real-Time CORBA 2.0 (dynamic scheduling) (formal/03-11-01) 149
Security Service (original version) (security/00-12-02) 962
Security Service 1.8 (formal/02-03-11) 964

object reference
See interoperable object reference (IOR)

object URL 655–660
corbaloc 311–312, 640–641, 654–658, 661, 670
corbaname 560, 579, 657–660, 663

OBJECT_NOT_EXIST exception 61, 304, 372
object_to_string() operation 30
objects by value (OBV)

See value types
observers

custom gateways 772
real-time event service (RTES) 771

obtain_notification_push_consumer() operation 872, 897
obtain_notification_push_supplier() operation 878, 901
obtain_offered_types() operation 837, 884, 887–888
obtain_subscription_types() operation 836, 887–888
ObtainInfoMode interface 887–888
OBV

o c i w e b . c o m 1207

O

See value types
OCIReleaseNotes.html file xxviii
OctetSeq 238–239, 242
offer_change() operation 835–836, 875–876, 882–884, 887–888, 899–900
OMG

See Object Management Group (OMG) specifications
oneway invocation 15, 76–77, 109–110, 112–114, 159, 173, 278, 333, 335, 337,
339–340, 361, 375, 420, 522
open source software xxv
open_named_mutex() operation 198
OpenSSL 322, 964, 983, 991, 994–996, 998, 1000–1003, 1005–1006, 1019
OPENSSL_CONF environment variable 994, 1001
operating systems

Linux xxxiv, 25, 1002
LynxOS 1135
QNX 328
UNIX 12, 33, 40, 43, 56, 322, 328–330, 332, 334, 338, 438, 459, 461, 479, 489,

512–513, 519, 521, 530, 958, 1002, 1091
VxWorks 479, 664
Windows 25–26, 28, 33–34, 56, 453, 670, 1002–1003, 1084

operation lookup
binary search 51
dynamic search 51
linear search 51
perfect hash 51

operations
_add_ref() 264, 309
_get_policy() 207
_id() 62, 64–65, 67, 92, 252, 339, 699–700
_narrow() 313
_refcount_value() 264
_remove_ref() 264, 309
_rep_id() 64–65, 67
_set_policy_overrides() 105
_unchecked_narrow() 285–286, 340
_validate_connection() 108, 167
activate_object_with_id_and_priority() 211
activate_object_with_id() 92, 339
activate_object_with_priority() 210
activate_object() 30
activate() 30, 235, 397, 598, 649, 666–667, 880, 904, 1025
adapter_manager_state_changed() 245

1208 o c i w e b . c o m

O

adapter_state_changed() 245
add_client_request_interceptor() 230
add_constraints() 890
add_filter() 890
add_ior_component() 246
add_ior_interceptor() 245, 247
add_server_request_interceptor() 234
amh_response_handler_allocator() 565
ami_response_handler_allocator() 565
begin_scheduling_segment() 174, 176–177, 212, 214
bind() 312
cache_maximum() 557–558
cancel() 175
codec_factory() 237, 241
components_established() 245
connect_push_consumer() 705, 750, 756, 771
connect_push_supplier() 697, 705, 746, 771
connect_sequence_push_consumer() 902
connect_sequence_push_supplier() 898
connect_structured_push_consumer() 879
connect_structured_push_supplier() 873
create_cached_connection_lock() 557–558
create_channel() 870, 904
create_corba_object_lock() 566
create_filter() 889
create_flushing_strategy() 556
create_for_unmarshal() 266
create_lf_strategy() 553
create_mutex() 161
create_named_mutex() 198
create_POA() 105, 153, 157, 163
create_policy() 103–104, 107–108, 111, 114, 117, 1015–1018
create_priority_banded_connection_policy() 167
create_proxy() 278, 282–283, 285, 288, 293
create_purging_strategy() 557
create_reference_with_id_and_priority() 211
create_reference_with_priority() 211
create_resource_manager() 178, 181
default_filter_factory() 889
destroy_mutex() 161
destroy() 30, 364
disconnect_push_consumer() 699, 705, 711, 748, 771

o c i w e b . c o m 1209

O

disconnect_push_supplier() 697–698, 705, 746, 771
disconnect_sequence_push_consumer() 899–900
disconnect_sequence_push_supplier() 894
disconnect_structured_push_consumer() 874–876
disconnect_structured_push_supplier() 867
do() 176, 212
end_scheduling_segment() 177, 212
establish_components() 243–244
fini() 450, 452
get_client_policy() 301
get_component() 301
get_domain_managers() 301
get_effective_component() 245, 248
get_event_channel() 871, 877
get_interface() 301
get_parser_names() 560
get_peer_certificate_chain() 1020
get_peer_certificate() 1020
get_policy_overrides() 301
get_policy() 301, 973
get_protocol_factories() 559
get_proxy() 283–284
get_qos() 843, 847
get_slot() 250
handle_events() 410–411, 422
handle_input() 411
handle_timeout() 375
hash() 301
id_to_reference() 30
info() 456, 458
init_protocol_factories() 559
init() 450, 664
input_cdr_allocator_type_locked() 554
input_cdr_buffer_allocator() 554
input_cdr_dblock_allocator() 554
input_cdr_msgblock_allocator() 554
instance() 284, 441, 457
is_a() 301, 313
is_equivalent() 301
is_nil() 31, 371
locate() 314
lock() 160, 178

1210 o c i w e b . c o m

O

locked_transport_cache() 557–558
mapping() 190
match_prefix() 561
max_muxed_connections() 557–558
name() 232, 245
new_for_consumers() 877, 901
new_for_suppliers() 871, 896
no_context() 1020
non_existent() 301
object_to_string() 30
obtain_notification_push_consumer() 872, 897
obtain_notification_push_supplier() 878, 901
obtain_offered_types() 837, 884, 887–888
obtain_subscription_types() 836, 887–888
offer_change() 835–836, 875–876, 882–884, 887–888, 899–900
open_named_mutex() 198
ORB_Init()

orb_identifier parameter 460–461
ORB_init() 30–31, 71, 155, 213, 225, 230, 324–325, 459–462, 473, 654–655, 703
output_cdr_buffer_allocator() 554
output_cdr_dblock_allocator() 554
output_cdr_msgblock_allocator() 554
parse_string() 561
perform_work() 89, 93–94, 364, 366–371, 374, 376, 381, 384, 392, 420, 423
ping() 1041–1042
post_init() 225, 229–230, 234, 245, 247
postinvoke() 303–304
pre_init() 225, 229, 245
preinvoke() 303
process_directive() 444
pthread_create() 397
purge_percentage() 557–558
push_structured_event() 873, 875, 880
push_structured_events() 898–899, 903
push() 697, 743, 747–748, 750, 760
rebind() 312, 714
receive_exception() 222
receive_other() 222
receive_reply() 222
receive_request_service_context() 222
receive_request() 200, 223
reclaim_reactor() 552

o c i w e b . c o m 1211

O

reconfigure() 444, 458
register_new_factory() 266
register_proxy_factory() 282–283
register_value_factory() 261
release() 309, 371
repository_id() 301
resolve_initial_references() 30, 155, 160, 179, 190, 196, 252, 300, 312, 482, 508,

640, 647, 655–656, 664, 980, 983, 1021, 1070
resolve() 696
resource_usage_strategy() 567
resume_connection() 881
RTScheduling::Scheduler::create_resource_manager() 178, 181
RTScheduling::Scheduler::set_scheduling_parameter() 181
run() 30, 93, 362, 367, 373, 381, 393, 423, 665, 1067
select() 352, 410–411, 592
send_exception() 223
send_other() 223
send_poll() 221
send_reply() 223
send_request() 222
set_locator() 314–315
set_policy_overrides() 105, 301, 972, 980, 983
set_qos() 843
set_scheduling_parameter() 181
set_slot() 250
shutdown() 364, 371–376, 1022–1023, 1025, 1041, 1067
spawn() 174, 176–177, 212
string_dup() 31
string_to_object() 31, 251, 314, 339, 485–486, 532, 560–561, 579, 641, 647, 655–

657, 659
subscription_change() 836, 867–868, 879, 884–885, 887–888, 894, 902
suspend_connection() 881
svc() 215, 397, 665
TaggedComponent() 247
target_is_a() 232
the_POAManager() 30
to_CORBA() 159, 186, 195, 197
to_native() 159, 186
to_network() 195, 197
to_url() 661
try_lock() 160, 179
unbind() 312

1212 o c i w e b . c o m

O

unlock() 160–161, 179
unregister_proxy_factory() 282, 289
update_scheduling_segment() 177
use_locked_data_blocks() 554
validate_connection() 301
WaitForMultipleObjects() 352, 593
work_pending() 89, 364, 366–368, 370–371, 374

optimize build flag 1091, 1097
options

BUFFER_MESSAGE_COUNT 113–114
BUFFER_TIMEOUT 113
CECConsumerControl 717, 722–725, 731, 738
CECConsumerControlPeriod 717, 723, 731, 737–738
CECConsumerControlRoundtripTimeout 724
CECConsumerControlTimeout 717–718, 724
CECConsumerOperationTimeout 718, 725
CECDispatching 715–716, 719, 726–727
CECDispatchingThreads 715–716, 726–727
CECProxyConsumerCollection 719, 728–729
CECProxyConsumerLock 717, 730
CECProxyDisconnectRetries 718
CECProxySupplierCollection 719, 732–733
CECProxySupplierLock 717, 734
CECReactivePullingPeriod 720, 735
CECSupplierControl 717, 736–737, 739
CECSupplierControlPeriod 717, 737
CECSupplierControlRoundtripTimeout 738
CECSupplierControlTimeout 718
CECSupplierOperationTimeout 718, 739
CECUseORBId 720–721, 740
ECConsumerControl 795, 813
ECConsumerControlPeriod 813
ECConsumerControlTimeout 795
ECConsumerValidateConnection 788
ECDispatching 786, 791, 797–800
ECDispatchingThreadFlags 786, 800
ECDispatchingThreads 786, 797, 799
ECFiltering 757, 762, 785, 787–788, 801
ECObserver 771, 788, 802
ECProxyConsumerLock 789, 803
ECProxySupplierLock 789, 808
ECQueueFullServiceObject 787, 809

o c i w e b . c o m 1213

O

ECScheduling 788, 801, 810
ECSupplierFilter 788
ECSupplierFiltering 787, 814
ECTimeout 787, 815
ECTPCDebug 788, 816
ECUseORBId 788, 817
ORBSchedPolicy 202–203
ORBScopePolicy 202, 204
RTORBDynamicThreadIdleTimeout 204
RTORBDynamicThreadRunTime 204
SO_DONTROUTE 467, 488
SO_KEEPALIVE 467, 513
SO_LINGER 515
SO_REUSEADDR 327
SSLCertificate 1034
SSLNoProtection 1033
SSLPrivateKey 1029, 1034
TCP_NODELAY 530
tp 592

ORB 435, 462, 596–597
configuring real-time CORBA 202
connection management 466
controlling service configurator 463
core 12, 16
debugging 464
endsystem 9
event handling 362, 364–370
initialization 696
initialization options 459–548
interface definition 460
Java xxxiii
mediation 300
optimizing request processing 465
options

ORBAcceptErrorDelay 466, 473
ORBAMICollocation 429, 465, 474
ORBCDRTradeoff 465, 475, 574
ORBCollocation 428, 460, 465, 475–476
ORBCollocationStrategy 52, 55, 428–429, 460, 465, 476, 478
ORBConnectIPV6Only 479
ORBDaemon 439, 463, 479, 524–525
ORBDebug 460, 462, 464, 480

1214 o c i w e b . c o m

O

ORBDebugLevel 462, 464, 480–481
ORBDefaultInitRef 460, 468, 481–487, 508, 527, 641, 656–657, 660
ORBDisableRTCollocation 205, 465, 487–488
ORBDontRoute 489
ORBDottedDecimalAddresses 325, 466, 489–490
ORBEndpoint 462, 466, 489–490, 515, 518, 654
ORBEnforcePreferredInterfaces 491
ORBForwardInvocationOnObjectNotExist 471, 492–496
ORBForwardIOnceOnCommFailure 495
ORBForwardOnceOnInvObjref 496
ORBForwardOnceOnTransient 495
ORBForwardOnCommFailureLimit 497
ORBForwardOnObjectNotExistLimit 499–500
ORBForwardOnObjrefLimit 498
ORBFTSendFullGroupTC 502
ORBGestalt 503
ORBId 460–462, 720, 788
ORBIgnoreDefaultSvcConfFile 504
ORBImplRepoServicePort 468, 506–507, 643
ORBIMREndpointsInIOR 472, 504, 506
ORBInitRef 71, 252, 254, 460, 468, 481–486, 507–512, 527–528, 532, 544,

560, 579, 640–641, 653–657, 660, 1045, 1048, 1058, 1068, 1070
ORBIPHopLimit 512
ORBIPMulticastLoop 513
ORBKeepAlive 513
ORBLaneEndpoint 165, 466, 513
ORBLaneListenEndpoints 165, 466, 513–514
ORBLingerTimeout 515–516
ORBListenEndpoints 71, 165, 313, 325, 329–330, 333–334, 339, 344, 346,

349, 460, 462, 466, 484–486, 489–490, 513, 515–523, 653–654, 656,
677–678, 1054

ORBMaxMessageSize 525
ORBMulticastDiscoveryEndpoint 642, 653
ORBNameServicePort 468, 526–528, 643, 653
ORBNegotiateCodesets 465, 528–529
ORBNodelay 465, 530
ORBNoProprietaryActivation 460, 530
ORBNoServerSideNameLookups 466, 531
ORBObjRefStyle 464, 531, 533, 1054
ORBParallelConnectDelay 466, 533, 546
ORBPreferIPV6Interfaces 534
ORBPreferredInterfaces 491, 534–535

o c i w e b . c o m 1215

O

ORBRcvSock 460, 465, 536
ORBServerId 460, 468, 472, 536–537
ORBServiceConfigLoggerKey 463, 537
ORBSingleReadOptimization 538–539
ORBSkipServiceConfigOpen 464
ORBSndSock 465, 539–540
ORBStdProfileComponents 465, 540–541
ORBSvcConf 440, 464, 541–542, 715, 786, 818, 1010–1011
ORBSvcConfDirective 440, 464, 542
ORBTradingServicePort 468, 542–543, 643
ORBUseIMR 472, 543–544, 1046, 1048, 1058
ORBUseLocalMemoryPool 472, 545
ORBUseParallelConnects 533, 546
ORBUseSharedProfile 546–547
ORBVerboseLogging 547–548

protocol selection 466
protocols 559
real-time 155, 159, 195, 202
service libraries 489, 637–638

audio/video streaming 14, 637
concurrency control 14, 638
data distribution 14
event 14, 638
interface repository 14
life cycle 14, 638
load balancing 14, 638
log 14, 638
naming 14, 638
notification 14, 638
property 14, 638
real-time event 15, 639
real-time scheduling 639
security 14, 639
time 14, 639
trading 14, 638

shutdown 374–376
wait_for_completion parameter 364, 371–375

ORB_CTRL_MODEL policy 378, 381–382, 384
ORB_init() operation 30–31, 71, 155, 213, 225, 230, 239, 324–325, 459–462,
473, 654–655, 703
ORBAcceptErrorDelay option 466, 473
ORBActiveHintInIDs option 603–605

1216 o c i w e b . c o m

O

ORBActiveHintInPOANames option 602, 605–606
ORBActiveObjectMapSize option 603, 606
ORBAllowReactivationOfSystemIDs option 603, 605, 607
ORBAMHResponseHandlerAllocator option 565, 588
ORBAMICollocation option 429, 465, 474
ORBAMIResponseHandlerAllocator option 565, 588
ORBCDRTradeoff option 465, 475, 574
ORBCharCodesetTranslator option 564, 574
ORBClientConnectionHandler option 622
ORBCollocation option 428, 460, 465, 475–476
ORBCollocationStrategy option 52, 55, 428–429, 460, 465, 476–478
ORBConcurrency option 386, 389–390, 392, 598, 607–608
ORBConnectionCacheLock option 555, 558–559, 575, 590
ORBConnectionCacheMax option 559, 575–576
ORBConnectionCachePurgePercentage option 559, 576, 590
ORBConnectionHandlerCleanup option 622, 624–625
ORBConnectionPurgingStrategy option 558, 572, 589–590
ORBConnectIPV6Only option 468, 479
ORBConnectorCacheLock option 575
ORBConnectStrategy option 414, 421, 624–626
ORBCorbaObjectLock option 566
ORBDaemon option 439, 463, 479, 524–525
ORBDebug option 460, 462, 464, 480
ORBDebugLevel option 462, 464, 480–481
ORBDefaultInitRef option 460, 468, 481–487, 508, 527, 641, 656–657, 660
ORBDefaultSyncScope option 622, 626
ORBDefaultSyncStrategy option 626
ORBDisableRTCollocation option 205, 465, 487–488
ORBDontRoute option 467, 489
ORBDottedDecimalAddresses option 325, 466, 489–490
ORBDropRepliesDuringShutdown option 577–578
ORBDynamicThreadPoolName 490
ORBEndpoint 490
ORBEndpoint option 462, 466, 489–490, 513, 515, 518, 654
ORBEnforcePreferredInterfaces option 466, 491
ORBFlushingStrategy option 417, 421, 556, 578–579

blocking strategy 578
leader_follower strategy 578
reactive strategy 578

ORBForwardInvocationOnObjectNotExist option 471, 492–496
ORBForwardIOnceOnInvObjref option 496
ORBForwardIOnceOnObjectNotExist option 494

o c i w e b . c o m 1217

O

ORBForwardIOnceOnTransient option 495
ORBForwardOnceOnCommFailure option 471, 494
ORBForwardOnceOnInvObjref option 471, 496
ORBForwardOnceOnObjectNotExist option 471, 493–494
ORBForwardOnceOnTransient option 471
ORBForwardOnceOnTransport option 495
ORBForwardOnCommFailureLimit option 497
ORBForwardOnObjectNotExistLimit option 499–500
ORBForwardOnObjrefLimit option 498
ORBFTSendFullGroupTC option 472, 502
ORBGestalt option 503
ORBId option 460–462, 472, 504, 720, 788
ORBIgnoreDefaultSvcConfFile 504
ORBIgnoreDefaultSvcConfFile option 463
ORBIIOPClientPortBase option 466, 504
ORBIIOPClientPortSpan option 466
ORBIIOPClientPortSpan span 505
ORBImplRepoServicePort option 468, 506–507, 643
ORBIMREndpointsInIOR enabled 506
ORBIMREndpointsInIOR option 472, 504, 506
ORBInitializer interface 225, 229, 235, 245, 251
ORBInitInfo interface 225
ORBInitRef option 460, 468, 481–486, 507–512, 527–528, 532, 544, 1045, 1048,
1058, 1068, 1070

DLL Style object reference 510
HTTP style object reference 511

ORBInputCDRAllocator option 389, 554–555, 572, 575, 590–591
ORBIORParser option 563, 579
ORBIPHopLimit option 467, 512
ORBIPMulticastLoop option 467, 513
ORBKeepAlive option 467, 513
ORBLaneEndpoint option 165, 466, 513
ORBLaneListenEndpoints option 165, 466, 513–514
ORBLingerTimeout option 467, 515–516
ORBListenEndpoints option 71, 165, 313, 325, 329–330, 333–334, 339, 344,
346, 349, 460, 462, 466, 484–486, 489–490, 513, 515–523, 653–654, 656, 677–678, 1054
ORBLogFile option 464, 524
ORBMaxMessageSize option 472, 525
ORBMulticastDiscoveryEndpoint option 468, 526, 642, 653
ORBMuxedConnectionMax option 559, 580
ORBNameServicePort option 468, 526–528, 643, 653
ORBNativeCharCodeset option 564

1218 o c i w e b . c o m

O

ORBNativeWCharCodeset option 564
ORBNegotiateCodesets option 465, 528–529
ORBNodelay option 465, 530
ORBNoProprietaryActivation option 460, 468, 472, 530
ORBNoServerSideNameLookups option 466, 531
ORBObjectKeyTableLock option 582
ORBObjRefStyle option 464, 531, 533, 1054
ORBOutputCDRAllocator option 555, 582
ORBParallelConnectDelay option 466, 533, 546
ORBPersistentIDPolicyDemuxStrategy option 602, 609
ORBPOALock option 389, 609
ORBPOAMapSize option 602, 609–610
ORBPolicyManager option 104, 107
ORBPreferIPV6Interfaces option 534
ORBPreferredInterfaces option 467, 491, 534–535
ORBPriorityMapping option 190, 202
ORBProfileLock option 389, 619, 626–627
ORBProtocolFactory option 323–324, 328–329, 331–332, 334, 338, 517, 560,
583–584, 1010–1011, 1014, 1017

custom factory 583
DIOP_Factory 583
IIOP_Factory 583
SHMIOP_Factory 583
SSLIOP_Factory 583
UIOP_Factory 583

ORBRcvSock option 460, 465, 536
ORBReactorMaskSignals option 584
ORBReactorThreadQueue option 573, 591–592
ORBReactorType option 387, 389, 409–412, 542, 553, 573, 592–593
ORBReplyDispatcherTableSize option 627
ORBResourceUsage option 567–568, 585–586
ORBSchedPolicy option 202–203
ORBScopePolicy option 202, 204
ORBServerId option 460, 468, 472, 536
ORBServiceConfigLoggerKey option 440, 463, 537
ORBSingleReadOptimization option 465, 538–539
ORBSkipServiceConfigOpen option 440, 464
ORBSndSock option 465, 539–540
ORBStdProfileComponents option 465, 540–541
ORBSvcConf option 440, 464, 541–542, 715, 786, 818, 1010–1011
ORBSvcConfDirective option 440, 464, 542
ORBSystemIDPolicyDemuxStrategy option 603, 610

o c i w e b . c o m 1219

P

ORBThreadFlags option 598, 611
ORBThreadPerConnectionTimeout option 391–392, 599, 612
ORBTradingServicePort option 468, 542–543, 643
ORBTransientIDPolicyDemuxStrategy option 602, 613
ORBTransportMuxStrategy option 391, 415–416, 421, 620, 628
ORBTransportMuxStrategyLock option 620, 629
ORBUniqueIDPolicyReverseDemuxStrategy option 603, 613–614
ORBUseIMR option 472, 504, 506, 543–544, 1046, 1048, 1058
ORBUseLocalMemoryPool option 472, 545
ORBUseParallelConnects option 466, 533, 546
ORBUserIDPolicyDemuxStrategy option 604, 614–615
ORBUseSharedProfile option 467, 546–547
ORBVerboseLogging option 464, 547–548
ORBWaitStrategy option 387, 389, 414, 416–417, 421–422, 424, 426, 622,
629–630
ORBWCharCodesetTranslator option 564, 587
ORBZeroCopyWrite option 555, 587
OrderPolicy property 839, 845–846, 893, 916
Othman, Ossama 1158
output_cdr_buffer_allocator() operation 554
output_cdr_dblock_allocator() operation 554
output_cdr_msgblock_allocator() operation 554

P

PacingInterval property 832, 840, 845
parse_string() operation 561
PATH environment variable 439, 1001, 1098, 1106–1107, 1117
Pattern Languages of Program Design 3: Software Patterns Series
book 1158
Pattern-Oriented Software Architecture:Patterns for Concurrent
and Networked Objects (POSA2) book 17, 393, 411, 423, 434, 591, 1159
patterns 16

abstract factory 16
acceptor 16
active object 16, 598
adapter 16
asynchronous completion token (ACT) 92
bridge 16
connector 16

1220 o c i w e b . c o m

P

half-sync/half-async 16
leader/followers 393
optimization principle 1159
proxy 16
reactor 16, 549, 1159
service configurator 16, 562
strategy 16
thread-specific storage (TSS) 16

perfect hashing 11, 16, 51, 599
See also gperf

perform_work() operation 89, 93–94, 364, 366–371, 374, 376, 381, 384, 392,
420, 423
per-hop-behavior (PHB) 121, 191
PHB

See per-hop behavior (PHB)
PICurrent interface 223, 249–253, 257
ping() operation 1041–1042
pipes build flag 1091, 1097
platform support xxviii, 5
platform_macros.GNU file 529, 755, 1002–1003, 1084–1086, 1090, 1107–1108,
1111, 1125–1126, 1128, 1131–1132, 1136–1137
platforms

supported xxxii

pluggable protocols xxix, 5, 12, 16, 70, 319–320, 322–323, 331, 339, 351–356,
463, 483, 511, 517, 583, 596, 620, 1150, 1152–1153, 1158

acceptor 354, 549
address definition 324, 329, 333–334, 336, 338
building 323
combining protocols 341
configuring SHMIOP factory 332
connection

handler 355, 549
connector 354, 549
declaring 324, 328
endpoint 355
framework 353
guidelines 330
identifier tags 352
loading 323, 331, 333, 336–337
profile 355
protocol factory 549
restrictions 335, 340

o c i w e b . c o m 1221

P

TAO_Acceptor class 354
TAO_Connector class 354
TAO_Endpoint class 355
transport 321
transport behavior 352

POA
See portable object adapter (POA)

poa_policies attribute 181
policies

BidirectionalPolicyValue 116
BufferingConstraint 112–114
ConnectionTimeout 108
MAIN_THREAD_MODEL 378, 381, 384
NON_RETAIN 302, 305
ORB_CTRL_MODEL 378, 381–382, 384
PriorityModelPolicy 166
PrivateConnectionPolicy 168
PROCESS 204
RequestProcessingPolicy 305
RETAIN 302
SCHED_FIFO 203
SCHED_OTHER 203
SCHED_RR 203
scope_policy 204
ServantRetentionPolicy 302, 305
SERVER_DECLARED 209
SINGLE_THREAD_MODEL 378, 381–383
SyncScope 102, 109–110, 112–114
SYSTEM 204
ThreadPolicy 378, 381–382, 384
USE_SERVANT_MANAGER 305

Policy interface 302
PolicyCurrent interface 92, 104, 302, 508
PolicyList interface 103–105, 107–109, 111, 114, 117, 157, 194, 206, 209, 382,
1015–1016, 1018
PolicyManager interface 104, 107, 111, 114, 193, 302
Pollable interface 302
PollableSet interface 302
portability 16
portable interceptors xxix, 5, 174, 179, 199–200, 219–220, 249, 256–257, 1093,
1096, 1159

adapter_manager_state_changed() operation 245

1222 o c i w e b . c o m

P

adapter_state_changed() operation 245
asynchronous method handling (AMH) 139
client interceptors 221–222, 227, 239
ClientInterceptor class 227
ClientRequestInfo interface 223

get_effective_component() 245
codec (coder/decoder) 237
codec_factory() operation 237, 241
CodecFactory reference 237–238
coders 257
components_established() operation 245
context_data field 228
context_id field 228
decoders 257
decoding the tag 247
destroy() operation 245
example 225, 245

client-side recursion 250
simple authentication interceptor 225
using the codec 238

extracting tagged information 245
get_slot() operation 250
installing the interceptor 229, 234
interceptors build flag 477, 970, 973
IOR interceptors 243–244, 246–247, 257
IORInfo.pidl 244
IORInterceptor.pidl 243
marshaling 237
name() operation 232, 245
ORBInitializer interface 229
PortableInterceptor::Current interface 249
PortableInterceptor::IORInfo interface 244
PortableInterceptor::PICurrent interface 223, 249–253, 257
PortableServer module 235
post_init() operation 225
pre_init() operation 225
real-time CORBA 174, 179, 199–200
receive_exception() operation 222
receive_other() operation 222
receive_reply() operation 222
receive_request_service_context() operation 222
receive_request() operation 223

o c i w e b . c o m 1223

P

registering interceptors 224
IOR 245

request interceptors 220
request parameters 223
RequestInfo.pidl 223
send_exception() operation 223
send_other() operation 223
send_poll() operation 221
send_reply() operation 223
send_request() operation 222
server interception points 222
server request interceptors 222, 231–232, 241
ServerRequestInterceptor.pidl 222
server-side interceptor 231
service context 174, 237
set_slot() operation 250
tagged components 243
target_is_a() operation 232

portable object adapter (POA) 11, 14
active object map 92, 302, 600, 602–603, 606, 614
manager 477, 596, 704, 750, 769
map 600
map options 601
policy

MULITPLE_ID 613
PERSISTENT 608–609
SYSTEM_ID 606
TRANSIENT 609
UNIQUE_ID 613
USER_ID 604, 606

portable priorities 15, 151
PortableServer module 275, 339

interfaces 302
PortableServer::ServantActivator interface 302
PortableServer::ServantLocator interface 302–303, 305

portspan option 326, 336, 517–518, 523
post_init() operation 225, 229–230, 234, 245, 247
postinvoke() operation 303–304
pre_init() operation 225, 229, 245
prefix filter builder

real-time event service (RTES) 757

preinvoke() operation 303

1224 o c i w e b . c o m

P

priority
end-to-end 15, 151, 166
model 208, 211

client-propagated 207
server-declared 211

timers
real-time event service (RTES) 743

priority inversion 4, 16, 151, 166, 204, 427–428, 476, 514, 538–539, 627, 728–
729, 732–733, 797, 804–807, 815
priority mapping 160, 185, 189

continuous 185–186
custom network 197
direct 187
linear 188
maxPriority 158
minPriority 158
network 191–194, 196–197
NetworkPriorityMapping interface 195–197
NetworkPriorityMappingManager interface 196–198
ORBPriorityMapping option 190, 202
ORBRTPriorityRange option 155
PriorityMapping interface 159, 190
PriorityMappingManager interface 190
RTORBNetworkPriorityMapping option 196, 203
RTORBPriorityMapping option 203

priority model
client-propagated 15, 205
server-declared 15

priority propagation 166
end-to-end 15, 151, 166

priority-banded connections 167
PriorityBands 167
PriorityMapping interface 159–160, 190
PriorityMappingManager interface 190
PriorityModelPolicy policy 166, 207
private keyword

value types 262, 264

PrivateConnectionPolicy policy 168
probe build flag 1093, 1097
process_directive() operation 444, 458
profile build flag 1092, 1097
profile locking 618

o c i w e b . c o m 1225

P

properties
BlockingPolicy 844–845, 916
ConnectionReliability 840–841, 845, 848–849, 864
DiscardPolicy 839, 842, 844–846, 916
EventReliability 841, 845, 851–852, 864, 941
MaxConsumers 842, 845, 892
MaxEventsPerConsumer 840, 845, 916
MaximumBatchSize 832, 840, 845
MaxQueueLength 842, 845, 892
MaxSuppliers 842, 845, 892
OrderPolicy 839, 845–846, 893, 916
PacingInterval 832, 840, 845
Priority 839, 845
RejectNewEvents 839, 842, 844, 846
ThreadPool 843, 846, 853, 855, 908, 913
ThreadPoolLanes 843, 846, 853–854, 905, 913
Timeout 838, 846

property service 14
ORB service libraries 638

protocol
asymmetric 341–342

ProtocolList 171
protocols 522

Collocated-only inter-ORB protocol (COIOP) 322
Compression IIOP (ZIOP) 322
corbaloc rir 656
CSI ECMA 971, 975
datagram inter-ORB protocol (DIOP) 12, 322, 333–335, 517, 522, 583
DCE Common Inter-ORP protocol (DCE-CIOP) 971, 974
environment specific inter-ORB protocol (ESIOP) 319–320
factories 356, 559, 583
general inter-ORB protocol (GIOP) 265, 319–321, 324, 328, 330, 335, 337, 522
generic security service (GSS) 975
HTTP tunneling bi-directional protocol (HTBP) 341
HTTP tunneling inter-ORB protocol (HTIOP) 12, 322, 341
hypertext transfer protocol (HTTP) 12
internet inter-ORB protocol (IIOP) 319–328, 331, 334–336, 338, 349–350

lite 328, 584
options 326

multicast inter-ORB protocol (MIOP) 12, 322, 337, 339–340
pluggable 5, 12, 16
properties 151, 169

1226 o c i w e b . c o m

P

provided with TAO 321
resolve initial reference 483
SCTP inter-ORB protocol (SCIOP) 12, 322, 344
secure inter-ORB protocol (SECIOP) 971, 974–975
secure socket layer inter-ORB protocol (SSLIOP) 12, 322, 335–336, 517, 522,

961, 982–983, 988, 1001, 1003, 1005–1006, 1009–1012, 1014, 1017, 1019–
1026, 1029–1035, 1154

secure sockets layer (SSL) 12, 322, 335, 522, 963, 975, 983
shared memory inter-ORB protocol (SHMIOP) 12, 322, 330–333, 341, 349–350,

352–355, 482, 509, 511–512, 516–517, 520–521, 523–524, 552, 583, 622,
656, 661

stream control transmission protocol (SCTP) 12, 344
transmission control protocol/internet protocol (TCP/IP) 9, 169, 319–321, 324,

331, 352, 489, 510, 559, 583, 783, 988
UNIX inter-ORB protocol (UIOP) 12, 169, 172–173, 322, 328–330, 353, 482,

509–512, 516–517, 521–524, 552, 583–584
unreliable IP multicast protocol (UIPMC) 322–323, 337, 339–340
user datagram protocol (UDP) 12, 321–322, 333, 335, 337, 352, 522, 583, 773,

777–778, 780–781, 783

protocols properties 169
proxy collection options

CECProxyConsumerCollection 719, 728–729
CECProxySupplierCollection 719, 732–733
ECProxyPushConsumerCollection 790
ECProxyPushSupplierCollection 790
real-time event service (RTES) 790

proxy factory adapter 282
proxy pattern 16
ProxyConsumer interface 833, 872, 887, 897
ProxyPushSupplier interface 701
ProxySupplier interface 833, 878–879, 887, 901–902
pseudo-IDL (PIDL) 108, 113, 155, 221–223, 243–244, 249, 255, 299, 1096
pthread_create() operation 397
public keyword

value types 262, 264

public-key cryptography 985
publish and subscribe paradigm 694

consumers 694
suppliers 694

pull model support 694, 706
Pure CORBA book xxvii, xxxi, 259, 275, 646–647, 1157
purge_percentage() operation 557–558

o c i w e b . c o m 1227

Q

purging strategies 557
first in first out (FIFO) 551, 557
least frequently used (LFU) 551
least recently used (LRU) 551
no operation (NOOP) 551, 557

purify build flag 1092, 1097–1098
push consumer interface

real-time event service 748

push_structured_event() operation 873, 875, 880
push_structured_events() operation 898–899, 903
push() operation 697, 743, 747–748, 750, 760
PushConsumer interface 748–749

disconnect_push_consumer() operation 699, 748
push() operation 748

PushSupplier interface 698, 746
Pyarali, Irfan 1159

Q

QNX operating system 328
QoP

See quality of protection (QoP)
qt build flag 1092, 1098
Qt GUI toolkit 550, 568, 572
quality of protection (QoP) policy 1012
quality of service (QoS) 75, 102–104, 112, 115, 151, 153, 693, 746–747, 749–
752, 756–768, 772, 828–830, 832, 837–838, 841–843, 845–848, 870–871, 877, 892–893

asynchronous requests 112
buffered oneway 112
connection timeouts 107
notification service 837
object reference level 104
oneway 112
ORB level 104
ORBPolicyManager interface 104, 107
policies 102
policy framework 153
properties

notification service 892
RELATIVE_RT_TIMEOUT_POLICY_TYPE 106

1228 o c i w e b . c o m

R

reliable oneway calls 109
request and reply timeouts 106
support 837
SyncScope 109, 112

SYNC_DELAYED_BUFFERING 110
SYNC_NONE 109
SYNC_WITH_SERVER 110
SYNC_WITH_TARGET 110
SYNC_WITH_TRANSPORT 110

thread level 104
time independent invocation (TII) 75

quantify build flag 967, 1092, 1098

R

rate-monotonic scheduling
See real-time CORBA, fixed priority scheduling

Rational Software
Purify 1097
Quantify 1098

reactive
concurrency model 385–388, 394
strategy 578

reactors 16–412, 549, 1159
ACE_FlReactor class 552
ACE_FoxReactor class 552
ACE_QtReactor class 552, 568
ACE_Reactor class 441, 449–450, 551–552
ACE_TkReactor class 552
ACE_XtReactor class 552, 569–570
fl build flag 1092, 1095
fox build flag 1092, 1096
management 552
msg_wfmo option 592
qt build flag 1092, 1098
reclaim_reactor() operation 552
select_mt option 410–411, 573, 592
select_st option 387, 389, 409–410, 553, 573, 592
thread pool 163
tk build flag 1093, 1101

o c i w e b . c o m 1229

R

tk_reactor option 573, 592
wfmo option 370, 573, 592
xt build flag 1093, 1102

real-time collocation resolver 205, 428, 487
real-time CORBA 11, 15, 72, 149–164, 166–167, 169–173, 185, 189–198, 201–
212, 350, 385, 391, 394, 1151, 1159

_get_policy() operation 207
architecture 152–153
asynchronous invocations 173
attributes

poa_policies 181
scheduling_discipline_name 181
scheduling_policies 181

client-propagated priority model 15, 205
communication resources 151
configuring 202

ORB 202
corba_messaging build flag 201
create_mutex() operation 161
create_named_mutex() operation 198
create_priority_banded_connection_policy () operation 167
create_reference_with_id_and_priority() operation 211
create_reference_with_priority() operation 211
datagram inter-ORB protocol (DIOP) 169
destroy_mutex() operation 161
differentiated services (diffserv) 121, 191

codepoints (DSCP) 121, 191
diffserv field (DF) 121, 191

distributable thread 151, 155, 174–177, 179
dynamic scheduling 15, 149, 151, 174, 199
dynamic threads 162
earliest deadline first (EDF) scheduling 174, 182
EDF_Scheduling module 182
enable_network_priority attribute 169, 191
enabling support in TAO 201
end-to-end priority propagation 151, 166
example 156, 209, 217
explicit binding 151, 166
extensions 15, 153
features 173
fixed priority scheduling 174, 181
FP_Scheduling module 181

1230 o c i w e b . c o m

R

FP_Scheduling::FP_Scheduler interface 181
FP_Scheduling::SegmentSchedulingParameterPolicy interface 181
general inter-ORB protocol (GIOP) 169
implementation 185
INCOMPATIBLE_SCHEDULING_DISCIPLINES exception 181
least laxity first (LLF) scheduling 183
LLF_Scheduling module 183
lock() operation 160
Max_Utility_Scheduling module 184
maximize accrued utility (MAU) scheduling 184
maxPriority 158
MIF_Scheduling module 185
minimum_corba build flag 201
minPriority 158
modules 154
most important first (MIF) scheduling 184
mutex

named 198
Mutex interface 178
MutexNotFound exception 198
named mutexes 198
NetworkPriorityMapping interface 195–197
NetworkPriorityMappingManager interface 196–198
object binding 166
open_named_mutex() operation 198
options

ORBSchedPolicy 202–203
ORBScopePolicy 202, 204
RTORBDynamicThreadIdleTimeout 204
RTORBDynamicThreadRunTime 204

ORB 155, 159, 195, 202
configuration 202

ORBPriorityMapping option 190, 202
ORBRTPriorityRange option 155
ORBSchedPolicy option 203
ORBScopePolicy option 204
overview 150
policies 152
portable interceptors 174, 179, 199–200
portable object adapter (POA) 153, 156
portable priorities 15, 151
priority 160

o c i w e b . c o m 1231

R

priority mapping 153, 157, 160, 185–186, 189
continuous 185–186, 203
direct 185, 187, 202–203
linear 185, 188, 202
maxPriority 158
minPriority 158
network 191–194, 196–197
NetworkPriorityMapping interface 195–197
NetworkPriorityMappingManager interface 196–198
ORBPriorityMapping option 190, 202
ORBRTPriorityRange option 155
PriorityMapping interface 159, 190
PriorityMappingManager interface 190
RTORBPriorityMapping option 203

priority models 208, 211
client-propagated 205, 207
server-declared 208–209, 211

priority propagation 166
priority-banded connections 167
PriorityBands 167
PriorityMapping interface 159, 190
PriorityMappingManager interface 190
PriorityModelPolicy policy 166, 207
private connections 168
PrivateConnectionPolicy policy 168
PROCESS policy 204
processor resources 151
protocol properties 151, 169
ProtocolList 171
quality of service (QoS) 151

policy framework 153
rate-monotonic scheduling

See real-time CORBA, fixed priority scheduling
real-time operating system (RTOS) 157
reliable oneway invocation 173
request buffering 152
resources 151
rt_corba build flag 201
RT_ORB_Loader 190, 202
RTCORBA module 154, 391, 394
RTCORBA::Current interface 92, 153, 159, 176
RTCORBA::Mutex interface 153, 160

1232 o c i w e b . c o m

R

RTCORBA::PriorityMapping interface 160
RTCORBA::RTORB interface 153
RTCORBA.pidl 155
RTORBDynamicThreadIdleTimeout option 204
RTORBDynamicThreadRunTime option 204
RTORBNetworkPriorityMapping interface 196
RTORBNetworkPriorityMapping option 203
RTORBPriorityMapping option 203
RTPortableServer extension 11, 153–157, 201, 210–211
RTPortableServer.pidl 155
RTScheduler.pidl 155, 179
RTScheduling extension 155
RTScheduling::Current interface 155, 174, 176–177, 199–200, 212
RTScheduling::DistributableThread interface 174
RTScheduling::ResourceManager::lock() operation 178
RTScheduling::ResourceManager::try_lock() operation 179
RTScheduling::ResourceManager::unlock() operation 179
RTScheduling::Scheduler interface 179, 199
RTScheduling::ThreadAction interface 175, 212, 214
SCHED_FIFO policy 203
SCHED_OTHER policy 203
SCHED_RR policy 203
schedulers 151
scheduling 173

ResourceManager 178
scheduling segment 174, 176–179, 182, 199, 212, 215
scope_policy 204
SCTP inter-ORB protocol (SCIOP) 169
SERVER_DECLARED policy 209
server-declared priority model 15, 208
ServiceContexts 166
shared memory inter-ORB protocol (SHMIOP) 169
standard synchronizers 151
static scheduling 149, 151, 174
static threads 162
support 201
SYSTEM policy 204
TAO_HAS_CORBA_MESSAGING macro 201
TAO_HAS_MINIMUM_CORBA macro 201
TAO_HAS_RT_CORBA macro 201, 1098
TCPProtocolProperties 169, 191
thread action objects 175

o c i w e b . c o m 1233

R

thread borrowing 162
thread lanes 161
thread pools 16, 151, 161, 163
ThreadpoolId 153, 162
ThreadpoolLane 153
ThreadpoolLanes 164
ThreadpoolPolicy 163
timeouts 173
to_CORBA () operation 159, 186, 195
to_native () operation 159, 186
to_network () operation 195
transmission control protocol/internet protocol (TCP/IP) 169
try_lock() operation 160
UNIX inter-ORB protocol (UIOP) 169
unlock() operation 161
utility function 184

real-time event service (RTES) xxix, xxxv, 15, 693, 741–747, 749, 753, 755,
762, 764–765, 773–817, 1157

architecture 742
attributes 770

consumer_poa 770
consumer_reconnect 770
disconnect_callbacks 770
scheduler 770
supplier_poa 770
supplier_reconnect 770

bit-mask filters 759
connecting 746, 749–751
constructing filters 756
consumer proxy 742–743, 747, 749–750, 881
CORBA gateway 774
deadline timeouts 765
disconnecting 750–751
dispatching model 743
event

correlation 743, 760
data 754
dispatching 743
filtering 743
header 753, 774
structure 753
type 747, 749, 766

1234 o c i w e b . c o m

R

event channel
dispatching strategy 716
resource factory 784

options 792
ECConsumerControl 789, 793, 820–825
ECConsumerControlPeriod 789, 794
ECConsumerControlTimeout 789, 795
ECConsumerValidateConnection 796
ECDispatching 797
ECDispatchingThreadFlags 800
ECDispatchingThreads 799
ECFiltering 801
ECObserver 802
ECProxyConsumerLock 803
ECProxyPushConsumerCollection 804
ECProxyPushSupplierCollection 806
ECProxySupplierLock 808
ECQueueFullServiceObject 809
ECScheduling 810
ECSupplierControl 789, 811
ECSupplierControlPeriod 789, 812
ECSupplierControlTimeout 790, 813
ECSupplierFiltering 814
ECTimeout 815
ECTPCDebug 816
ECUseORBId 817

servants 768
event channel attributes 770
event structure 753

customizing 755
options

TAO_LACKS_EVENT_CHANNEL_ANY 755
TAO_LACKS_EVENT_CHANNEL_OCTET_SEQUENCE 755
TAO_LACKS_EVENT_CHANNEL_TIMESTAMPS 755

Event_Service program
command line options 783

EventData 754
EventHeader 753
EventType special values

ACE_ES_EVENT_ANY 754
ACE_ES_EVENT_DEADLINE_TIMEOUT 754
ACE_ES_EVENT_INTERVAL_TIMEOUT 754

o c i w e b . c o m 1235

R

ACE_ES_EVENT_SHUTDOWN 754
ACE_ES_EVENT_UNDEFINED 754

example 744
local event channel 768

feature control options 787
ECConsumerValidateConnection 788
ECFiltering 787
ECObserver 788
ECProxySupplierLock 788
ECScheduling 788
ECSupplierFilter 788
ECSupplierFiltering 787
ECTPCDebug 788

federating event channels 772, 782
IP multicast 781
UDP 777

filtering
and correlation 755
building 757
combinations 758
complex filters 756
conjunction groups 760
construction 764
custom filters 764
disjunction groups 759
event type 757
logical AND groups 761
negating the logic of filters 761
nesting groups 762
null filters 764
rejection filters using bit masks 763
source ID 758

interval timeouts 765
locking options 788

ECProxyConsumerLock 789
ECProxySupplierLock 789

managing connections 750
observers 771
operations

resume_connection() 752
suspend_connection() 752

ORB service libraries 639

1236 o c i w e b . c o m

R

prefix filter builder 757
priority timers 743
proxy collection options 790
push consumer interface 748
reconnecting

consumers 751
suppliers 751

rejection filters 763
resource factory

consumer and supplier control options 789
resuming consumer connections 752
specifying and constructing filters 756
subscription and filtering 743
supplier proxies 743, 751
suspending consumer connections 752
timeout 765

events 743

real-time scheduling 173, 212–217
real-time scheduling service

ORB service libraries 639

rebind() operation 312, 714
receive_exception() operation 222
receive_other() operation 222
receive_reply() operation 222
receive_request_service_context() operation 222
receive_request() operation 200, 223
reclaim_reactor() operation 552
reconfigure() operation 444, 458
record protocol 990
red-black tree 719
reference counting 309
register_new_factory() operation 266
register_proxy_factory() operation 282–283
register_value_factory() operation 261
registering interceptors 224

IOR 245

regular value types 275
rejection filters using bit masks 763
RejectNewEvents property 839, 842, 844, 846
relationship between ACE and TAO 16
RELATIVE_RT_TIMEOUT_POLICY_TYPE 103, 106–107
release() operation 309, 371

o c i w e b . c o m 1237

R

reliable oneway invocation 109, 173
SyncScope policy 109

remove directive 444
reply handler 82, 84

exception 90
non-exception 86
operations 82

repo build flag 1092, 1098
repository_id() operation 301
RepositoryId 224, 946–947
request

buffering 152
demultiplexing

active 11, 16
interceptors 220
invocation 360
processing 361

request invocation 360–361
request processing 361–384
RequestProcessingPolicy policy 305
resolve_initial_references() operation 30, 155, 160, 179, 190, 196, 237, 252,
300, 312, 482, 508, 640, 647, 655–656, 664, 980, 983, 1021, 1070
resolve_str() operation 661
resolve() operation 696
resource factory 323, 331, 389, 412, 416, 437, 462, 549–553, 557, 559–560, 563–
564, 568–572, 574–576, 578–593, 715, 786

ACE_Data_Block 553
ACE_FlReactor 552
ACE_FoxReactor 552
ACE_Message_Block 553
ACE_QtReactor 552
ACE_QtReactor class 568
ACE_Reactor 552
ACE_TkReactor 552
ACE_XtReactor 552
advanced 328, 550, 552–555, 558, 565, 571–572, 590
advanced resource factory options 571, 588
Advanced_Resource_Factory configuration 328, 389, 410, 412
allocator configuration 564
amh_response_handler_allocator() operation 565
ami_response_handler_allocator() operation 565
cache management strategies 556

1238 o c i w e b . c o m

R

cache_maximum() operation 557–558
CDR conversion allocators 549, 553
Client_Strategy_Factory configuration 437–438, 617, 625–630
codeset identifiers and translators 563
common data representation (CDR) 553
connection cache management strategies 556
create_cached_connection_lock() operation 557–558
create_corba_object_lock() operation 566
create_flushing_strategy() operation 556
create_lf_strategy() operation 553
create_purging_strategy() operation 557
custom factory 583
custom interoperable object reference (IOR) parsers 560
default 328, 550–551, 553–556, 558–559, 566, 572
event channel 715–721, 769, 784–790
Fl 550
flushing strategy 556
Fox 550
general inter-ORB protocol (GIOP) 553, 583
get_parser_names() operation 560
get_protocol_factories() operation 559
init_protocol_factories() operation 559
input_cdr_allocator_type_locked() operation 554
input_cdr_buffer_allocator() operation 554, 566
input_cdr_dblock_allocator() operation 554, 566
input_cdr_msgblock_allocator() operation 554, 566
interface definition 551
internet inter-ORB protocol (IIOP) 552
locked_transport_cache() operation 557–558
max_muxed_connections() operation 557–558
options 574

notify manager 911
ORBAMHResponseHandlerAllocator 565, 588
ORBAMIResponseHandlerAllocator 565, 588
ORBCharCodesetTranslator 564
ORBConnectionCacheLock 555, 558–559, 575, 590
ORBConnectionCacheMax 559, 575
ORBConnectionCachePurgePercentage 559, 576, 590
ORBConnectionPurgingStrategy 558, 572, 589–590
ORBCorbaObjectLock 566
ORBDropRepliesDuringShutdown 577–578
ORBFlushingStrategy 417, 421, 556, 578–579

o c i w e b . c o m 1239

R

ORBInputCDRAllocator 389, 554–555, 572, 575, 590–591
ORBIORParser 563, 579
ORBMuxedConnectionMax 559, 580
ORBNativeCharCodeset 564
ORBNativeWCharCodeset 564
ORBObjectKeyTableLock 582
ORBOutputCDRAllocator 555
ORBPriorityMapping 202
ORBProtocolFactory 323–324, 328–329, 331–332, 334, 338, 517, 560, 583–

584, 1010–1011, 1014, 1017
ORBReactorMaskSignals 584
ORBReactorThreadQueue 573, 591–592
ORBReactorType 387, 389, 409–412, 542, 553, 573, 592–593

fl 592
msg_wfmo 592
select_mt 592
select_st 592
tk_reactor 592
tp 592
wfmo 592

ORBResourceUsage 567–568, 585–586
ORBSchedPolicy 203
ORBWCharCodesetTranslator 564
ORBZeroCopyWrite 555

output_cdr_buffer_allocator() operation 554
output_cdr_dblock_allocator() operation 554
output_cdr_msgblock_allocator() operation 554
protocol factory 324, 338, 549, 559, 583, 1010–1011, 1014, 1017
purge_percentage() operation 557–558
purging strategies 556

first in first out 557
least frequently used 557
least recently used 557–558
no operation (NOOP) 557

Qt GUI toolkit 550, 568, 572
reactor management 549, 552
reclaim_reactor() operation 552
resource usage strategy 566–567, 585

eager 551, 567
lazy 551, 567

Resource_Factory configuration 550, 569–570, 574–576, 578–582, 584–587
resource_usage_strategy() operation 567

1240 o c i w e b . c o m

R

select_st option 553
TAO_CONNECTION_CACHE_MAXIMUM macro 576
TAO_Flushing_Strategy class 556
TAO_LF_Strategy class 553
TAO_QtResource_Factory class 568
TAO_Resource_Factory class 551
TAO_Strategies library 571
TAO_Transport_Cache_Manager class 558
TAO_XT_Resource_Factory class 570
Tk 550
UNIX inter-ORB protocol (UIOP) 552, 583
use_locked_data_blocks() operation 554
WaitForMultipleObjects() operation 593
X windows toolkit 568–569
Xt 550, 572
XtAppContext 570

resource usage strategy 566–567, 585
eager 551, 567
lazy 551, 567

Resource_Factory configuration 550, 569–570, 574–576, 578–582, 584–587
resource_usage_strategy() operation 567
resume directive 445
resume_connection() operation 881
RETAIN policy 302
reuse_addr option 327
Riehle, Dirk 1158
Rohnert, Hans 17, 393, 423, 1159
root naming context 696
RT CORBA

See real-time CORBA
RT_Collocation_Resolver class 205, 487
rt_corba build flag 201, 1093, 1098
RT_ORB_Loader 190

options
ORBPriorityMapping 202
ORBSchedPolicy 202–203
ORBScopePolicy 202, 204
RTORBDynamicThreadIdleTimeout 204
RTORBDynamicThreadRunTime 204
RTORBNetworkPriorityMapping 203

RT_ORB_Loader, configuration 196, 202

o c i w e b . c o m 1241

S

RTCORBA module 72, 149–164, 166–167, 169–173, 185, 189–198, 201–212,
391, 394
RTCORBA::Mutex interface 160, 178
RTCORBA::Priority interface 160
RTORBDynamicThreadIdleTimeout option 204
RTORBDynamicThreadRunTime option 204
RTORBNetworkPriorityMapping option 196, 203
RTPortableServer extension 11, 153–157, 201, 210–211
RTPortableServer module 157
RTScheduling extension 154–155
RTScheduling::Current interface 177
RTScheduling::ResourceManager interface 178, 181
RTScheduling::Scheduler interface 178–180, 199
Ruh, William 320, 1159
run() operation 367, 381, 423, 1067
rwho build flag 1094, 1099

S

SCHED_FIFO policy 161, 202–203
SCHED_OTHER policy 203
SCHED_RR policy 161, 203
schedulers 151
scheduling

real-time 212–217

scheduling segment 174, 176–179, 182, 199, 212, 215
scheduling service 190, 745, 747, 771, 784, 788, 801, 810
scheduling_discipline_name attribute 181
scheduling_policies attribute 181
Schmidt, Douglas C. xxiii, xxxvii–xxxix, 3, 6, 17, 93, 153, 220, 365, 393, 423,
1157–1160
scope_policy policy 204
SCTP

See SCTP inter-ORB protocol (SCIOP)
See stream control transmission protocol (SCTP)

sctp build flag 1093, 1099
SCTP inter-ORB protocol (SCIOP) 12, 169, 322, 344
SECIOP

See secure inter-ORB protocol (SECIOP)
secret-key cryptography 984

1242 o c i w e b . c o m

S

secure inter-ORB protocol (SECIOP) 971, 974–975
interoperability 971, 974–975

secure socket layer inter-ORB protocol (SSLIOP) 12, 322, 335–336, 961,
982–983, 988, 1001, 1003, 1005–1006, 1009–1012, 1014, 1017, 1019–1026, 1029–1035,
1154

endpoints 522
factory 336
options 1029
SecurityLevel1 module 1019
SSLCertificate option 1032, 1034
SSLIOP_Factory, configuring 583
SSLIOP::Current interface 1019
SSLNoProtection option 1033, 1035
SSLPrivateKey option 1029, 1034

secure sockets layer (SSL) protocol 12, 322, 335, 522, 963, 965, 975, 983–993
architecture 987
example 992
SSLCertificate option 1034

security 961, 965
access identity 967
administration 969
alert protocol 992
application

control 969
enforcement 969

architecture 975, 977, 981
asymmetric encryption 985
audit identity 967
auditing 968
binding 987

client and target 980
building 1001

on UNIX 1002
on Windows 1003
security-aware applications 1004

certificate 986–987, 994
authority 987, 995
commands summary 1001
issuing 998
multiple authorities 1007
request 996, 998

change cipher specification protocol 991

o c i w e b . c o m 1243

S

ciphertext 984
common secure interoperability (CSI) packages 962, 971, 974–975

CSI 0 971, 974
CSI 1 962, 971, 974
CSI 2 962, 971, 974

context information 980
controlling

message protection 1013
peer authentication 1013

creating
certificate authority 995
certificate requests 996

credential 969
CSI ECMA protocol 971, 975
DCE Common Inter-ORP protocol (DCE-CIOP) 971, 974
delegation of attributes 967
digital signatures 986
distinguished name 987
environment setup 975, 994, 1006
establish trust policy 1012
example 992, 1010

building libraries 1014
security policy enforcement 1020
SSL session 992

feature packages 970
common secure interoperability (CSI) 974
main functionality 972
optional 973
SECIOP + DCE-CIOP interoperability 974
SECIOP interoperability 974
security mechanism 974

CSI ECMA protocol 975
generic security service (GSS) protocol 975
secure sockets layer (SSL) protocol 975
simple public key mechanism (SPKM) protocol 974

security replaceability 973
ORB services 973
security services 973

generic security service (GSS) 975
handshake protocol 989
identity

attributes 967

1244 o c i w e b . c o m

S

binding 986
certificates 986

implementation architecture 975
initiating principal 967
Kerberos 971, 975, 984
key

pair 985
removing pass phrases 1000
server 984

Level 1 972
Level 2 972
libraries

building 1014
testing 1004

message
authentication codes 986
confidentiality 983
controlling protection 1013
integrity 986
protection 1013

messaging 969
module 118, 219, 225, 246, 321, 323, 330, 335, 351, 522, 540
non-repudiation 968, 970, 973
OpenSSL 322, 964, 983, 991, 994–996, 998, 1000–1003, 1005–1006, 1019
optional packages 973
options

SSLCertificate 1034
SSLNoProtection 1033
SSLPrivateKey 1029, 1034

originating principal 967
peer authentication 1013

controlling 1013
plaintext 984
policy

controlling 961, 964, 969, 1012, 1155
example 1014

enforcing 961, 969, 1018, 1155
example 1020

establish trust 1012
principal 966

identification and authentication 966
privacy enhanced mail (PEM) 994

o c i w e b . c o m 1245

S

private key 985
privilege attributes 967
public key 985
public-key cryptography 985
quality of protection (QoP) 1012
record protocol 990
reference model 966
removing key pass phrases 1000
secret-key cryptography 984
secure inter-ORB protocol (SECIOP) 971, 974–975
secure socket layer inter-ORB protocol (SSLIOP) 961, 1009, 1154
secure sockets layer (SSL) protocol 12, 322, 335, 522, 963, 965, 975, 983–993

architecture 987
Security module 1013
SecurityAdmin module 970, 972
SecurityLevel1 module 962, 970, 972, 982, 1019

Current interface 1019
SecurityLevel2 module 962, 970, 972, 982, 1019
SecurityLevel3 module 962, 1019
self-signed certificate 987
signing certificate requests 998
simple delegation 968
symmetric encryption 984
ticket 984
transparent protection 968
transport layer security (TLS) 983
unaware 961, 964, 1155

application 1005
example 1010

building executables 1004

Security Model Mixed 1026
Security module 972, 1013, 1015–1018
security service 14
SecurityAdmin module 970, 972
SecurityLevel1 module 962, 970, 972, 982, 1019
SecurityLevel2 module 962, 970, 972, 982, 1019
SecurityLevel3 module 962, 1019
select reactor

single-threaded 409

select_mt option 410–411, 573, 592
select_st option 387, 389, 409–410, 553, 573, 592
select() operation 352, 410–411, 592

1246 o c i w e b . c o m

S

send_exception() operation 223
send_other() operation 223
send_poll() operation 221
send_reply() operation 223
send_request() operation 222
sendc_ prefix 77, 79, 93
SEQUENCE_EVENT type 872, 878, 897, 901
SequenceProxyPushConsumer interface 829, 897
SequenceProxyPushSupplier interface 902
SequencePushConsumer interface 832, 894, 899, 902
SequencePushSupplier interface 832, 894, 898
servant 10, 94, 96

activation
USE_SERVANT_MANAGER 305

locator 302
manager 302, 477

NON_RETAIN 305
RequestProcessingPolicy 305
ServantRetentionPolicy 305

ServantLocator interface 302–303, 305
servant-per-AMI-call strategy 91–92
ServantRetentionPolicy policy 302, 305
server concurrency 597
server interceptors 241

interception points 222
request 222

server role 359, 361
server strategy factory 71, 386, 389–392, 435, 437, 462, 595–599, 602–604,
612–615

active object map 602
default options 604
demultiplexing strategies 599
interface definition 596
options

ORBActiveHintInIDs 603–605
ORBActiveHintInPOANames 602, 605–606
ORBActiveObjectMapSize 603, 606
ORBConcurrency 386, 389–390, 392, 598, 607–608
ORBPOALock 389, 609
ORBPOAMapSize 602, 609–610
ORBSystemIDPolicyDemuxStrategy 603, 610
ORBThreadFlags 598, 611

o c i w e b . c o m 1247

S

ORBThreadPerConnectionTimeout 391–392, 599, 612
ORBUniqueIDPolicyReverseDemuxStrategy 603, 613–614
ORBUserIDPolicyDemuxStrategy 604, 614–615

POA map 601
Server_Strategy_Factory configuration 386, 389–390, 392, 437–438, 595, 605–

615

SERVER_DECLARED policy 166, 209, 211–212
server-differentiated-reply strategy 91–92
ServerRequestInfo interface 223
service configurator 12, 433–434, 436–448, 450–458, 463, 562, 571, 574, 721

configuring TAO clients and servers 434
control options 439
creation 451
directives 437–438, 444
DTD 446
initialization and finalization 450
interface definition 449
manager 457
objects 448
specializing factories 436
state 456
static service example 455
svc.conf file 329, 338, 392, 436, 441, 443, 541, 786, 818, 1014, 1017
See also ACE, service configurator

service configurator file 388
service manager 444–445
ServiceContexts 166
services 635–640

audio/video streaming 14, 637
concurrency control 4, 14, 638
Cos prefix 636
customizing access 636
data distribution 14
event xxix, xxxv, 14, 638, 693–695, 741–749, 755, 830, 837
implementation repository 312, 910, 1071

ImR_Activator 1076
interface repository xxix, 14, 62, 945–948, 951–952, 958–959
life cycle 14, 638
load balancing 14, 280, 489, 619, 638
log 14
naming 14, 312, 484, 636, 640, 645, 647–660, 662–667, 670–672, 678–680, 744,

769, 870, 877, 896, 910

1248 o c i w e b . c o m

S

NamingViewer utility 670
notification xxxv, 14, 312, 693, 827–829, 832–833, 837–838, 842, 847, 864–866,

869–871, 889, 891, 893, 909, 916, 918–941
ORB service libraries 280, 638
overview of TAO 635
property 14
real-time event service (RTES) xxix, xxxv, 15, 693, 741–747, 749, 753, 755, 762,

764–765, 773
scheduling 190, 745, 747, 771, 784, 788, 801, 810
security 14, 639
selectively building TAO services 1112
TAO ORB libraries 637
tao_nsadd utility 667, 669
tao_nsdel utility 667, 669
tao_nslist utility 667
time 14, 106, 183
trading 14, 468, 482, 484–487, 508, 542–543, 635, 704

set_locator() operation 314–315
set_policy_overrides() operation 105, 301, 972, 980, 983
set_qos() operation 843
set_scheduling_parameter() operation 181
set_slot() operation 250
shared memory inter-ORB protocol (SHMIOP) 12, 169, 322, 330–333,
341, 349–350, 352–355, 482, 509, 511–512, 516–517, 520–521, 523–524, 552, 583, 622,
661

endpoint 520
example 523

factory 331
SHMIOP_Factory configuration 332, 583

shared_libs build flag 1092, 1099–1100
shared_libs_only build flag 1092, 1099
SHMIOP

See shared memory inter-ORB protocol (SHMIOP)
shutdown() operation 364, 371–376, 1022–1023, 1025, 1041, 1067
shutting down 374
SII

See static invocation interface (SII)
single thread model 379
SINGLE_THREAD_MODEL policy 378, 381–383
smart proxies xxix, 6, 49, 277–278, 280–281, 286–288, 290–291, 296–298

_unchecked_narrow() operation 285
asynchronous method invocation (AMI) 278

o c i w e b . c o m 1249

S

base_proxy_ variable 284
batch processing 280
choosing between target objects 280
client-side caching 279
create_proxy() operation 278, 282–283, 285–286, 288, 293
creating 285
default proxy factory 283, 285
example 289–297

logging 289
executing a sequence of operations 280
factory object 288
framework 280
get_proxy() operation 283–284
IDL compiler 278
instance() operation 284
logical target object 280
oneway 278
overridden member functions 284
proxy factory adapter 282, 285
register_proxy_factory() operation 282–283
smart proxy base class 283
smart proxy class 278, 287, 293
smart proxy factory class 285, 288, 292
smart_proxies build flag 281, 287
TAO_Default_Proxy_Factory class 281–282
TAO_Proxy_Factory_Adapter class 281
TAO_Smart_Proxy_Base class 281, 283–284, 294
tao/SmartProxies/Smart_Proxies.h 281, 287
unregister_proxy_factory() operation 282, 289
use cases 279
writing and using 286

smart_proxies build flag 281, 287
SO_DONTROUTE socket option 467, 488
SO_KEEPALIVE socket option 467, 513
SO_LINGER socket option 515
SO_REUSEADDR socket option 327
sockets

CLOSE_WAIT state 425

spawn() operation 174, 176–177, 212
specializing factories 436
split build flag 1092, 1099
SSI

1250 o c i w e b . c o m

S

See static skeleton interface (SSI)
SSL

See secure sockets layer (SSL) protocol
ssl build flag 1002–1003, 1093, 1100
SSL_CERT_DIR environment variable 1006–1007
SSL_CERT_FILE environment variable 1006–1007
SSL_EGD_FILE environment variable 1006
ssl_port option 517
SSL_RAND_FILE environment variable 1006
SSL_ROOT environment variable 1002–1003
SSLIOP

See secure socket layer inter-ORB protocol (SSLIOP)
Stal, Michael 17, 393, 423, 1159
standard synchronizers 151
state member

value type 259

static
threads 162

static invocation interface (SII) 10, 13
static scheduling 149, 151, 174
static skeleton interface (SSI) 10, 13
static_libs build flag 1092, 1099–1100
static_libs_only build flag 1092, 1099–1100
static_link build flag 1092, 1100
Stevens, W. Richard 1160
STLport 1093, 1100
stlport build flag 1092–1093, 1100
strategies 435

activation-per-AMI-call 91–92
blocking 578
connect 625
first in first out (FIFO) 557
leader_follower 417
leader/followers 556, 578
least frequently used (LFU) 557, 572, 589
least recently used (LRU) 557–558, 572, 589
no operation (NOOP) 557
reactive 578
servant-per-AMI-call 91–92
server-differentiated-reply 91–92

strategy pattern 16
stream control transmission protocol (SCTP) 12, 344

o c i w e b . c o m 1251

S

string_dup() operation 31
string_to_object() operation 31, 251, 314, 339, 485–486, 532, 560–561, 579,
641, 647, 655–657, 659
structured event types 693
STRUCTURED_EVENT type 872, 878–879
StructuredProxyPushConsumer interface 870, 872–874
StructuredProxyPushSupplier interface 829, 878–879, 893
StructuredPushConsumer interface 831, 875, 879, 907, 909
StructuredPushSupplier interface 831, 867, 873
stubs and skeletons 10, 28, 39
subscription and filtering

real-time event service (RTES) 743

subscription_change() operation 836, 867–868, 879, 884–885, 887–888, 894,
902
supplier proxies 743

real-time event service (RTES) 743

SupplierAdmin interface 828, 836, 871–872, 882, 889–890, 896–897
support

commercial xxxiii
Object Computing, Inc. (OCI) xxxiii

suspend directive 445
suspend_connection() operation 881
suspending and resuming consumer connections

real-time event service (RTES) 752

svc.conf file 332, 338, 436, 441, 443, 1014, 1017
svc() operation 215, 397, 665
SYNC_DELAYED_BUFFERING 113
SYNC_NONE 109–110, 113–114
SYNC_WITH_TARGET 111
SYNC_WITH_TRANSPORT 110
synchronizers

standard 151

SyncScope policy 102, 109–110, 112–114
SYNC_DELAYED_BUFFERING 110, 113
SYNC_NONE 109–110, 113–114
SYNC_WITH_SERVER 110
SYNC_WITH_TARGET 110
SYNC_WITH_TRANSPORT 110–111

System Requirements 1084
Syyid, Umar 1158

1252 o c i w e b . c o m

T

T

tagged components 243, 245, 540
TaggedComponent() operation 247

TAO xxv, 3, 551
architecture 8
design goals 4
development history 6
high performance 15
minor codes 68
ORB service libraries 280
real-time CORBA support 15, 201
real-time event service (RTES) 15
relationship to ACE 16
source code distribution 1120
supported platforms xxxii
tao_catior utility 248
TAO_ROOT environment variable 42, 44–45
version xxxii

TAO classes
RT_Collocation_Resolver 205, 487
TAO_Acceptor 71, 353–354, 557
TAO_Acceptor_Registry 71, 551
TAO_CEC_EventChannel 695, 702
TAO_CEC_EventChannel_Attributes 704
TAO_CEC_Factory

interface definition 716
TAO_Connect_Strategy 618, 623
TAO_Connection_Handler 353, 355
TAO_Connection_Purging_Strategy 551, 557
TAO_Connector 70, 72, 353–354, 557
TAO_Connector_Registry 70, 72, 551
TAO_Default_Proxy_Factory 281–282
TAO_EC_Event_Channel_Attributes 770–771
TAO_EC_Factory

dispatching 786
TAO_Endpoint 353, 355
TAO_Flushing_Strategy 551, 556
TAO_IOR_Parser 561, 579
TAO_LF_Strategy 553
TAO_Local_RefCounted_Object 299, 309

o c i w e b . c o m 1253

T

TAO_MProfile 70
TAO_Naming_Client 663–664
TAO_Naming_Server 664, 666
TAO_Notify_EventChannelFactory_i 904
TAO_ORB_Core 71, 462, 596–597, 618, 623
TAO_Priority_Mapping_Manager 190
TAO_Profile 353, 355
TAO_Protocol_Factory 353, 356
TAO_ProtocolFactorySet 552
TAO_Proxy_Factory_Adapter 281
TAO_QtResource_Factory 568–569
TAO_Resource_Factory 551
TAO_Server_Strategy_Factory 596–597
TAO_Smart_Proxy_Base 281, 283–284, 294
TAO_Transport 353, 618, 620–621
TAO_Transport_Cache_Manager 558
TAO_Wait_Strategy 618, 621
TAO_XT_Resource_Factory 570–571

TAO configuration xxviii–xxix, 5, 433
client strategy factory configuration 414–415, 421–422, 424, 426, 437–438, 617,

625–630
directives 436

dynamic 324, 389, 438, 450, 454
dynamic compontents 438
resume 445, 456
static 389, 437, 450, 550, 595, 617, 715, 785, 818
suspend 445, 456

event channel servants
real-time event service (RTES) 768

object factory 434–435
resource factory configuration 324, 338, 417, 421, 437–438, 447–448, 542, 550,

569–570, 574–576, 578–582, 584–587, 1010–1011, 1014, 1017
server strategy factory configuration 386, 389–390, 392, 435, 437–438, 595, 605–

615
source code

on UNIX 1107
specializing factories 436
static directive 437

TAO libraries
ORB service 489, 619
TAO_BiDirGIOP 117
TAO_CosConcurrency 638

1254 o c i w e b . c o m

T

TAO_CosEvent 638
TAO_CosLifeCycle 638
TAO_CosLoadBalancing 638
TAO_CosNaming 54, 638, 646
TAO_CosNaming_Serv 646
TAO_CosNaming_Skel 646
TAO_CosNotification 638
TAO_CosProperty 638
TAO_CosTime 639
TAO_CosTrading 638
TAO_DsEventLogAdmin 638
TAO_DsLogAdmin 638
TAO_DsNotifyLogAdmin 638
TAO_Messaging 101, 115
TAO_PortableGroup 323, 337–338
TAO_RTCORBA 72, 190, 196, 201
TAO_RTEvent 639, 755
TAO_RTEventLogAdmin 638
TAO_RTPortableServer 201
TAO_RTSched 639
TAO_RTSchedEvent 639
TAO_Security 639
TAO_SmartProxies 286, 289
TAO_Strategies 323, 328–329, 331–334, 389, 410, 412, 571, 588–593
TAO_Svc_Utils 639

TAO macros
CORBA_E_COMPACT 1149, 1151
CORBA_E_MICRO 1149
TAO_CONNECTION_CACHE_MAXIMUM 576
TAO_CONNECTOR_REGISTRY_NO_USABLE_PROTOCOL 70
TAO_DEFAULT_IMPLREPO_SERVER_REQUEST_PORT 507
TAO_DEFAULT_NAME_SERVER_REQUEST_PORT 527, 642
TAO_DEFAULT_SERVER_ACTIVE_OBJECT_MAP_SIZE 599, 606
TAO_DEFAULT_SERVER_POA_MAP_SIZE 609
TAO_DEFAULT_TRADING_SERVER_REQUEST_PORT 543
TAO_HAS_AMI 1094
TAO_HAS_AMI_CALLBACK 1094
TAO_HAS_AMI_POLLER 1094
TAO_HAS_CORBA_MESSAGING 201, 1094
TAO_HAS_INTERCEPTORS 1096
TAO_HAS_MINIMUM_CORBA 201, 1097, 1107, 1111
TAO_HAS_MINIMUM_POA 1112

o c i w e b . c o m 1255

T

TAO_HAS_RT_CORBA 201, 1098
TAO_INVOCATION_LOCATION_FORWARD_MINOR_CODE 69
TAO_INVOCATION_RECV_REQUEST_MINOR_CODE 70
TAO_INVOCATION_SEND_REQUEST_MINOR_CODE 69
TAO_MPROFILE_CREATION_ERROR 70
TAO_POA_DISCARDING 69
TAO_POA_HOLDING 69
TAO_STD_PROFILE_COMPONENTS 541
TAO_THREAD_PER_CONNECTION_TIMEOUT 612
TAO_TIMEOUT_CONNECT_MINOR_CODE 70
TAO_TIMEOUT_RECV_MINOR_CODE 70
TAO_TIMEOUT_SEND_MINOR_CODE 70
TAO_UNHANDLED_SERVER_CXX_EXCEPTION 70
TAO_USE_LAZY_RESOURCE_USAGE_STRATEGY 567, 586

TAO_Acceptor_Registry class 551
TAO_BiDirGIOP library 117
tao_catior utility 248
TAO_CEC_EventChannel class 695
TAO_Connection_Purging_Strategy class 551, 557
TAO_Connector_Registry class 551
TAO_DEFAULT_SERVER_ACTIVE_OBJECT_MAP_SIZE
macro 606
TAO_DEFAULT_SERVER_POA_MAP_SIZE macro 609
TAO_DEFAULT_THREAD_PER_CONNECTION_TIMEOUT
macro 599
TAO_EC_Event_Channel_Attributes class 770–771
TAO_Flushing_Strategy class 551, 556
TAO_HAS_MINIMUM_CORBA macro 1111
TAO_HAS_MINIMUM_POA macro 1112
tao_idl program 28, 39–40, 42–47, 51, 53–54, 96, 307
TAO_IDL_PREPROCESSOR environment variable 42, 44
TAO_IDL_PREPROCESSOR_ARGS environment variable 44
tao_ifr program 947, 949–950, 958–959

options 949–950

tao_imr program 1062
TAO_IOR_Parser class 561
TAO_Naming_Client class 663–664
TAO_Naming_Server class 664, 666
TAO_Notify_EventChannelFactory_i class 904
tao_nsadd utility 667, 669
tao_nsdel utility 667, 669
tao_nslist utility 667

1256 o c i w e b . c o m

T

TAO_ORB_Core class 462
TAO_ORB_DEBUG environment variable 480
TAO_ORBENDPOINT environment variable 462, 489, 518
TAO_ProtocolFactorySet class 552
TAO_Resource_Factory class 551
TAO_ROOT environment variable 26, 42, 44–45
TAO_THREAD_PER_CONNECTION_TIMEOUT macro 612
TAO_Transport_Cache_Manager class 558
TAO_USE_IMR environment variable 1039–1040, 1046, 1048
TAO_USE_LAZY_RESOURCE_USAGE_STRATEGY
macro 567, 586
target_is_a() operation 232
TCP_NODELAY option 530
TCP/IP

See transmission control protocol/internet protocol (TCP/IP)
TCPProtocolProperties 169, 172, 191–194
template option 46
templates build flag 1101
testing 1139

building tests 1139
running tests 1140

ACE tests 1140
ORB Services tests 1142
TAO tests 1141

The ACE Programmer’s Guide (APG) book 17, 370, 386, 398, 409, 434,
1158
the_POAManager() operation 30
the_priority attribute 160, 208
THR_BOUND 598, 611
THR_DAEMON 611
THR_DETACHED 598, 611
THR_JOINABLE 396–397
THR_NEW_LWP 396–397, 598, 611
THR_SUSPENDED 611
thread action objects 175
thread borrowing 162
thread pools 151, 153–154, 161–163, 165, 204

concurrency model 392–395, 411, 427
reactor 385, 392–395, 409–411, 424, 426

thread-per-connection concurrency model 335, 340, 385, 389–392, 599,
612, 706
ThreadPolicy policy 378, 381–382, 384

o c i w e b . c o m 1257

T

thread-pool concurrency model 385
ThreadPool property 843, 846, 853, 855, 908, 913
thread-pool reactor 163, 592
ThreadpoolId 153, 162–164
ThreadpoolLane 153
ThreadpoolLanes 164
ThreadPoolLanes property 843, 846, 853–854, 905, 913
ThreadpoolPolicy 163
threads

dynamic 162
lanes 161
static 162
thread specific storage (TSS) 16

threads build flag 1092, 1101
Threads Primer: A Guide to Multithreaded Programming book 358,
1158
time independent invocation (TII) 75
time service 14, 106, 183
TimeBase module 106, 183
Timeout property 838, 846
timeouts 173

real-time event service (RTES) 765

TimeT type 106
tk build flag 1093, 1101
tk_reactor build flag 573, 592
TLS

See transport layer security (TLS)
to_CORBA() operation 159, 186, 195, 197
to_native() operation 159, 186
to_network() operation 195, 197
to_string() operation 661
to_url() operation 661
tools

GNU Make 33–34
MakeProjectCreator (MPC) 31
Visual C++ 31, 33–34

tp option 592
trading service 14, 468, 482, 484–487, 508, 542–543, 635, 704

options
ORBTradingServicePort 468, 542–543, 643

TradingServicePort 542, 643

TradingServicePort environment variable 542, 643

1258 o c i w e b . c o m

U

training xxxiv, xxxvi
Advanced CORBA Programming Using TAO xxxv
CORBA Programming with C++ xxxiv
Introduction to CORBA xxxiv, 964
Object Oriented Design Patterns and Frameworks xxxv
Using the ACE C++ Framework xxxv

TRANSIENT exception 61, 65, 69, 71, 532, 601–602, 609, 613, 1012
transmission control protocol/internet protocol (TCP/IP) 9, 169, 319–
321, 324, 331, 352, 489, 510, 559, 583, 783, 988, 1147
transport 356

multiplexing strategies 415–416

transport layer security (TLS) 983
Trask, Bruce 1158
truncatable keyword

value types 271, 275

try_lock() operation 160, 179
type codes

wchar 563–564, 586–587

typed event channel 695

U

UDP
See user datagram protocol (UDP)

UIOP
See UNIX inter-ORB protocol (UIOP)

UIOP_Factory configuration 328–329, 583–584
UIPMC

See unreliable IP multicast protocol (UIPMC)
unbind() operation 312
University of California, Irvine

See DOC Group
UNIX 12, 33, 40, 43, 56, 328, 332, 459, 461, 489, 512–513, 519, 521, 530, 583, 1002,
1091

building ACE and TAO 1105
configuring source code 1107
customizing ACE and TAO builds 1111
set environment variables 1106
verifying build 1110
See also building

o c i w e b . c o m 1259

V

UNIX domain sockets 12
UNIX inter-ORB protocol (UIOP) 12, 169, 322, 328–330, 332, 334, 338, 482,
509, 511–512, 516, 521–522, 524, 532, 584

endpoint 521
examples 524

UIOP_Factory configuration 328–329, 583–584

UNIX Network Programming book 1160
unlock() operation 160–161, 179
unmarshaling 590
unregister_proxy_factory() operation 282, 289
unreliable IP multicast protocol (UIPMC) 322–323, 337, 339–340
untyped event channel 695
update_scheduling_segment() operation 177
use_locked_data_blocks() operation 554
USE_SERVANT_MANAGER policy 305
user datagram protocol (UDP) 12, 321–322, 333, 335, 337, 352, 522, 583, 773,
777–778, 780–781, 783
Using the ACE C++ Framework course xxxv
utilities

naming service 667
tao_nsadd 669
tao_nsdel 669
tao_nslist 667

tao_catior 248
tao_imr 1062

utility function 184

V

validate_connection() operation 301
value box 274–275
value types 259–275

abstract keyword 272
abstract value type 269, 272, 274
class 263
compliance 274
DefaultValueRefCountBase class 264
defining in IDL 261
eventtype keyword 261, 275
example 262

1260 o c i w e b . c o m

W

factory 261–263, 265–266, 268
implementing 262
private keyword 262, 264
public keyword 262, 264
regular value types 275
state members 259
truncatable keyword 271, 275
uses 260
value box 274–275
value type class 263
value type factory 265
ValueFactoryBase class 265
valuetype keyword 259, 261

ValueFactoryBase class 265
valuetype keyword

value types 259, 261

Vanderbilt University xix, xxxvii, 3
vc6 build type 34
versioned_so build flag 1092, 1101
Vinoski, Steve xxvii, xxxi, 153, 220, 1157, 1159
Visual C++ xxx, 31, 33–34, 1085, 1115

build libraries 1119
configure source code 1117
setting up environment 1117
verify build 1120

Vlissides, John 17, 1157
VxWorks iv, 479, 664, 1104, 1123–1125, 1129, 1139–1140, 1142

environment 1125
kernel and system configuration 1124
using ACE and TAO 1123, 1129

W

wait strategies 417–427, 620
wait-on-leader-follower 418, 422–424
wait-on-leader-follower-no-upcall 418, 424–427
wait-on-reactor 418, 422
wait-on-read 414–422

wait_for_completion parameter 364, 371–375
WaitForMultipleObjects() operation 352, 593

o c i w e b . c o m 1261

X

wait-on-leader-follower concurrency model 630–631
wait-on-leader-follower wait strategy 418, 422–424
wait-on-leader-follower-no-upcall wait strategY 424
wait-on-leader-follower-no-upcall wait strategy 418, 424–426
wait-on-reactor wait strategy 418, 422
wait-on-read wait strategy 414–421
Wang, Nanbor 1159
Washington University, St. Louis, Missouri xxxvii, 3

See also DOC Group
wchar type codes 563–564, 586–587
wfmo build flag 1093, 1102
wfmo reactor 370, 573, 592
Windows 25, 33, 453
winregistry build flag 1093, 1102
work_pending() operation 89, 364, 366–368, 370–371, 374
WrongPolicy exception 211
wxWindows 670

X

X windows toolkit 568–569
XML service configurator 434, 445–447

syntax 447

xt build flag 1093, 1102
XtAppContext 570

Z

ZIOP 322
zlib build flag 1102

1262 o c i w e b . c o m

Z

	Summary Of Changes In Patch 7
	Summary Of Changes In Patch 5
	Summary Of Changes In Patch 4
	Summary Of Changes In Patch 1
	Contents
	Foreword
	Preface
	What Is TAO?
	Licensing Terms
	About This Guide
	Highlights of the TAO 2.2a Release
	Structure of the Guide
	Conventions
	Coding Examples
	OMG Specification References
	Additional Documents
	Product Version Numbering Scheme
	Supported Platforms
	Customer Support
	Object Technology Training
	On-Site Classes

	Detailed Licensing Terms
	Introduction to TAO Programming
	Introduction
	1.1 Design Goals
	1.2 Development History
	1.3 Architecture of TAO
	1.3.1 Client
	1.3.2 CORBA Object
	1.3.3 Servant
	1.3.4 IDL Stubs and Skeletons
	1.3.5 Portable Object Adapter
	1.3.6 ORB Core
	1.3.7 ACE

	1.4 CORBA Compliance
	1.5 High Performance and Real-Time Support
	1.6 Relationship Between ACE and TAO

	Building ACE and TAO
	2.1 Introduction
	2.2 Where to Get ACE and TAO
	2.3 System Requirements
	2.4 Steps to Build ACE and TAO
	2.4.1 Building on Windows using Visual Studio
	2.4.2 Building on Linux using GNU C++

	Getting Started
	3.1 Introduction
	3.1.1 Road Map

	3.2 Setting Up Your Environment
	3.3 A Simple Example
	3.3.1 Create a Workspace
	3.3.2 Messenger Interface Definition Language (IDL) File
	3.3.2.1 Run the IDL Compiler

	3.3.3 Create the Messenger_i Implementation Class
	3.3.3.1 C++ Header for the Messenger_i Class
	3.3.3.2 C++ Implementation of the Messenger_i Class

	3.3.4 C++ Implementation of the MessengerServer
	3.3.5 C++ Implementation of the MessengerClient
	3.3.6 Create Build Files for the Example
	3.3.7 Build the MessengerServer and MessengerClient
	3.3.8 Running the Application

	3.4 Summary

	Features of TAO
	TAO IDL Compiler
	4.1 Introduction
	4.2 Executables
	4.3 Output Files Generated
	4.3.1 Tips for Working with the Output Files

	4.4 Using TAO IDL Compiler Options
	4.5 Preprocessing Options
	4.5.1 Environment Variables Affecting Preprocessing

	4.6 Output File Options
	4.7 Starter Implementation Files
	4.8 Additional Code Generation Options
	4.9 OpenDDS-related Options
	4.10 Operation Lookup Strategy Options
	4.11 Collocation Strategy Options
	4.12 Back End Options
	4.13 Suppression Options
	4.14 Options Used Internally by TAO
	4.15 Output and Reporting Options

	Error Handling
	5.1 Introduction
	5.2 CORBA System Exceptions
	5.3 CORBA User Exceptions
	5.4 TAO Minor Codes
	5.4.1 Location Codes
	5.4.2 Error Number Codes

	5.5 Summary

	CORBA Messaging
	6.1 Introduction
	6.2 AMI Callback Model
	6.2.1 Asynchronous sendc_ Operations
	6.2.2 The ExceptionHolder
	6.2.3 Reply Handler Operations
	6.2.4 Creating a Reply-Handler Class
	6.2.4.1 Generate Starter Code
	6.2.4.2 Non-Exception Reply-Handler Functions
	6.2.4.3 Exception Reply-Handler Functions
	6.2.4.4 Associating Replies with Requests

	6.2.5 The Processing of an AMI sendc_ Operation
	6.2.6 AMI Callback Example
	6.2.6.1 IDL Definitions
	6.2.6.2 Generating Starter Implementation Code
	6.2.6.3 The Messenger Servant Code
	6.2.6.4 The Reply-Handler Class Definition
	6.2.6.5 The Client Code
	6.2.6.6 Building Applications that use AMI

	6.2.7 Controlling the Delivery of AMI-based Requests

	6.3 Quality of Service Policies
	6.3.1 Policy Management
	6.3.1.1 Creating Policies
	6.3.1.2 Client Side Policy Management
	6.3.1.3 Server Side Policy Management
	6.3.1.4 Destroying Policies

	6.3.2 Request and Reply Timeouts
	6.3.3 Connection Timeouts
	6.3.4 Reliable Oneway calls using the SyncScope Policy
	6.3.5 Buffered Oneway and Asynchronous Requests
	6.3.5.1 Building Applications that use Messaging QoS

	6.4 Bi-Directional GIOP
	6.4.1 Bi-Directional GIOP Example
	6.4.2 Building Applications that use Bi-Directional GIOP

	6.5 Endpoint Policy
	6.5.1 Using the Endpoint Policy
	6.5.2 Limitations

	6.6 Specifying Differentiated Services with TAO
	6.6.1 Using the Network Priority Policies

	Asynchronous Method Handling
	7.1 Introduction
	7.1.1 When AMH is Useful
	7.1.2 When AMH is not Useful

	7.2 Participants in an AMH Servant
	7.2.1 Simple Example

	7.3 Generating AMH Related Code
	7.4 An AMH Example Program
	7.4.1 The Generated Stub Classes
	7.4.2 The AMH Servant
	7.4.3 AMH and Oneway Invocations
	7.4.4 Throwing Exceptions
	7.4.5 AMH And The Server Main
	7.4.6 AMH and the Client

	7.5 AMH and Advanced CORBA Features
	7.5.1 Portable Interceptors
	7.5.2 Servant Locators
	7.5.3 Invocation Related CORBA::Current Objects
	7.5.4 Reference Counted Servants
	7.5.5 Collocation

	7.6 Combining AMH with AMI
	7.6.1 AMH/AMI Example
	7.6.1.1 AMI Callback Handler
	7.6.1.2 AMH Servant

	Real-Time CORBA
	8.1 Introduction
	8.1.1 Road Map

	8.2 Real-Time CORBA Overview
	8.3 Real-Time CORBA Architecture
	8.3.1 Real-Time CORBA Modules
	8.3.2 The Real-Time ORB
	8.3.3 The Real-Time POA
	8.3.4 Real-Time Priority Mapping
	8.3.5 The Real-Time Current
	8.3.6 The Real-Time Mutex
	8.3.7 Thread Pools
	8.3.7.1 Interface Specifications
	8.3.7.2 Creating Thread Pools
	8.3.7.3 Thread Pool Lane Listen Endpoints

	8.3.8 End-to-End Priority Propagation
	8.3.9 Explicit Binding
	8.3.10 Priority-banded Connections
	8.3.11 Private Connections
	8.3.12 Protocol Properties
	8.3.13 Other Real-Time CORBA Features

	8.4 Dynamic Scheduling
	8.4.1 Distributable Threads
	8.4.2 Real-Time Scheduling Thread Action
	8.4.3 Real-Time Scheduling Current
	8.4.4 Real-Time Scheduling Resource Manager
	8.4.5 Real-Time Scheduling Scheduler
	8.4.5.1 TAO’s RTScheduleManager
	8.4.5.2 Scheduling Disciplines
	8.4.5.3 Common RTScheduling::Scheduler Interface
	8.4.5.4 Fixed Priority Scheduling
	8.4.5.5 Earliest Deadline First Scheduling
	8.4.5.6 Least Laxity First Scheduling
	8.4.5.7 Maximize Accrued Utility Scheduling
	8.4.5.8 Most Important First Scheduling

	8.5 TAO’s Implementation of Real-Time CORBA
	8.5.1 Priority Mapping In TAO
	8.5.1.1 Continuous Priority Mapping
	8.5.1.2 Direct Priority Mapping
	8.5.1.3 Linear Priority Mapping
	8.5.1.4 Using TAO’s Priority Mappings

	8.5.2 Enabling Network Priority in TAO
	8.5.2.1 Enabling Network Priority in a Client
	8.5.2.2 Enabling Network Priority in a Server
	8.5.2.3 Network Priority Mappings
	8.5.2.4 Using TAO’s Network Priority Mappings
	8.5.2.5 Implementing a Custom Network Priority Mapping

	8.5.3 Using TAO’s Named Mutexes
	8.5.4 Dynamic Scheduling and TAO
	8.5.5 Enabling RT CORBA Support in TAO
	8.5.6 Building Applications that use RT CORBA
	8.5.7 Configuring RT CORBA at Run Time
	8.5.7.1 RT ORB Loader
	8.5.7.2 RT Collocation Resolver

	8.6 Client-Propagated Priority Model
	8.6.1 Specifying the Client-Propagated Priority Model in the Server
	8.6.2 Using the Client-Propagated Priority Model in the Client

	8.7 Server-Declared Priority Model
	8.7.1 Specifying the Server-Declared Priority Model in the Server
	8.7.2 Using the Server-Declared Priority Model in the Client

	8.8 Using the RTScheduling::Current
	8.8.1 Spawning New Distributable Threads
	8.8.2 Managing Scheduling Segments

	8.9 Real-Time CORBA Examples

	Portable Interceptors
	9.1 Introduction
	9.2 Using TAO Request Interceptors
	9.2.1 The Interceptor Interface
	9.2.2 Client Request Interceptors
	9.2.2.1 Client Interception Points

	9.2.3 Server Request Interceptors
	9.2.3.1 Server Interception Points

	9.2.4 Request Parameters
	9.2.5 Registering Interceptors
	9.2.6 Example: A Simple Authentication Interceptor
	9.2.6.1 Messenger Interface
	9.2.6.2 Messenger Implementation Class
	9.2.6.3 Defining the Client Request Interceptor
	9.2.6.4 Implementing the Client Request Interceptor
	9.2.6.5 Developing the Client and Installing the Interceptor
	9.2.6.6 Defining the Server Request Interceptor
	9.2.6.7 Implementing the Server Request Interceptor
	9.2.6.8 Developing the Server and Installing the Interceptor

	9.2.7 Running the Application
	9.2.8 Program Output

	9.3 Marshaling and the Service Context
	9.3.1 The Codec
	9.3.2 Example: Using the Codec
	9.3.2.1 The Client
	9.3.2.2 The Client Interceptor
	9.3.2.3 The Server
	9.3.2.4 The Server Interceptor

	9.3.3 Program Output

	9.4 IOR Interceptors
	9.4.1 Defining and Implementing the IOR Interceptor
	9.4.2 Registering the IOR Interceptor
	9.4.3 Extracting Tagged Information
	9.4.4 Example: “ServerRequiresAuth” Tag in IOR
	9.4.4.1 Developing the IOR Interceptor
	9.4.4.2 Installing the IOR Interceptor
	9.4.4.3 Decoding the Tag in the Client

	9.4.5 Program Output

	9.5 The PortableInterceptor::Current
	9.5.1 Using PICurrent
	9.5.2 When to use PICurrent
	9.5.3 Example: Stopping Client-side Recursion
	9.5.4 Program Output

	9.6 Interceptor Policy
	9.6.1 Processing Mode Policy

	9.7 Summary

	Value Types
	10.1 Introduction
	10.2 Uses for Value Types
	10.3 Defining Value Types in IDL
	10.4 A Value Type Example
	10.4.1 Implementing Value Types
	10.4.1.1 The valuetype IDL
	10.4.1.2 Implementing the Value Type Class
	10.4.1.3 Implementing the Value Type Factory

	10.4.2 Using Value Types

	10.5 An Example using Value Types as Events
	10.5.1 Event Example IDL
	10.5.2 Event Example Supplier
	10.5.3 Event Example Consumer

	10.6 Value Types and Inheritance
	10.6.1 Regular Value Types Inheritance
	10.6.1.1 Truncatable

	10.6.2 Abstract Value Type Inheritance
	10.6.3 Interface Inheritance
	10.6.4 Abstract Interface Inheritance

	10.7 Value Boxes
	10.8 TAO Compliance

	Smart Proxies
	11.1 Introduction
	11.2 Smart Proxy Use Cases
	11.3 TAO’s Smart Proxy Framework
	11.3.1 The Proxy Factory Adapter
	11.3.2 The Default Proxy Factory
	11.3.3 The Smart Proxy Base Classes
	11.3.3.1 The overridden member functions
	11.3.3.2 The get_proxy() function

	11.3.4 An Overview of the Smart Proxy Creation Process
	11.3.4.1 The proxy factory and the proxy-factory adapter
	11.3.4.2 The _unchecked_narrow() function

	11.4 Writing and Using Smart Proxy Classes
	11.4.1 The TAO IDL Compiler -Gsp Option
	11.4.2 The Smart Proxy Class
	11.4.3 The Smart Proxy Factory Class
	11.4.4 Instantiating a Smart Proxy Factory Object

	11.5 Linking Your Application
	11.6 A Smart Proxy Example
	11.6.1 The Messenger Interface
	11.6.2 Implementation of the Messenger Interface
	11.6.3 The Logger Interface
	11.6.4 Implementation of the Logger Interface
	11.6.5 The Smart Proxy Factory
	11.6.6 The Smart Proxy Class
	11.6.7 The MessengerClient
	11.6.8 The MessengerServer
	11.6.9 The LoggerServer
	11.6.10 Running the Programs
	11.6.11 The Output

	Local Interfaces
	12.1 Introduction
	12.2 C++ Mapping for LocalObject
	12.3 Changing Existing Interfaces to Local Interfaces
	12.4 Example: ServantLocator
	12.4.1 The Messenger Locator Implementation
	12.4.2 The Server Implementation
	12.4.3 An Example Using a Local Object
	12.4.4 Reference Counting and Local Objects

	IOR Table
	13.1 Introduction
	13.2 IOR Table
	13.3 Locator
	13.4 IOR Refresh

	Using Pluggable Protocols
	14.1 Introduction
	14.2 Protocol Introduction
	14.2.1 Messaging
	14.2.2 Marshaling
	14.2.3 Transport

	14.3 Protocols Provided with TAO
	14.4 Building the Protocol Libraries
	14.5 Loading Pluggable Protocols
	14.6 IIOP
	14.6.1 Loading and Declaring the Protocol
	14.6.2 Address Definition
	14.6.3 IIOP Options
	14.6.3.1 portspan
	14.6.3.2 hostname_in_ior
	14.6.3.3 reuse_addr

	14.7 UIOP
	14.7.1 Loading and Declaring the Protocol
	14.7.2 Address Definition
	14.7.3 Guidelines

	14.8 SHMIOP
	14.8.1 Loading the Protocol
	14.8.2 Configuring the SHMIOP Factory
	14.8.3 Address Definition

	14.9 DIOP
	14.9.1 Loading the Protocol
	14.9.2 Address Definition
	14.9.3 Notes and Restrictions

	14.10 SSLIOP
	14.10.1 Loading the Protocol
	14.10.2 Address Definition
	14.10.3 Hostname in IOR Option
	14.10.4 Portspan Option
	14.10.5 Reuse Address Option

	14.11 MIOP/UIPMC
	14.11.1 Loading the Protocol
	14.11.2 Address Definition
	14.11.3 Notes and Restrictions

	14.12 HTIOP
	14.12.1 Loading the Protocol
	14.12.2 Address Definition
	14.12.3 HTIOP Options
	14.12.3.1 hostname_in_ior

	14.13 SCIOP
	14.13.1 SCTP Association
	14.13.2 Loading the Protocol
	14.13.3 Address Definition
	14.13.3.1 hostname_in_ior
	14.13.3.2 portspan

	14.14 ZIOP
	14.14.1 ZIOP Policies
	14.14.1.1 Compression Enabling Policy
	14.14.1.2 Compressor Level List Policy
	14.14.1.3 Compression Low Value Policy
	14.14.1.4 Compression Min Ratio Policy

	14.15 COIOP
	14.16 Combining Protocols
	14.17 TAO and IPv6
	14.17.1 Building TAO with IPv6 Support
	14.17.2 Using IPv6 with TAO

	14.18 Developing Pluggable Protocols
	14.18.1 Background
	14.18.2 Pluggable Protocol Requirements
	14.18.2.1 Transport Behavior
	14.18.2.2 Identifier Tags

	14.18.3 Details of the Pluggable-Protocol Framework

	Multithreading with TAO
	15.1 Introduction
	15.1.1 Road Map

	15.2 Overview of Client/Server Roles in CORBA
	15.2.1 The Client’s Role: Overview of Request Invocation
	15.2.2 The Server’s Role: Overview of Request Processing

	15.3 Multithreading in the Server
	15.3.1 Event Handling
	15.3.1.1 CORBA::ORB::run()
	15.3.1.2 CORBA::ORB::perform_work()

	15.3.2 Interleaving ORB Events with Events from Other Sources
	15.3.3 Shutdown and Destruction
	15.3.3.1 CORBA::ORB::shutdown()
	15.3.3.2 CORBA::ORB::destroy()
	15.3.3.3 Gracefully Shutting Down a TAO Server

	15.3.4 Request Processing
	15.3.5 The POA’s Threading Models
	15.3.5.1 ORB-Controlled Model
	15.3.5.2 Single Thread Model
	15.3.5.3 Main Thread Model
	15.3.5.4 Configuring a POA’s Threading Model

	15.3.6 TAO’s ORB Threading Models
	15.3.6.1 Reactive Concurrency Model
	15.3.6.2 Thread-per-Connection Concurrency Model
	15.3.6.3 Thread-pool Concurrency Model

	15.3.7 Dynamic Thread Pool Strategy
	15.3.7.1 Dynamic Thread Pool Settings
	15.3.7.2 Initializing a Dynamic Thread Pool via API
	15.3.7.3 Initializing a Dynamic Thread Pool via Configuration

	15.3.8 Applying Dynamic Thread Pools to an ORB
	15.3.9 Custom Servant Dispatching
	15.3.10 Dynamic Thread Pooling in POAs
	15.3.10.1 Dynamic Thread Pool POA Strategy
	15.3.10.2 MPC Projects Configured for POA Dynamic Thread Pools

	15.3.11 Configuring TAO’s Reactor
	15.3.11.1 Single-threaded Select Reactor
	15.3.11.2 Multithreaded Select Reactor
	15.3.11.3 Thread-Pool Reactor

	15.3.12 Flushing Replies to the Client

	15.4 Multithreading in the Client
	15.4.1 Establishing a Connection to the Server
	15.4.2 Multiplexing Requests on a Connection
	15.4.3 Flushing Requests to the Server
	15.4.4 Waiting for a Reply from the Server
	15.4.4.1 Wait-on-Read Wait Strategy
	15.4.4.2 Wait-on-Reactor Wait Strategy
	15.4.4.3 Wait-on-Leader-Follower Wait Strategy
	15.4.4.4 Wait-on-Leader-Follower-No-Upcall Wait Strategy

	15.4.5 Optimizing Performance of Collocated Objects

	15.5 Summary

	Run-time Configuration of TAO
	Configuring TAO Clients and Servers
	16.1 Introduction
	16.1.1 Road Map

	16.2 Patterns and Components for Configuring TAO Clients and Servers
	16.2.1 Factories
	16.2.2 Strategies
	16.2.3 Resources
	16.2.4 TAO’s Default Strategy and Resource Factories
	16.2.5 Specializing TAO’s Factories

	16.3 The ACE Service Configurator
	16.3.1 Using the static Directive
	16.3.2 Using the dynamic Directive

	16.4 Service Configurator Control Options
	16.5 The ACE Service Configurator Framework
	16.5.1 Loading Service Objects
	16.5.2 Opening and Closing the Service Configurator
	16.5.3 Commanding the Service Configurator
	16.5.4 Additional Directives

	16.6 XML Service Configurator
	16.6.1 Service Configurator DTD
	16.6.2 XML Service Configurator Syntax
	16.6.2.1 Dynamic
	16.6.2.2 Static
	16.6.2.3 Remove
	16.6.2.4 Suspend
	16.6.2.5 Resume

	16.7 Service Objects
	16.7.1 Interface Definition
	16.7.2 Service Initialization and Finalization
	16.7.3 Service Creation
	16.7.3.1 Dynamic Service Example
	16.7.3.2 Static Service Example

	16.7.4 Service Information
	16.7.5 Service State
	16.7.6 Obtaining Services

	16.8 ACE Service Manager
	16.9 Summary

	ORB Initialization Options
	17.1 Introduction
	17.2 Interface Definition
	17.3 Controlling Service Configurator Behavior
	17.4 Controlling Debugging Information
	17.5 Optimizing Request Processing
	17.6 Connection Management and Protocol Selection
	17.7 Socket Configuration Options
	17.8 Service Location Options
	17.9 IPv6-Related Options
	17.10 Multiple Invocation Retry Options
	17.11 Implementation Repository Options
	17.12 Miscellaneous Options
	17.13 Option Descriptions
	17.13.1 ORBAcceptErrorDelay seconds
	17.13.2 ORBAMICollocation enabled
	17.13.3 ORBCDRTradeoff maxsize
	17.13.4 ORBCollocation is_allowed
	17.13.5 ORBCollocationStrategy strategy
	17.13.6 ORBConnectIPV6Only enabled
	17.13.7 ORBDaemon
	17.13.8 ORBDebug
	17.13.9 ORBDebugLevel level
	17.13.10 ORBDefaultInitRef URL_prefix
	17.13.11 ORBDisableRTCollocation boolean
	17.13.12 ORBDontRoute enabled
	17.13.13 ORBDottedDecimalAddresses enabled
	17.13.14 ORBDynamicThreadPoolName name
	17.13.15 ORBEndpoint endpoint(s)
	17.13.16 ORBEnforcePreferredInterfaces enforce
	17.13.17 ORBForwardDelay msec
	17.13.18 ORBForwardInvocationOnObjectNotExist enabled
	17.13.19 ORBForwardOnceOnObjectNotExist enabled
	17.13.20 ORBForwardOnceOnCommFailure enabled
	17.13.21 ORBForwardOnceOnTransient enabled
	17.13.22 ORBForwardOnceOnInvObjref enabled
	17.13.23 ORBForwardOnCommFailureLimit limit
	17.13.24 ORBForwardOnInvObjrefLimit limit
	17.13.25 ORBForwardOnObjectNotExistLimit limit
	17.13.26 ORBForwardOnReplyClosedLimit limit
	17.13.27 ORBForwardOnTransientLimit limit
	17.13.28 ORBFTSendFullGroupTC enabled
	17.13.29 ORBGestalt context_name
	17.13.30 ORBId name
	17.13.31 ORBIgnoreDefaultSvcConfFile enabled
	17.13.32 ORBIIOPClientPortBase base
	17.13.33 ORBIIOPClientPortSpan span
	17.13.34 ORBIMREndpointsInIOR enabled
	17.13.35 ORBImplRepoServicePort port
	17.13.36 ORBInitRef ObjectID=ObjectURL
	17.13.37 ORBIPHopLimit hops
	17.13.38 ORBIPMulticastLoop enabled
	17.13.39 ORBKeepAlive enabled
	17.13.40 ORBLaneEndpoint lane endpoint(s)
	17.13.41 ORBLaneListenEndpoints lane endpoint(s)
	17.13.42 ORBLingerTimeout timeout
	17.13.43 ORBListenEndpoints endpoint(s)
	17.13.44 ORBLogFile file
	17.13.45 ORBMaxMessageSize maxsize
	17.13.46 ORBMulticastDiscoveryEndpoint endpoint
	17.13.47 ORBNameServicePort port
	17.13.48 ORBNegotiateCodesets enabled
	17.13.49 ORBNodelay enabled
	17.13.50 ORBNoProprietaryActivation
	17.13.51 ORBNoServerSideNameLookups enabled
	17.13.52 ORBObjRefStyle style
	17.13.53 ORBParallelConnectDelay msec
	17.13.54 ORBPreferIPV6Interfaces enabled
	17.13.55 ORBPreferredInterfaces list
	17.13.56 ORBRcvSock buffersize
	17.13.57 ORBServerId server_id
	17.13.58 ORBServiceConfigLoggerKey logger_key
	17.13.59 ORBSingleReadOptimization enabled
	17.13.60 ORBSkipServiceConfigOpen
	17.13.61 ORBSndSock buffersize
	17.13.62 ORBStdProfileComponents enabled
	17.13.63 ORBSvcConf config_file_name
	17.13.64 ORBSvcConfDirective directive
	17.13.65 ORBTradingServicePort port
	17.13.66 ORBUseIMR enabled
	17.13.67 ORBUseIPV6LinkLocal enabled
	17.13.68 ORBUseLocalMemoryPool enabled
	17.13.69 ORBUseParallelConnects enabled
	17.13.70 ORBUseSharedProfile enabled
	17.13.71 ORBVerboseLogging level

	Resource Factory
	18.1 Introduction
	18.2 Interface Definition
	18.2.1 Reactor Management
	18.2.2 Allocators for CDR Conversion
	18.2.3 Message Flushing Strategies
	18.2.4 Shutdown Strategies
	18.2.5 Connection Cache Management Strategies
	18.2.6 Protocol Factories
	18.2.7 Custom IOR Parsers
	18.2.8 Code Set Identifiers and Translators
	18.2.9 Allocators for AMH and AMI Response Handling
	18.2.10 CORBA Object Synchronization
	18.2.11 Resource Usage Strategy
	18.2.12 Refresh IOR Table

	18.3 Resource Factory for Qt GUI Toolkit
	18.4 Resource Factory for X Windowing Toolkit
	18.5 Advanced Resource Factory
	18.6 Resource Factory Options
	18.6.1 ORBCharCodesetTranslator factory
	18.6.2 ORBConnectionCacheLock lock_type
	18.6.3 ORBConnectionCacheMax limit
	18.6.4 ORBConnectionCachePurgePercentage percent
	18.6.5 ORBCorbaObjectLock lock_type
	18.6.6 ORBDropRepliesDuringShutdown enabled
	18.6.7 ORBFlushingStrategy strategy
	18.6.8 ORBIORParser parser_name
	18.6.9 ORBMuxedConnectionMax limit
	18.6.10 ORBNativeCharCodeset id
	18.6.11 ORBNativeWCharCodeset id
	18.6.12 ORBOutputCDRAllocator allocator
	18.6.13 ORBProtocolFactory factory_name
	18.6.14 ORBReactorMaskSignals state
	18.6.15 ORBRefreshIORTable enable
	18.6.16 ORBResourceUsage usage_type
	18.6.17 ORBWCharCodesetTranslator factory
	18.6.18 ORBZeroCopyWrite

	18.7 Advanced Resource Factory Options
	18.7.1 ORBAMHResponseHandlerAllocator type
	18.7.2 ORBAMIResponseHandlerAllocator type
	18.7.3 ORBConnectionPurgingStrategy strategy
	18.7.4 ORBInputCDRAllocator lock_type
	18.7.5 ORBReactorThreadQueue type
	18.7.6 ORBReactorType reactor_type

	Server Strategy Factory
	19.1 Introduction
	19.2 Interface Definition
	19.2.1 Factory Initialization
	19.2.2 Server Concurrency
	19.2.3 Demultiplexing Strategies
	19.2.3.1 Linear Search
	19.2.3.2 Dynamic Hash
	19.2.3.3 Active Demux

	19.2.4 POA Map Options
	19.2.5 Active Object Map Parameters

	19.3 Default Server Strategy Factory Options
	19.3.1 ORBActiveHintInIDs enabled
	19.3.2 ORBActiveHintInPOANames enabled
	19.3.3 ORBActiveObjectMapSize map_size
	19.3.4 ORBAllowReactivationOfSystemIDs enabled
	19.3.5 ORBConcurrency strategy
	19.3.6 ORBPersistentIDPolicyDemuxStrategy strategy
	19.3.7 ORBPOAMapSize map_size
	19.3.8 ORBSystemIDPolicyDemuxStrategy strategy
	19.3.9 ORBThreadFlags flags
	19.3.10 ORBThreadPerConnectionTimeout time
	19.3.11 ORBTransientIDPolicyDemuxStrategy strategy
	19.3.12 ORBUniqueIDPolicyReverseDemuxStrategy strategy
	19.3.13 ORBUserIDPolicyDemuxStrategy strategy

	Client Strategy Factory
	20.1 Introduction
	20.2 Interface Definition
	20.2.1 Profile Locking
	20.2.2 Transport Multiplexing Strategies
	20.2.3 Wait Strategies
	20.2.4 Connect Strategies

	20.3 Client Strategy Factory Options
	20.3.1 ORBConnectionHandlerCleanup enabled
	20.3.2 ORBConnectStrategy connect_type
	20.3.3 ORBDefaultSyncStrategy type
	20.3.4 ORBProfileLock lock_type
	20.3.5 ORBReplyDispatcherTableSize size
	20.3.6 ORBTransportMuxStrategy strategy
	20.3.7 ORBTransportMuxStrategyLock lock_type
	20.3.8 ORBWaitStrategy handler_type

	TAO Services
	TAO Services Overview
	21.1 Introduction
	21.2 Customizing Access to the Services
	21.3 TAO’s ORB Services Libraries
	21.4 Locating Service Objects
	21.4.1 Multicast Service Discovery

	Naming Service
	22.1 Introduction
	22.1.1 Road Map

	22.2 Resolving the Naming Service
	22.3 Naming Service Example
	22.3.1 Source Code Listings for the Example
	22.3.1.1 Server C++ Source Code File
	22.3.1.2 Client C++ Source Code File

	22.3.2 Building the Example
	22.3.3 Running the Example
	22.3.3.1 Starting the Naming Service with Multicasting
	22.3.3.2 Starting the Naming Service without Multicasting

	22.4 Object URLs
	22.4.1 corbaloc URL
	22.4.1.1 corbaloc Example Code
	22.4.1.2 Running the corbaloc example

	22.4.2 corbaname
	22.4.2.1 corbaname Example Code
	22.4.2.2 Running the corbaname example

	22.5 The NamingContextExt Interface
	22.5.1 NamingContextExt Operations
	22.5.2 Name Conversion Examples

	22.6 TAO-Specific Naming Service Classes
	22.6.1 Using the TAO_Naming_Client Class
	22.6.2 Using the TAO_Naming_Server Class
	22.6.3 Example using TAO_Naming Classes
	22.6.3.1 Source Code
	22.6.3.2 Running the Example

	22.7 Naming Service Utilities
	22.7.1 tao_nslist
	22.7.2 tao_nsadd
	22.7.3 tao_nsdel
	22.7.4 NamingViewer utility

	22.8 Naming Service Command Line Options
	22.8.1 Using the Naming Service Persistence Options
	22.8.2 Example using the Naming Service Persistence Options

	22.9 Fault Tolerant Naming Service
	22.9.1 Command line options
	22.9.2 Persistence
	22.9.3 Starting the FT Naming Service
	22.9.4 Start Client/Server
	22.9.5 Creating and Managing Object Groups
	22.9.6 Limitations
	22.9.7 Group Management Utility
	22.9.7.1 group_create
	22.9.7.2 group_remove
	22.9.7.3 group_bind
	22.9.7.4 group_unbind
	22.9.7.5 group_list
	22.9.7.6 member_add
	22.9.7.7 member_remove
	22.9.7.8 member_list
	22.9.7.9 member_show
	22.9.7.10 Troubleshooting

	22.10 Using the NT Naming Service

	Event Service
	23.1 Introduction
	23.2 Overview of the Event Service
	23.3 TAO’s Event Channel Implementation
	23.4 How to Use the Event Service
	23.4.1 A Basic Example
	23.4.1.1 Starting the tao_cosevent Server
	23.4.1.2 Creating and Initializing a Supplier and Pushing Events
	23.4.1.3 Implementing the Push Supplier Interface
	23.4.1.4 Implementing the Push Consumer Interface
	23.4.1.5 Creating the Consumer and Connecting to the Channel

	23.4.2 Creating and Configuring Event Channel Servants
	23.4.2.1 Supplier/EC Collocation Example
	23.4.2.2 Setting Attributes of the Event Channel

	23.4.3 Pull Model Support
	23.4.4 Typed Event Channel Example
	23.4.4.1 The Messenger Interface
	23.4.4.2 Creating the Typed Event Channel
	23.4.4.3 Implementing the Typed Supplier
	23.4.4.4 Implementing the Typed Consumer
	23.4.4.5 Connecting the Typed Consumer
	23.4.4.6 Mixing Types in a Typed Event Channel

	23.5 tao_cosevent Command Line Options
	23.6 Event Channel Resource Factory
	23.6.1 CEC_Factory Option Overview
	23.6.1.1 Dispatching
	23.6.1.2 Locking Options
	23.6.1.3 Consumer and Supplier Control Options
	23.6.1.4 Proxy Collection Options
	23.6.1.5 Miscellaneous Options

	23.6.2 Event Channel Resource Factory Options
	23.6.2.1 CECConsumerControl control_policy
	23.6.2.2 CECConsumerControlPeriod period
	23.6.2.3 CECConsumerControlTimeout timeout
	23.6.2.4 CECConsumerOperationTimeout timeout
	23.6.2.5 CECDispatching dispatching_strategy
	23.6.2.6 CECDispatchingThreads nthreads
	23.6.2.7 CECProxyConsumerCollection flags
	23.6.2.8 CECProxyConsumerLock lock_strategy
	23.6.2.9 CECProxyDisconnectRetries n
	23.6.2.10 CECProxySupplierCollection flags
	23.6.2.11 CECProxySupplierLock lock_strategy
	23.6.2.12 CECReactivePullingPeriod period
	23.6.2.13 CECSupplierControl control_policy
	23.6.2.14 CECSupplierControlPeriod period
	23.6.2.15 CECSupplierControlTimeout timeout
	23.6.2.16 CECSupplierOperationTimeout timeout
	23.6.2.17 CECUseORBId orb-id

	Real-Time Event Service
	24.1 Introduction
	24.2 Overview of the TAO Real-Time Event Service
	24.2.1 Consumer Proxies
	24.2.2 Priority Timers
	24.2.3 Subscription and Filtering
	24.2.4 Event Correlation
	24.2.5 Dispatching Module
	24.2.6 Supplier Proxies
	24.2.7 Real-Time Event Service Libraries

	24.3 Using the TAO Real-Time Event Service
	24.3.1 A Basic Example
	24.3.1.1 Starting the tao_rtevent Process
	24.3.1.2 The Supplier
	24.3.1.3 Implementing the Push Consumer Interface
	24.3.1.4 Creating the Consumer and Connecting to the Channel

	24.3.2 Managing Connections
	24.3.2.1 Connecting and Disconnecting Consumers
	24.3.2.2 Connecting and Disconnecting Suppliers
	24.3.2.3 Reconnecting Consumers and Suppliers
	24.3.2.4 Suspending and Resuming Consumer Connections

	24.3.3 The Event Structure
	24.3.3.1 The EventHeader Structure
	24.3.3.2 The EventData Structure
	24.3.3.3 Customizing the Event Structure

	24.3.4 Filtering and Correlation
	24.3.4.1 Specifying and Constructing Filters
	24.3.4.2 Filtering By Event Type
	24.3.4.3 Filtering By Source ID
	24.3.4.4 Filtering By Source ID and Event Type Combinations
	24.3.4.5 Bit-Mask Filters
	24.3.4.6 Disjunction Groups
	24.3.4.7 Conjunction Groups
	24.3.4.8 Logical AND Groups
	24.3.4.9 Negating the Logic of Filters
	24.3.4.10 Nesting Groups
	24.3.4.11 Quick Rejection Filters Using Bit Masks
	24.3.4.12 Null Filters
	24.3.4.13 Constructing Filters By Hand

	24.3.5 Timeouts
	24.3.5.1 Interval Timeouts
	24.3.5.2 Deadline Timeouts

	24.3.6 Creating and Configuring Event Channel Servants
	24.3.6.1 Local Event Channel Example
	24.3.6.2 Setting Attributes of the Event Channel

	24.3.7 Observers
	24.3.8 Federating Event Channels
	24.3.8.1 Using the CORBA Gateway
	24.3.8.2 Federating Event Channels with UDP
	24.3.8.3 Federating Event Channels with IP Multicast
	24.3.8.4 Choosing The Appropriate Federation Mechanism

	24.4 tao_rtevent Command Line Options
	24.5 Event Channel Resource Factory
	24.5.1 EC_Factory Option Overview
	24.5.1.1 Dispatching
	24.5.1.2 Feature Control
	24.5.1.3 Locking Options
	24.5.1.4 Consumer and Supplier Control Options
	24.5.1.5 Proxy Collection Options

	24.5.2 Event Channel Resource Factory Options
	24.5.2.1 ECConsumerControl control_policy
	24.5.2.2 ECConsumerControlPeriod period
	24.5.2.3 ECConsumerControlTimeout timeout
	24.5.2.4 ECConsumerValidateConnection enabled
	24.5.2.5 ECDispatching dispatching_strategy
	24.5.2.6 ECDispatchingThreads nthreads
	24.5.2.7 ECDispatchingThreadFlags thread_flags:priority
	24.5.2.8 ECFiltering filter_strategy
	24.5.2.9 ECObserver observer_strategy
	24.5.2.10 ECProxyConsumerLock lock_strategy
	24.5.2.11 ECProxyPushConsumerCollection flags
	24.5.2.12 ECProxyPushSupplierCollection flags
	24.5.2.13 ECProxySupplierLock lock_strategy
	24.5.2.14 ECQueueFullServiceObject service_name
	24.5.2.15 ECScheduling scheduling_strategy
	24.5.2.16 ECSupplierControl control_policy
	24.5.2.17 ECSupplierControlPeriod period
	24.5.2.18 ECSupplierControlTimeout timeout
	24.5.2.19 ECSupplierFiltering supplier_filter_strategy
	24.5.2.20 ECTimeout timeout_dispatching_strategy
	24.5.2.21 ECTPCDebug
	24.5.2.22 ECUseORBId orb-id

	24.6 The IIOP Gateway Factory
	24.6.1 Option Overview
	24.6.2 IIOP Gateway Factory Options
	24.6.2.1 ECGIIOPConsumerECControl control_policy
	24.6.2.2 ECGIIOPConsumerECControlPeriod period
	24.6.2.3 ECGIIOPConsumerECControlTimeout timeout
	24.6.2.4 ECGIIOPUseConsumerProxyMap flag
	24.6.2.5 ECGIIOPUseORBId orbid
	24.6.2.6 ECGIIOPUseTTL flag

	Notification Service
	25.1 Introduction
	25.2 Notification Service Architecture
	25.3 Notification Service Features
	25.3.1 The Structured Event Type
	25.3.1.1 The Structured Event Header
	25.3.1.2 The Structured Event Body

	25.3.2 EventBatch Data Type
	25.3.3 Event Filtering
	25.3.3.1 Using Event Filtering
	25.3.3.2 The Inter-Group Filter Operator

	25.3.4 Offers and Subscriptions
	25.3.4.1 Offer Changes
	25.3.4.2 Subscription Changes
	25.3.4.3 Obtaining Offered and Subscribed Event Types

	25.3.5 QoS Support
	25.3.5.1 Supported QoS Properties
	25.3.5.2 Notification QoS Properties
	25.3.5.3 Notification Administration Properties
	25.3.5.4 TAO-Specific RT CORBA Properties
	25.3.5.5 Other TAO-Specific Properties
	25.3.5.6 Accessing and Modifying QoS Properties
	25.3.5.7 Negotiating QoS and Conflict Resolution
	25.3.5.8 QoS-Related Exceptions

	25.3.6 Connection Reliability
	25.3.6.1 The Reconnection Registry

	25.3.7 Event Reliability
	25.3.7.1 The Impact of Using Event Reliability

	25.3.8 Real-Time CORBA Support
	25.3.8.1 Enabling RT CORBA Support
	25.3.8.2 Thread Pool Property
	25.3.8.3 Thread Pool Lanes Property

	25.3.9 Monitoring and Control of the Notification Service
	25.3.9.1 TAO Monitoring Types
	25.3.9.2 TAO Notification Monitoring and Control Interface
	25.3.9.3 Supported Statistics
	25.3.9.4 Using the Extended Interfaces to Name Entities
	25.3.9.5 Initializing and Connecting to the Monitoring Interface

	25.4 Using the Notification Service
	25.4.1 Building Notification Service Applications
	25.4.2 A Basic Example
	25.4.2.1 Starting the tao_cosnotification Server
	25.4.2.2 Implementing the Structured Push Supplier Interface
	25.4.2.3 Developing the Structured Event Supplier
	25.4.2.4 Implementing the Structured Push Consumer Interface
	25.4.2.5 Developing the Structured Event Consumer

	25.4.3 Managing Connections
	25.4.3.1 Connecting and Disconnecting Consumers
	25.4.3.2 Connecting and Disconnecting Suppliers
	25.4.3.3 Suspending and Resuming Consumer Connections
	25.4.3.4 Destroying the Notification Channel

	25.4.4 Using Offers and Subscriptions
	25.4.4.1 Adding Publication of Offers to the Supplier
	25.4.4.2 Adding Subscriptions to the Consumer
	25.4.4.3 Obtaining Offer and Subscription Information

	25.4.5 Adding Event Filtering
	25.4.5.1 Adding Event Filtering to the Supplier
	25.4.5.2 Adding Event Filtering to the Consumer

	25.4.6 Adding QoS Properties
	25.4.7 Transmitting an EventBatch
	25.4.7.1 Implementing the Sequence Push Supplier Interface
	25.4.7.2 Developing the EventBatch Supplier
	25.4.7.3 Implementing the Sequence Push Consumer Interface
	25.4.7.4 Developing the Event Consumer

	25.4.8 Collocated Notification Channels
	25.4.8.1 Collocated Notification Channel Example

	25.4.9 Real-Time Notification Example
	25.4.9.1 Notification Server Configuration
	25.4.9.2 Messenger Server Changes
	25.4.9.3 Messenger Consumer Changes

	25.5 Compatibility with the Event Service
	25.6 tao_cosnotification Command Line Options
	25.7 Notification Service Configuration Options
	25.7.1 Notify Service Factory Options
	25.7.2 Threading Options
	25.7.3 Other Options
	25.7.3.1 AllocateTaskPerProxy
	25.7.3.2 AllowReconnect
	25.7.3.3 AsynchUpdates
	25.7.3.4 DefaultConsumerAdminFilterOp op_type
	25.7.3.5 DefaultSupplierAdminFilterOp op_type
	25.7.3.6 DispatchingThreads nthreads
	25.7.3.7 ListenerThreads nthreads [DEPRECATED]
	25.7.3.8 LookupThreads nthreads [DEPRECATED]
	25.7.3.9 MTDispatching [DEPRECATED]
	25.7.3.10 MTListenerEval [DEPRECATED]
	25.7.3.11 MTLookup [DEPRECATED]
	25.7.3.12 MTSourceEval [DEPRECATED]
	25.7.3.13 NoUpdates
	25.7.3.14 SourceThreads nthreads
	25.7.3.15 UseSeparateDispatchingORB enabled
	25.7.3.16 ValidateClient
	25.7.3.17 ValidateClientDelay seconds
	25.7.3.18 ValidateClientInterval seconds

	25.7.4 Connection Reliability: Topology Persistence Options
	25.7.4.1 backup_count
	25.7.4.2 base_path file_path
	25.7.4.3 load_base_path file_path
	25.7.4.4 no_timestamp
	25.7.4.5 save_base_path file_path
	25.7.4.6 v

	25.7.5 Event Reliability: Event Persistence Options
	25.7.5.1 block_size
	25.7.5.2 file_path
	25.7.5.3 v

	Interface Repository
	26.1 Introduction
	26.2 Using the Interface Repository
	26.3 TAO’s Interface Repository Implementation
	26.3.1 tao_ifr_service
	26.3.2 tao_ifr

	26.4 Example IFR Client
	26.4.1 Annotated Source Code
	26.4.2 Run the Example

	TAO Security
	Preface
	27.1 Introduction
	27.1.1 Road Map

	27.2 Introduction to CORBA Security
	27.2.1 CORBA Security Reference Model
	27.2.1.1 “Principal” Identification and Authentication
	27.2.1.2 Delegation of Attributes
	27.2.1.3 Non-Repudiation
	27.2.1.4 Auditing
	27.2.1.5 Transparent Protection
	27.2.1.6 Application Control of Security Policy
	27.2.1.7 Application Enforcement of Security Policy
	27.2.1.8 Secure Messaging
	27.2.1.9 Administration

	27.2.2 CORBA Security Feature Packages
	27.2.2.1 Main Functionality Packages
	27.2.2.2 Optional Packages
	27.2.2.3 Security Replaceability Packages
	27.2.2.4 Common Secure Interoperability (CSI) Packages
	27.2.2.5 SECIOP Interoperability Package
	27.2.2.6 SECIOP + DCE-CIOP Interoperability
	27.2.2.7 Security Mechanism Packages

	27.2.3 CORBA Security Implementation Architecture
	27.2.3.1 Basic Environmental Protection and Communications
	27.2.3.2 Security Architecture
	27.2.3.3 Security Context Information
	27.2.3.4 TAO’s Security Service Architecture

	27.3 Secure Sockets Layer Protocol
	27.3.1 Secret-Key Cryptography
	27.3.2 Public-Key Cryptography
	27.3.2.1 Asymmetric Encryption

	27.3.3 SSL Architecture
	27.3.3.1 Handshake Protocol
	27.3.3.2 Record Protocol
	27.3.3.3 Change Cipher Spec Protocol
	27.3.3.4 Alert Protocol
	27.3.3.5 Example Session

	27.4 Working with Certificates
	27.4.1 Environment Setup
	27.4.2 Create Certificate Authority
	27.4.3 Create Certificate Request
	27.4.4 Sign Certificate Request and Issue Certificate
	27.4.5 Removing Key Pass Phrases
	27.4.6 Certificate Commands Summary

	27.5 Building ACE and TAO Security Libraries
	27.5.1 Building Security Libraries: UNIX Variants
	27.5.2 Building Security Libraries: Microsoft Visual Studio for Windows
	27.5.3 Testing the Security Libraries
	27.5.4 Building Security Unaware Executables
	27.5.5 Building Security Aware Executables

	27.6 Security Unaware Application
	27.6.1 Environment Setup
	27.6.1.1 Using Multiple Certificate Authorities

	27.6.2 Configuring and Loading SSLIOP
	27.6.3 Security Unaware Application Example

	27.7 Security Policy Controlling Application
	27.7.1 Controlling Message Protection
	27.7.2 Controlling Peer Authentication
	27.7.3 Security Policy Controlling Application Examples

	27.8 Security Policy Enforcing Application
	27.8.1 SSLIOP::Current
	27.8.2 Security Policy Enforcing Application Examples

	27.9 Mixed Security Model Applications
	27.9.1 Using the AccessDecision Object

	27.10 SSLIOP Factory Options
	27.10.1 SSLAcceptTimeout duration
	27.10.2 SSLAuthenticate which
	27.10.3 SSLCAFile FORMAT:filename
	27.10.4 SSLCAPath directory
	27.10.5 SSLCertificate FORMAT:filename
	27.10.6 SSLCheckHost
	27.10.7 SSLCipherList list
	27.10.8 SSLDHparams FORMAT:filename
	27.10.9 SSLNoProtection
	27.10.10 SSLPassword KIND:value
	27.10.11 SSLPrivateKey FORMAT:filename
	27.10.12 SSLRand filename
	27.10.13 SSLServerCipherOrder
	27.10.14 SSLVersionList list
	27.10.15 verbose

	Implementation Repository
	28.1 Introduction
	28.1.1 Direct Binding
	28.1.2 Indirect Binding

	28.2 New for patched OCI TAO 2.2a
	28.3 The Operation of the ImR
	28.3.1 Basic Indirection

	28.4 Basic Indirection Example
	28.4.1 Create the Server
	28.4.1.1 MessengerServer.cpp
	28.4.1.2 MessengerClient.cpp

	28.4.2 Run the Example

	28.5 Server Start-up
	28.5.1 Using An Activator
	28.5.2 Activator Example
	28.5.2.1 Run the Example

	28.6 Activation Modes
	28.7 Using the ImR and the IOR Table
	28.7.1 The Steps in Using an IOR Table

	28.8 ImR and IOR Table Example
	28.8.1 Create the Server
	28.8.1.1 MessengerServer.cpp
	28.8.1.2 MessengerClient.cpp

	28.8.2 Run the Example

	28.9 Advanced Examples
	28.10 Repository Persistence
	28.11 ImR Utility
	28.11.1 Command Line Options
	28.11.1.1 add/update
	28.11.1.2 autostart
	28.11.1.3 ior
	28.11.1.4 kill
	28.11.1.5 link
	28.11.1.6 list
	28.11.1.7 remove
	28.11.1.8 shutdown
	28.11.1.9 shutdown-repo
	28.11.1.10 start

	28.11.2 Examples
	28.11.2.1 list existing servers
	28.11.2.2 add a new server
	28.11.2.3 list again
	28.11.2.4 update the server
	28.11.2.5 start the server
	28.11.2.6 shutdown the server
	28.11.2.7 create an ior
	28.11.2.8 remove the server

	28.12 tao_imr_locator
	28.12.1 Command Line Options
	28.12.2 Fault Tolerant Implementation Repository
	28.12.3 Examples

	28.13 tao_imr_activator
	28.13.1 Command Line Options
	28.13.2 Examples

	28.14 JacORB Interoperability
	28.14.1 JacORB Servers and the TAO ImR
	28.14.2 Using the TAO ImR Utilility with JacORB Servers

	Appendices
	Configuring ACE/TAO Builds
	A.1 System Requirements
	A.2 Generating Makefiles and Project Files
	A.2.1 Specifying Features to Build

	A.3 GNU Make Build Flags
	A.4 Using the Build Flags

	Choosing How To Build ACE and TAO
	Building ACE and TAO on UNIX
	C.1 Building ACE and TAO on a UNIX System
	C.1.1 Create a Build Tree
	C.1.2 Set Environment Variables
	C.1.3 Configure the Source Code for Your Platform
	C.1.4 Determine what features to build
	C.1.5 Generate Makefiles
	C.1.6 Build ACE and TAO
	C.1.7 Verify Your Build

	C.2 Customizing ACE and TAO Builds
	C.2.1 Minimizing the Size of the TAO Library
	C.2.2 Selectively Building TAO Services

	Building ACE and TAO Using Visual C++
	D.1 Building ACE and TAO
	D.1.1 Create a Build Tree
	D.1.2 Set Up Your Environment
	D.1.3 Configure the Source Code for Your Platform
	D.1.4 Determine what features to build
	D.1.5 Generate Project files
	D.1.6 Build the Libraries
	D.1.7 Verify Your Build

	D.2 Build Notes

	Using ACE and TAO with VxWorks
	E.1 Kernel and System Configuration
	E.2 Environment Setup
	E.2.1 UNIX
	E.2.2 Windows

	Using ACE and TAO with Android
	F.1 Android Development Kits
	F.2 Setup ACE/TAO Workspaces
	F.3 Build The Host Tools
	F.4 Build The Target Libraries

	Using ACE and TAO with LynxOS
	G.1 Cross-Compilation
	G.1.1 Configuring and Building the Source Code

	Testing ACE and TAO on VxWorks and LynxOS
	H.1 Building the Tests
	H.2 Running the Tests
	H.2.1 ACE Tests
	H.2.2 TAO Tests
	H.2.3 ORB Services Tests

	CORBA Compliance
	I.1 Introduction
	I.2 CORBA 3.1
	I.2.1 CORBA Core
	I.2.2 CORBA Interoperability
	I.2.3 CORBA Interworking
	I.2.4 CORBA Quality of Service

	I.3 CORBA for Embedded
	I.3.1 CORBA/e Compact Profile
	I.3.2 CORBA/e Micro Profile

	I.4 Real-Time CORBA
	I.5 C++ Language Mapping
	I.6 Naming Service
	I.7 Notification Service
	I.8 Security Service

	References
	Index

